
ADVANCED DEVELOPMENT OF CERTIFIED OS KERNELS 

YALE UNIVERSITY 

JUNE 2015 

FINAL TECHNICAL REPORT 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

STINFO COPY 

AIR FORCE RESEARCH LABORATORY 
INFORMATION DIRECTORATE 

AFRL-RI-RS-TR-2015-157

 UNITED STATES AIR FORCE  ROME, NY 13441 AIR FORCE MATERIEL COMMAND



 

 

NOTICE AND SIGNATURE PAGE 
 
 
Using Government drawings, specifications, or other data included in this document for any purpose 
other than Government procurement does not in any way obligate the U.S. Government. The fact that 
the Government formulated or supplied the drawings, specifications, or other data does not license the 
holder or any other person or corporation;  or convey any rights or permission to manufacture, use, or 
sell any patented invention that  may relate to them.  
 
This report was cleared for public release by the 88th ABW, Wright-Patterson AFB Public Affairs Office and is 
available to the general public, including foreign nationals. Copies may be obtained from the Defense Technical 
Information Center (DTIC) (http://www.dtic.mil).   
 
 
 
AFRL-RI-RS-TR-2015-157   HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN 
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT. 
 
 
 
 
FOR THE DIRECTOR:  
 
 
 / S /           / S / 
WILMAR SIFRE       MARK H. LINDERMAN 
Work Unit Manager       Technical Advisor, Computing 
           & Communications Division 
         Information Directorate 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This report is published in the interest of scientific and technical information exchange, and its 
publication does not constitute the Government’s approval or disapproval of its ideas or findings. 
 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, 
Suite 1204, Arlington, VA 22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of 
information if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY)

JUNE 2015 
2. REPORT TYPE

FINAL TECHNICAL REPORT 
3. DATES COVERED (From - To)

SEP 2010 – DEC 2014 
4. TITLE AND SUBTITLE

ADVANCED DEVELOPMENT OF CERTIFIED OS KERNELS 

5a. CONTRACT NUMBER 
FA8750-10-2-0254 

5b. GRANT NUMBER 
N/A 

5c. PROGRAM ELEMENT NUMBER 
62303E 

6. AUTHOR(S)

Zhong Shao 

5d. PROJECT NUMBER 
CRSH 

5e. TASK NUMBER 
YA 

5f. WORK UNIT NUMBER 
LE 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Yale University 
105 Wall Street 
New Haven, CT  06511-6614 

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITA 
525 Brooks Road 
Rome NY 13441-4505 

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI 
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2015-157 
12. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited.  PA#  88ABW-2015-3064 
Date Cleared:  16 Jun 15 
13. SUPPLEMENTARY NOTES

14. ABSTRACT
The PI and his team at Yale have successfully developed (1) a clean-slate CertiKOS hypervisor kernel that runs on 
multicore platforms and supports Linux and ROS applications; (2) a new certified programming methodologies and tools 
that can verify contextual correctness, liveness, and security properties in a unified setting; (3) a fully verified single-core 
CertiKOS in Coq; (4) new semantics and logics for reasoning about information flow control with declassification, 
resource analysis, and fine-grained concurrent programs; and (5) new proof assistant language VeriML and Coq Ltac 
libraries. 

15. SUBJECT TERMS
Certified Software; Certified OS Kernels; Certified Compilers; Abstraction Layers; Modularity; Deep Specifications; 
Program Verification; Certified Resource Bound Analysis; Concurrency; Relay-Guarantee Reasoning; Simulation and 
Refinement; Termination Preservation; Information Flow Control; Liveness Properties; Quantitative Verification 
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 

ABSTRACT 

UU 

18. NUMBER
OF PAGES 

19a. NAME OF RESPONSIBLE PERSON 
WILMAR W. SIFRE 

a. REPORT
U 

b. ABSTRACT
U 

c. THIS PAGE
U 

19b. TELEPHONE NUMBER (Include area code) 
N/A 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39.18

503



TABLE OF CONTENTS

1 SUMMARY 1

2 INTRODUCTION 3

3 METHODS, ASSUMPTIONS, AND PROCEDURES 7

3.1 Overview of the CertiKOS Approach . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Methods and Procedures: Defining Abstraction Layers . . . . . . . . . . . . . . . 11

3.3 Methods and Procedures: Introducing Abstraction Layers . . . . . . . . . . . . . . 15

4 RESULTS AND DISCUSSION 17

4.1 Certifying the mCertiKOS Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Extensions and Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Performance Evaluation and Proof Effort . . . . . . . . . . . . . . . . . . . . . . . 24

4.4 Other Important Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 CONCLUSIONS 34

6 REFERENCES 35

LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS 38

APPENDIX 39

i



List of Figures

1 Certified OS kernels: what to prove? . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Overview of the CertiKOS architecture . . . . . . . . . . . . . . . . . . . . . . . 9

3 Introducing a new layer object . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 (a) Machine memory model; (b) Abstract memory model . . . . . . . . . . . . . . 13

5 Layers of mCertiKOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6 Call graph of page fault handler . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

7 Layers of virtual machine management . . . . . . . . . . . . . . . . . . . . . . . . 22

8 Performance evaluation with micro benchmarks. . . . . . . . . . . . . . . . . . . . 23

9 Normalized macro benchmarks: Linux on KVM and mCTOS, baseline is Linux on
bare metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

ii



1 SUMMARY

OS kernels form the backbone of all system software. They can have the greatest impact on
the resilience, extensibility, and security of today’s computing hosts. Recent effort on seL4 has
demonstrated the feasibility of building large scale formal proofs of functional correctness for a
general-purpose microkernel, but the cost of such verification is still prohibitive, and it is unclear
how to use such a verified kernel to reason about user-level programs and other kernel extensions.

Under this DARPA CRASH effort (FA8750-10-2-0254), the PI (Principal Investigator) and his
team has developed a clean-slate CertiKOS hypervisor kernel that runs on Intel and AMD multicore
platforms with hardware virtualization and can boot Linux and ROS applications in its multiple
virtual machines. A version of CertiKOS is now deployed on all the ground vehicle platforms
(LandShark UGV and American Built Car) in the DARPA HACMS program.

The PI and his team have also developed a new set of certified programming methodologies and
tools that support programming and composing certified abstraction layers (in C or assembly) and
can verify contextual safety, correctness, liveness, and security properties in one unified setting.

Using these new languages and tools, they developed a new compositional architecture for
building certified OS kernels. Because the very purpose of an OS kernel is to build layers of
abstraction over hardware resources, they insisted on uncovering and specifying these layers
formally, and then verifying each kernel module at its proper abstraction level. To support reasoning
about user-level programs and linking with other certified kernel extensions, they proved a strong
contextual refinement property for every kernel function, which states that the implementation of
each such function will behave like its specification under any kernel/user (or host/guest) context. To
demonstrate the effectiveness of this new approach, they have successfully specified a uniprocessor
variant of their full CertiKOS kernel and verified its (contextual) functional correctness property
in the Coq proof assistant. They showed how to extend their base kernel with new features such
as virtualization and ring-0 processes and how to quickly adapt existing verified layers to build
new certified kernels for different domains. Their certified hypervisor OS kernel is written in 5500
lines of C and x86 assembly, and can successfully boot a version of Linux as a guest. The entire
specification and proof effort took less than 1.5 person years.

They have also developed new semantics and logics for supporting Declarative Decentralized
Information Flow Control (DIFC) with declassification. They proposed a new framework which
advocate the use of an instrumented semantics for reasoning and the erasure semantics for execution.
Their new program logic can be used tor verify security properties for low-level C or assembly
programs. They showed that they can prove a new form of non-interference properties even in the
presence of declassification. This technology is now being ported into their CertiKOS kernels.

They have also developed new ground-breaking certified resource analysis tools and new logics
for verifying safety and liveness of fine-grained shared memory concurrent programs.

1



On the formal methods side, they have also made the first comprehensive study that aims
to address the architecture deficiencies in all of today’s proof assistants. They proposed a new
proof-assistant architecture that uses extensible conversion rules and static proof expressions to
support effective and principled proof development. They developed the design, the complete meta
theory, and a full compiler of a novel programming language called VeriML which realizes the new
architecture and also offers a unified platform for coding all kinds of computation on logical terms.

2



2 INTRODUCTION

Operating System (OS) kernels and hypervisors form the backbone of every safety-critical software
system in the world. Hence it is highly desirable to formally verify the correctness of these
programs [35]. Recent work on seL4 [19, 20] has shown that it is feasible to formally prove the
functional correctness property of a general-purpose microkernel, but the cost of such verification is
still quite prohibitive. It took the seL4 team more than 11 person years (effort for tool development
excluded) to verify 7500 lines of sequential C code, yet the resulting kernel still contains 1200 lines
of additional C code and 600 lines of assembly code that are not verified. Worse still, even after all
these efforts, the current verified seL4 kernel cannot be used to reason about user-level programs as
it does not verify important features such as virtual-memory page faults and address translation.

What makes the verification of OS kernels so challenging?

First, OS kernels are complex artifacts; they contain many interdependent components that are
difficult to untangle. Their invariants can involve machine level details (e.g., how the virtual memory
hardware works) but can also cut across multiple abstraction boundaries (e.g., different views of an
address space under kernel/user or host/guest modes). Several researchers [1,41] observed that even
writing down a good and easy-to-maintain formal specification alone is already a major roadblock
for any such verification effort.

Second, OS kernels are often written in C, which only supports limited forms of abstraction.
Verification of C programs is especially hard if they manipulate low-level data structures (e.g.,
thread queues, allocation tables). The seL4 effort used an intermediate executable specification
(derived from a Haskell prototype) to hide some messy C specifics, but this alone is not enough for
enforcing abstraction among different kernel components; seL4 had to introduce capabilities which
add significant implementation complexities to the kernel.

Third, OS kernels are developed for managing and multiplexing hardware, so it is important to
have a machine model that can describe hardware details. The C language is too high level for this
purpose. For example, while most kernel code can be written in C, many key kernel concepts (e.g.,
context switches, address translation, page fault handling) can only be given accurate semantics
at the assembly level. Consequently, we need a formal assembly model to define many kernel
behaviors, but we also want to verify most kernel code at a much higher abstraction level.

Fourth, OS kernel verification would not scale if it does not support extensibility. One advantage
of a verified kernel is the existence of formal specifications for all of its components. In theory,
this would allow us to add certified kernel plug-ins [36] as long as they do not violate any existing
kernel invariants. In practice, however, if we are unable to decompose kernel invariants into small
independent pieces, even modifying an existing (or adding a new) verified component may force us
to rewrite the proofs for the entire kernel.

Under this DARPA CRASH (Clean-Slate Design of Resilient, Adaptive, Secure Hosts) effort

3



(FA8750-10-2-0254), the PI and his team at Yale University have developed a novel compositional
approach that successfully tackles all of the above challenges in building certified OS kernels. They
believe that, to make verification scale and to provide strong support to extensibility, they must first
have a compositional specification that can untangle all the kernel interdependencies. Because the
very purpose of an OS kernel is to build layers of abstraction over bare machines, they insist on
meticulously uncovering and specifying these layers (done in the Coq proof assistant [40]), and
then verifying each kernel module at its proper abstraction level.

The functional correctness of an OS kernel (as done in seL4) is usually stated as a refinement
property. Roughly speaking, if MC stands for the C/assembly implementation of a kernel, MA for
its abstract functional specification, and rr¨ss for each’s corresponding state machine, then MC refines
MA if there exists a forward simulation [28] from rrMCss to rrMAss (denoted as rrMCss Ñ rrMAss).
Through such refinement, Gerwin et al [19, 30, 33, 34] claimed that many properties established for
MA (e.g., confidentiality [30] when MA is deterministic) can be transferred to MC .

This claim, unfortunately, fails to hold in the context of any interesting user-level programs.
If P stands for a collection of user-level processes and ’ for a linking operator, then from
rrMCss Ñ rrMAss alone, we cannot derive rrMC ’P ss Ñ rrMA ’P ss. This is because the semantics
of running P on top of MA (where virtual memory hardware is hidden) is different from that of
running P on top of MC (where page faults and address translation do come into play). Daum et
al [7] partially closed the gap by extending the original refinement proof to also track memory
permissions, but they still did not deal with page faults in their model of user transitions.

Under this new DARPA CRASH effort, the PI and his team instead prove the strong contextual
refinement property for all kernel modules directly: they show that for any kernel/user or host/guest
context code P , rrMC ’P ss Ñ rrMA ’P ss always holds. This guarantees that they cannot overlook
any subtle difference between machines at different abstraction levels.

More specifically, they developed a new extensible architecture (called CertiKOS) for building
certified OS kernels. CertiKOS uses contextual refinement as the unifying formalism for composing
kernel and user components at different abstraction levels. Each abstraction layer is defined as an
assembly-level machine extended with a particular set of abstract states and primitives. However,
most of their kernel programs are written in a variant of C (called ClightX) [14], verified at the
source level, and compiled and linked together using a modified version [14] of the CompCert
verified compiler [21, 22]. CertiKOS is the first architecture that can truly transfer global properties
proved for user-level programs (at the kernel specification level) down to the concrete assembly
machine level.

Using CertiKOS, they have developed a fully certified mCertiKOS kernel in Coq. Unlike
seL4, they decompose the specification of mCertiKOS into 33 logical abstraction layers, and
turn an otherwise prohibitive verification task into many simple and easily automatable sub-tasks.
The resulting kernel is a certified assembly implementation that still enjoys a high degree of
compositionality. Their layered specification shows that interdependent low-level kernel modules

4



can indeed be untangled and given clear formal semantics.

Using mCertiKOS as the base, we have also built three additional certified kernels: mCertiKOS-
hyp extends mCertiKOS with virtualization support to form a hypervisor kernel; mCertiKOS-rz
extends mCertiKOS-hyp with “ring 0” processes (they are “certifiably safe” application programs
that can run safely inside the kernel address space, similar to SIPs in Singularity [17]); mCertiKOS-
emb removes virtual memory and virtualization support from mCertiKOS-rz so that it only supports
“ring 0” processes.

They have done a detailed evaluation of their certified development effort, including kernel
performance, the cost of layer design and proof development, and the cost of building new extended
(or adapted) kernels. All of their certified kernels are practical and can run on stock x86 hardware.
Their certified hypervisor kernel (mCertiKOS-hyp) consists of 5500 lines of C and x86 assembly,
and can successfully boot a version of Linux as a guest. The entire specification and proof effort
took less than 1.5 person years.

Finally, in addition to developing new cutting-edge technologies for building certified OS
kernels, the PI and his team have also made significant breakthroughs on the following problems:

• They have developed a clean-slate hypervisor kernel that runs on Intel and AMD multicore
platforms with hardware virtualization and can boot Linux and ROS (Robot Operating System)
applications in its multiple virtual machines. This hypervisor kernel is now deployed on
all the ground vehicle platforms (LandShark UGV and American Built Car) in the DARPA
HACMS (High-Assurance Cyber Military Systems) program.

• They have developed a new set of certified programming methodologies and tools [14] that
support programming and composing certified abstraction layers (in C or assembly) and can
verify contextual safety, correctness, liveness, and security properties in one unified setting.

• They have developed new semantics and logics [6] for supporting Declarative Decentralized
Information Flow Control (DIFC) with declassification. They proposed a new framework
which advocate the use of an instrumented semantics for reasoning and the erasure semantics
for execution. Their new program logic can be used tor verify security properties for low-level
C or assembly programs. They showed that they can prove a new form of non-interference
properties even in the presence of declassification. This technology is now being ported into
their CertiKOS kernels.

• They have developed new ground-breaking certified resource analysis tools [3, 4] and new
logics [25, 26] for verifying safety and liveness of fine-grained shared memory concurrent
programs.

• They have made the first comprehensive study [39] that aims to address the architecture
deficiencies in all of today’s proof assistants. They proposed a new proof-assistant architecture
that uses extensible conversion rules and static proof expressions to support effective and

5



principled proof development. They developed the design, the complete meta theory, and a
full compiler of a novel programming language called VeriML [37–39] which realizes the
new architecture and also offers a unified platform for coding all kinds of computation on
logical terms.

6



3 METHODS, ASSUMPTIONS, AND PROCEDURES

The ultimate goal of research on certified OS kernels is not just to verify the functional correctness
of a particular kernel, but rather to find the best OS design and development methodologies that
can be used to build provably reliable, secure, and efficient computer systems in a cost-effective
way. The PI and his team at Yale enumerated the following important dimensions of concerns and
evaluation metrics which they have used so far to guide their work toward realizing this goal:

• Support for new kernel design. Traditional OS kernels use the hardware-enforced “red line”
to define a single system call API (Application Programming Interface). A certified OS kernel
opens up the design space significantly as it can support multiple certified kernel APIs at
different abstraction levels. It is important to support kernel extensions [2, 10] and ring-0
processes [17] so we can experiment and find the best trade-offs.

• Kernel performance. Verification should not impose significant overhead on kernel perfor-
mance. Of course, different kernel designs may imply different performance priorities. An
L4-like microkernel [27] would sacrifice portability for faster inter-process communication
(IPC) while a Singularity-like kernel [17] would focus on efficient support for type-safe ring-0
processes.

• Verification of global properties. A certified kernel is much less interesting if it cannot be
used to prove global properties of the complete system built on top of the kernel. Such global
properties include not only safety, liveness, and security properties of user-level processes
and virtual machines, but also resource usage and availability properties (e.g., to counter
denial-of-service attacks).

• Quality of kernel specification. A good kernel specification should capture precisely those
contextually observable behaviors in the kernel implementation [14]. It must support trans-
ferring global properties proved at a high abstraction level down to any lower abstraction
level.

• Cost of development and maintenance. Compositionality is the key to minimize such cost.
If the machine model is stable, verification of each kernel module should only need to be done
once (to show that it implements its deep functional specification [14]). Global properties
should be derived from the kernel specification alone.

• Quality of formal proofs. They use the term certified kernels rather than verified kernels to
emphasize the importance of third-party machine-checkable proof certificates [35]. Hand-
written paper proofs are error-prone [18]. Program verification without machine-checkable
proofs has been subject to significant controversy [8].

7



x86!

Asm Instructions!

registers 

memory 
mCertiKOS         

code      !

mCertiKOS!

Asm Instructions + System Calls!

registers 

memory 

abstract state!

contextual refinement!

P!
top!

bottom!
P!K!

Figure 1: Certified OS kernels: what to prove?

3.1 Overview of the CertiKOS Approach

Their new CertiKOS architecture aims to address all of the above concerns and also tackle all
four challenges described in Sec. 2. The CertiKOS architecture leverages the new languages and
tools [14] which the PI and his team have developed recently for building certified abstraction layers
with deep specifications.

A certified layer is a new language-based module construct that consists of a triple pL1,M, L2q
plus a mechanized proof object showing that the layer implementation M , built on top of the
interface L1 (the underlay), is a contextual refinement of the desirable interface L2 above (the
overlay). A deep specification (e.g., L2) of a module (e.g., M ) captures everything contextually
observable about running the module over its underlay (e.g., L1). Once they have built a certified
layer M with a deep specification L2, there is no need to ever look at M again, and any property
about M can be proved using L2 alone. Of course, if the semantics of the underlying abstract
machine (for M ) changes, the deep specification for M may also have to change.

Under CertiKOS, building a new certified kernel (or experimenting a new design) is just a
matter of composing a collection of certified layers, developed in a variant of C (called ClightX) or
assembly. The PI and his team [14] have developed a powerful Coq library for supporting horizontal
and vertical composition of certified layers. They have also built a certified compiler (called
CompCertX) that can compile certified ClightX layers into certified assembly layers. CertiKOS
can thus enjoy the full programming power of an ANSI C variant and also the assembly language
to certify any efficient routines required by low-level kernel programming. The layer mechanism
allows us to certify most kernel components at higher abstraction levels, even though they all
eventually get mapped (or compiled) down to an assembly machine.

In Fig. 1, they use x86 to denote an assembly machine and rr¨ssx86 for its whole-machine
semantics. Suppose they load such a machine with the mCertiKOS kernel K (in assembly) and

8



Kn#spec

L0#primitives

K1#Asm#code## K2##…##Kn

L1#primitives

Kn#Asm#code## #P

Ln#primitives

Other#Asm#code#P

Kernel&ClightX&
source&code:
K1#,#K2#,##…#,##Kn#

Layered&Speci9ication�

New&Certi9ied&
Compiler�

Layer&Ln




Layer&L1


#P
Layer&L0

Kn#code## #CompCertX

K1#spec

K1#code##

Layer&
Re9inement�

Veri9ication&of&
Kernel&Code�

Asm L0#abs>state

Asm L1#abs>state

Asm Ln#abs>state

#CompCertX

Figure 2: Overview of the CertiKOS architecture

user-level assembly code P ; then proving any global property of such a complete system amounts
to reasoning about the semantic object rrK’P ssx86.

Reasoning at such a low level is difficult, so they formalize a new mCertiKOS machine that
extends the x86 machine with the deep specification of K. They use rr¨ssmCertiKOS to denote its
whole-machine semantics. The contextual refinement property about the mCertiKOS kernel can be
stated as @P, rrK’P ssx86 Ñ rrP ssmCertiKOS. Hence any global property proved about rrP ssmCertiKOS

can be transferred to rrK’P ssx86.

In CertiKOS, they also use contextual refinement to support fine-grained layer decomposition
and linking. In Fig. 2, to build a certified kernel K, they decompose it into multiple kernel modules
K1, ..., Kn, each sitting at its respective underlay (L0, ..., Ln´1). Each such module (Ki) implements
the primitives in its overlay (i.e., Li) but it can only call the primitives in its underlay (Li´1). Using
vertical composition [14], from the contextual refinement @P, rrKi ’P ssi´1 Ñ rrP ssi for each layer
(they use rr¨ssj to denote the semantics of the Lj machine), they can deduce @P, rrK’P ss0 “ rrK1 ’
K2 ¨ ¨ ¨’Kn ’P ss0 Ñ rrK2 ¨ ¨ ¨’Kn ’P ss1 ¨ ¨ ¨ Ñ rrKn ’P ssn´1 Ñ rrP ssn. If they instantiate L0 and
Ln with the x86 and mCertiKOS layers, they get precisely the contextual refinement property of
the mCertiKOS kernel. They can also compose intermediate layers in the same way—this makes it
much easier to modify existing (or add new) certified kernel modules.

9



What have they proved? Using CertiKOS, they have successfully built multiple certified OS
kernels. For each such kernel, they have always constructed its deep specification and proved its
contextual functional correctness property, so all global properties proved at the specification level
can be transferred down to the lowest assembly machine.

From the functional correctness property, they immediately derive that all system calls and traps
will always run safely and also terminate; and there will be no code injection attacks, no buffer
overflows, no null pointer access, no integer overflow, etc. They also proved that there is no stack
overflow or memory exhaustion in the kernel using recent techniques developed also by the PI’s
team et al [3, 4]. They have also proved an isolation property between the virtual address spaces of
user-level processes. All of these properties were proved using the abstract specification provided at
the top layer, and then transferred to the lowest assembly machine via contextual refinement.

Assumptions and limitations Outside their certified mCertiKOS kernel, there are only 163 lines
of C (for loading ELF binaries) and 38 lines of assembly code (for handling traps) that are not
verified.

The mCertiKOS kernel also relies on a bootloader, whose verification is left for future work.
The bottom-most x86 layer of our certified kernels is called PreInit, which initializes the drivers,
e.g., serial, disk, console, etc. Device drivers are not verified because our current machine semantics
lacks device models for expressing the corresponding semantics.

Their assembly-level machines do not cover the full x86 instruction sets, so their contextual
correctness results only apply to programs in this subset. However, additional instructions and
features can be easily added if they have simple or no interaction with our kernel.

The CompCert assembler for converting assembly into machine code is also not verified. They
assume the correctness of the Coq proof checker and its code extraction mechanism.

Their current certified kernels assume a runtime environment consisting of a single processor,
but extending it to support multicore concurrency is already under way. Their choice of using
contextual refinement to compose layers is motivated partly by its close connection [13,26] with the
work on concurrent objects [15, 16].

Like most existing verified kernel efforts, they assume that interrupts are only enabled in
user or guest mode. The challenges in handling interrupts and preemption are similar to those
for concurrency [11, 12]. They believe that similar approaches can be readily supported in their
CertiKOS framework.

Comparison with seL4 The seL4 team [19] focused on verifying a particular microkernel. The
designers of the L4-family kernels [9, 27] advocated the minimality principle: a concept is tolerated
inside the microkernel only if moving it outside the kernel would prevent the implementation
of the system’s required functionality. This is a reasonable principle but its interpretation of the

10



“kernel-user” boundary (as the hardware-enforced “red-line”) is quite narrow. The PI and his team’s
new CertiKOS architecture advocates replacing the traditional “red line” with a large number of
certified abstraction layers enforced by formal specification and proofs; hardware mechanism (such
as address protection) is just one (quick) way of ensuring that a specific process will not violate the
invariants required by a particular kernel abstraction layer.

As mentioned in Sec. 2, the seL4 team only proved the refinement property but not the con-
textual refinement property, so the global properties (e.g., security [30, 34]) proved at the abstract
specification level cannot be transferred to the C-implementation level. The root cause of this
problem is their rather simplistic C-level state machine which they used to verify their 7500 lines of
C code. This machine is too high level to model several key OS features (e.g, kernel initialization,
context switches, address translation, and page-fault handling). Indeed, these features happen to
coincide with the unverified C and assembly code in their kernel.

Sewell et al. [33] used translation validation to build a refinement proof between the semantics
of the verified C source code and the corresponding binary (compiled by GCC). This proof is not as
high quality as the rest of the seL4 effort because it was not done in a proof assistant (thus it has no
machine-checkable proof) and the translation validator itself still has not been verified.

Even with this work by Sewell et al. [33], the previously unverified C code (1200 lines) and
assembly code (600 lines) in seL4 still remain unverified. These are actually quite major assumptions
for a verified kernel because they include the correctness of context switches, kernel initialization,
address translation, and linking between verified C and assembly; all of which were considered as
major challenge problems by many researchers working in this field [5, 11, 31, 32, 41].

Using CertiKOS, the PI and his team have successfully tackled all of these challenges: context
switches, kernel initialization, address translation, and page fault handling are all certified. All
kernel components (in C and assembly) are correctly linked together to form a complete system in
an assembly machine and all our proofs are machine-checkable in Coq.

Much of the implementation complexity of the seL4 kernel lies on its support of capability-based
access control. Capabilities are important in seL4 as they are used to prevent unwanted interference
between different kernel components. However, they significantly increase the complexity of the
seL4 kernel. In contrast, the CertiKOS-family kernels the PI and his team have built so far rely on
the CompCert memory model [23] to enforce isolation and prove contextual refinement.

3.2 Methods and Procedures: Defining Abstraction Layers

Contextual refinement provides an elegant formalism for decomposing the verification of a complex
kernel into a large number of tractable tasks: the PI and his team define a series of logical abstraction
layers, which serve as increasingly higher-level specifications for an increasing portion of the
kernel code. They design these abstract layers in a way such that complex interdependent kernel

11



objectsabs-state

K i Li-1

Li memory

RInv 

objectsmemory

primitives

Figure 3: Introducing a new layer object

components are untangled and converted into a well-organized kernel-object stack with clean
specification.

Their framework specifies an abstraction layer using five components: a collection of objects, a
memory model, an invariant which the memory and objects satisfy at any point of the execution, an
initialization flag, and an initialization primitive. These five components define a logical view of a
subset of the kernel code and extend our language with an abstract specification of that code. On
top of this logical view, more code is introduced and verified.

Layer objects The layer objects are logical abstractions of kernel modules. In Fig. 3, each layer
object provides a set of abstract states (which are abstractions of the module’s private memory) and
a set of primitives (which are abstractions of the module’s interface specified in terms of the abstract
states). Consecutive layers may reuse some of the same objects, introduce new layer objects by
verifying additional code, or hide some low-level objects which are used to implement new objects
but need not be exposed to higher layers. Hiding unnecessary objects facilitates invariant proofs
since they can often use stronger invariants at higher layers that would otherwise be violated by
low-level objects.

For example, thread queues are implemented as doubly-linked lists in mCertiKOS, and the
concrete implementations of the functions that manipulate queues (enqueue and dequeue) directly
manipulate these doubly-linked lists in memory. On the other hand, in our abstract queue layer
object, a queue is just a simple list of thread identifiers, and the enqueue and dequeue primitives
are specified directly over the abstract lists. The contextual refinement relation between the two
layers (one with concrete implementation and the other with the abstract layer object) ensures
that any kernel/user context code (e.g., the scheduler) running on top of the more abstract layer
retains an equivalent behavior when it is running on top of the layer with corresponding concrete
implementation.

As shown in Fig. 3, to establish the contextual refinement relation between concrete memory
and abstract state, they use CompCert memory permissions [24] at the higher layer to prevent the
context code from accessing the module’s private memory. Note that these permissions do not
correspond to a physical protection mechanism, but instead are entirely logical: they ensure that the

12



paq physical 
memory 

dir# pt# offset 32-bit virtual address 

CR3 

… … … … 
pbq

physical 
memory 

PMapi 

… … … … 

… … 
virtual 

address 
space i 

hidden hidden 

Figure 4: (a) Machine memory model; (b) Abstract memory model

higher-level abstract machine gets stuck whenever it executes code that directly accesses this private
memory. By proving our kernel is safe (it does not get stuck), they guarantee that this situation will
not happen.

Memory models OS kernels must manage limited physical memory and provide contiguous
address spaces for high-level kernel modules and user programs. Because much of the code assumes
that the memory management sets up the virtual address space properly, initialization has been
a sticking point in previous verification efforts [20, 41], in which the virtual address space setup
is either not verified, or verified separately as an external lemma. They address this challenge by
making the memory model explicit in our abstraction layers.

Because they use CompCertX [14] along with its formalization of the semantics of C and
assembly, our notion of memory is based on the CompCert memory model [24]. CompCert employs
a unified model to encode different views of memory. The memory is split into a number of disjoint
blocks and a pointer is represented by a pair pb, oq, where b is a block identifier and o is an offset
within block b. Each offset within a block is associated with a permission specifying the memory
operations that can be performed at that location. A program which attempts to perform a prohibited
operation will get stuck. The compiler’s correctness theorem guarantees that the target program will
only get stuck if the source does; thus the compiler will never introduce invalid memory operations
into a correct program.

In CompCert, this unified memory model built around blocks and permissions is used to encode
different views of the memory. For instance, at the C level each variable is assigned its own memory
block, so that the semantics of CompCert C reflect the C standard by invalidating pointer arithmetic
across variable boundaries. On the other hand, in the emitted assembly code, a function’s local
variables are merged into a single “stack frame” memory block. CompCert’s simulation proof has
to keep track of the correspondence between these two views of the memory, but the fact that the
semantics of the source and target languages are expressed in terms of a unified memory framework
tremendously simplifies the compiler’s verification. At the assembly level, this model is still slightly
more abstract than the hardware, yet it is sophisticated enough that CompCert’s stack layout pass,
for instance, can be properly verified.

They follow a similar approach, and extend the semantics of CompCert assembly so that the

13



CompCert memory model can be equipped with notions of page fault and address translation. A
distinguished block is used to represent the entire address space. The memory model of a layer L
specifies how memory loads and stores are carried out in terms of the system description at that level
of abstraction. The machine memory model, and those implemented by the physical and virtual
memory management components, organize memory in terms of various units (byte, page, address
space), and provide different addressing modes and protection mechanisms. Because our kernel
code is compiled using CompCertX, its own stack frames and static data have to be modeled as
independent blocks. However, as explained in Sec. 4, we prove that user programs can never access
the kernel portion of the address space. They also use an external tool [3] to prove that the stack
usage of our compiled kernel is bounded such that stack overflows cannot occur: the computed
bound is much less than the dedicated 4K bytes we use for kernel stacks.

Integrating the various views of the memory into our layered approach allows us to reason
about memory accesses in the same way that we reason about other kernel services: as long as the
low-level machine memory model, as configured by our kernel code, contextually refines a more
abstract memory model, any code we can write and reason about in terms of the latter can be shown
to have an equivalent behavior when run on top of the former. As shown in Fig. 4(a), the machine
memory model is an unstructured CompCert memory block, which is consistent with the hardware
view of the physical memory. Accesses to this memory block are modeled in a way that mirrors the
operation of the paging hardware. By contrast, in the top-level memory model (which we call the
abstract memory model), address translation cannot be disabled; memory accessors operate on the
basis of the high-level, abstract descriptions of address spaces rather than concrete page directories
and page tables stored in the memory itself (see Fig. 4(b)).

Layer invariant Each abstraction layer specifies a predicate on the memory and layer objects’
abstract states. This invariant is satisfied by the initial state and preserved by memory accessors and
the layer objects’ primitives. It therefore holds in all client contexts, at any point of execution.

In previous verification efforts, proving invariants has typically been challenging. For example,
in seL4, the thread queues are implemented as doubly-linked lists with the following invariant:

Invariant 1. All back links in thread queues point to appropriate nodes and all elements point to
thread control blocks.

Proving this invariant is difficult for several reasons. As stated in [20]:

Invariants are expensive because they need to be proved not only locally, but for the
whole kernel — we have to show that no other pointer manipulation in the kernel
accidentally destroys the list or its properties. [. . . ] The treatment of globals becomes
especially difficult if the invariants are temporarily violated. For example, adding a new
node to a doubly-linked list temporarily violates invariants that the list is well formed.

14



However, in our layered approach, global variables and the code that manipulates them are abstracted
as layer objects. The remaining kernel code cannot access the abstracted variables directly, since
they are hidden using CompCert memory permissions. Moreover, the abstract primitives are atomic,
hence there is no longer a point in the execution at which the invariants have to be temporarily
violated. Finally, some complex invariants are implied by the correspondence with our abstract
representations. For instance, in our setting, Inv. 1 naturally follows from the contextual refinement
between concrete thread queues and abstract “thread list” objects.

Initialization flag and primitive Each layer has exactly one initialization primitive, which can
be viewed as a special layer object together with the initialization flag. This logical initialization
flag is false in the initial state and is set to true by the initialization primitive. Most of the invariants
and specifications of non-initialization primitives require as a precondition that the initialization
flag is true. This guarantees that the initialization primitive is the first primitive that is executed.

3.3 Methods and Procedures: Introducing Abstraction Layers

Introducing new layers is a way to organize code and lift the abstraction level. In most cases, this
does not require modifying the implementation. In this section, the PI and his team discuss some of
the principles they used when drawing the boundaries of their kernel’s abstraction layers.

Principle 1: Introduce layers to reflect dependencies between kernel modules One purpose
of layers is to enforce code isolation and abstraction. When a module M depends on another module
N , abstraction layers should be organized in such a way that M can be reasoned about in terms of
an abstracted version of N .

For example, since the virtual memory management code relies on physical memory manage-
ment, the code which performs allocation and deallocation of physical pages in terms of allocation
tables is first abstracted into a layer object. This object provides the primitives palloc and pfree and
defines their abstract specifications. Then functions such as pt insert and pt rmv, which manipulate
page mappings at the virtual memory management level, can be verified with a more abstract
view of the allocation table, without worrying about its concrete memory representation and code
implementation. On the other hand, if two kernel modules mutually depend on each other, they
have to be introduced within a single layer.

Principle 2: Introduce a layer when the memory model changes In the machine memory
model, when paging is enabled, each memory access is accompanied by a two level page table walk
starting from the address stored in the CR3 register, shown in Fig. 4(a). Switches of page tables
are performed by storing the top address of the other page table structure into CR3. In the abstract

15



memory model, we associate with each process a logical partial map from a virtual address to a
pair of physical address and permission. The address translations are performed using the logical
mappings of the currently-running process, shown in Fig. 4(b). With this high level memory model,
some complex properties like memory isolation can be proved more easily.

mCertiKOS uses an additional intermediate memory model. The mCertiKOS-hyp extension
presented in Sec. 4 uses yet another, virtualization-related model. They introduce a new layer
whenever we switch from one memory model to another and establish the contextual refinement
between them.

Principle 3: Introduce a layer when a stronger invariant needs to be proved After paging
is enabled, both kernel modules and user processes run in a virtual address space. To ensure the
correctness of these kernel modules and user processes on top of virtual memory management, we
require the following invariants to hold:

Invariant 2. 1) paging is enabled only after the initialization of virtual memory management; 2)
the memory regions that store kernel-specific data must have the kernel-only permission in all
page maps; 3) the page map used by the kernel is an identity map 4) the non-shared parts of user
processes’ memory are isolated.

Inv. 2 no longer holds if the privileged primitive that sets the CR3 register is present in the layer,
as the unknown context code may write an invalid address into CR3 using the provided primitive.
To solve this issue, another layer is introduced with a wrapper function that takes the process id as
argument, instead of an actual address. Then the function sets CR3 to the starting address of the
predefined corresponding process’s page table structure. The primitive that directly sets the CR3
register is hidden from the new layer, and the invariants are introduced in the new layer. This is
one of the rare cases where performance overhead is introduced (one extra function call due to the
wrapper). It should be possible to use CompCertX’s function-inlining optimization to remove this
overhead (this is left as future work).

Principle 4: Introduce a layer to facilitate initialization proofs Recall that each layer contains
one initialization primitive. This primitive can be passed through from the layer below, or a new
one can be defined which extends that of the layer below so as to initialize the new layer’s data.
When a new layer object is introduced, we can create a new layer to initialize its abstract data to an
appropriate state. In the context of an operating system kernel, initialization functions are relatively
complex. Introducing an extra layer allows us to avoid directly reasoning over the concrete memory.
With this new layer, an initialization function is verified using a more abstract specification.

16



4 RESULTS AND DISCUSSION

4.1 Certifying the mCertiKOS Kernel

In this section, the PI and his team describe the main parts of the certification of mCertiKOS. The
mCertiKOS kernel is divided into four main components (see Fig. 5) which consist of multiple
layers: the pre-initialization module (1 layer), the memory management (14 layers), the process
management (14 layers), and the trap handler (4 layers). The pre-initialization module contains
the bottom layer that corresponds to the physical machine and trap handler contains the top layer
provides system calls and serves as a specification of the whole kernel. Their main theorem states
that context code that is understood in terms of the topmost abstraction layer has an equivalent
behavior when run along with the kernel on the bottom-most layer.

The overall structure of the layered certification is shown in Fig. 5. Each row in the diagram
describes a layer. It consists of the name of the layer (on the very left) followed by the initialization
primitive (green background), and the memory model used by the layer (blue background). The
rest of the row describes layer objects, each in their own bordered rectangle. Normal white-filled
objects are used to implement new layers, while those filled with gray are hidden from higher
layers. Some objects span across multiple rows and are colored purple, meaning that they are
horizontally composed to implement higher layers. The objects with different subscripts indicate
different abstract view over the same data.

Pre-initialization module The pre-initialization module only contains the bottom-most layer
PreInit. It is used to model the x86 hardware and axiomatizes the hardware behaviors that are
necessary to obtain end-to-end behaviors across the kernel and the user space. These behaviors
include page table walk upon memory load when paging is turned on, saving and restoring part of
the trap frame in the case of interrupts, and switching the stack pointer in the case of ring switch.

The x86 object is the only layer object in the PreInit layer. It extends the CompCert assembly
semantics to model the low-level features of the machine. Its abstract state consists of control
registers, a physical memory map MM, and a kernel mode flag ikern. Its primitives consist of
getter-setter functions for control registers and MM, and a function models the transition between
user and kernel mode.

The state component MM is the abstraction of the E820 memory map provided by the bootloader.
The control registers, such as CR0, CR2, and CR3, are used to model the behavior of the processor’s
memory management unit (MMU). When paging is enabled (as indicated by CR0), memory accesses
made by both the kernel and the user programs are translated using the page map pointed to by CR3
in the machine memory model. When a page fault occurs, the corresponding information is stored in
CR2 and the page fault handler is invoked. The logical flag ikern indicates whether the processor is
currently in the kernel or user mode. Some privileged memory regions (e.g., allocation table, page

17



PreInit 

MATIntro x86bootloader machine mem

x86bootloader machine mem

AT nps

MATOp x86pmem_init machine mem AT nps

MAT CR2pmem_init machine mem page

MPTIntro 

CR2  
/ Container

pmem_init abstract mem

page

PMap0

MPTOp pmem_init abstract mem PMap1

MPTCom ptcom_init abstract mem PMap2

MPTKern ptkern_init abstract mem PMap2

MPTInit pt_init abstract mem PMap2

MPTBit pt_init abstract mem PMap2BitMap

MPMap pmap_init abstract mem PMap page

MShIntro pmap_init abstract mem

MShareOp share_init abstract mem

PMap

page

ShMem1

PMapShMem1

MShare share_init abstract mem PMapShMem

PKCtxIntro share_init

ShMem 
/ page  
/ CR2  

/ Container

KCtx0

PKCtx share_init PMapKCtx

PTCBIntro share_init

KCtx

iTCB0

PTCB tcb_init iTCB

PTdQIntro tcb_init iTCBiTdQ0

PTdQ tdq_init iTCBiTdQ

PAbQ abq_init TCBAbQ

PMap
PCurID abq_init KCtxTCBAbQ

PTDIntro abq_init Thread0

PThread thread_init Thread

PIPCIntro thread_init ThreadIPC

PIPC thread_init ThreadIPC

PUCtx thread_init ThreadIPCUCtx

PProc proc_init Proc

ShMem PMapTTrapArg proc_init Proc Arg

TTrap proc_init Proc SysHandler

pageCR2

ExceptionHandler

proc_init ProcSysDispatch ExceptionHandlerTDispatch 

ctos_init SysCall ExceptionHandlerTSyscall 

PMap

abstract mem

abstract mem

abstract mem

abstract mem

abstract mem

abstract mem

abstract mem

abstract mem

abstract mem

cid

abstract mem

abstract mem

abstract mem

abstract mem

abstract mem

abstract mem

abstract mem

abstract mem

abstract mem

MContainer x86bootloader machine mem AT npsContainer

Container

Container

Container

Container

Container

Container

Container

Figure 5: Layers of mCertiKOS

18



map) and instructions (e.g., modifying control registers) are only available in the kernel mode.

Memory management The memory management of mCertiKOS consists of the physical memory
management (4 layers), virtual memory management (7 layers) and shared memory management (3
layers).

Based on the pre-initialization layer and the machine memory model, the physical memory
management abstracts the physical page allocation table into page objects. To better reason about
access control and isolation in the case of the dynamic resource allocation, each physical page
object maintains a logical state containing ownership information, and the page is only allowed to
be accessed by its owners.

On top of physical memory management, the virtual memory management provides consecutive
virtual address spaces. They proved not only that the primitives of virtual memory management
manipulate the address space correctly, but also that the initialization procedure sets up the two-level
page maps properly in terms of hardware address translation. The Inv. 2 they have proved guarantees
that it is safe to run both the kernel and user programs in the virtual address space when paging is
enabled.

The shared memory management provides a protocol to share physical pages among different
user processes. It provides an infrastructure to map a physical page into multiple processes’ page
maps in different address spaces. Their ownership mechanism ensures that the page can only be
freed once all processes release ownership.

Enforcing memory quotas Another function of the physical memory management is to dynami-
cally track and bound the memory usage (in terms of number of dynamically-allocated pages) of
processes based on their id.

In mCertiKOS, they consider every unique integer (up to some predefined maximum, currently
218) to represent a different agent or principal. They refer to this integer as the agent’s id, and they
use it for all layer objects owned by that agent.

The MContainer layer introduces a notion of container, inspired by container objects in the
HiStar operating system [42]. Whenever a new agent (id) is created in mCertiKOS, a container
is created for the agent that dynamically keeps track of its memory usage. An agent’s usage may
increase for a few reasons, including a direct request for dynamically-allocated resources, or a
successfully-handled page fault. Each container object is initialized with some maximum quota;
any attempt for an agent to increase its usage beyond this quota will be denied by the kernel.
Furthermore, the kernel maintains a mapping of ids to containers using a hierarchical tree structure.
Whenever an agent’s process makes a request to spawn a new process, the new container is added
as a child to the requesting agent’s container, and the new container’s quota is taken from the
requester’s.

19



With this notion of container, they are able to prove a theorem about reliability of dynamic
memory allocation: agents’ requests for additional resources will always be fulfilled as long as
their quota is not exceeded. Furthermore, from the viewpoint of information-flow security, resource
quotas close the potential for two different processes to communicate via allocation requests. Hence
quota enforcement provides an additional level of security for mCertiKOS. They plan to extend the
concept of containers to other types of resources in the future. For example, they could maintain
a time-slice quota for each agent. This would provide a foundation for reasoning about liveness
properties for processes and security breaches via timing channels.

Process management Process management depends on virtual address spaces and introduces the
thread and proc objects as the abstractions of threads and processes, respectively. One interesting
aspect of the process management component is the context switch function. This assembly function
saves the register set of the current thread and restores the register set from the kernel context of
another thread. Since the instruction pointer register (EIP) and stack pointer register (ESP) are saved
and restored in this procedure, they can show that this function reflects the C-level behavior and
restores the continuation of a thread’s execution. Even though this kernel context switch function is
verified at assembly level, they prove that it will not violate the convention of ClightX execution.
This enables us to link it with other code that is verified at C-level and compiled by CompCertX.

In the process management component, they have also implemented and verified a single-copy
synchronous inter-process communication (IPC) protocol. Additionally, they have verified an asyn-
chronous zero-copy IPC implementation that is built on top of their shared memory infrastructure.

Trap module The trap module specifies the behaviors of exception handlers and mCertiKOS
system calls. In mCertiKOS, exception handlers are registered in a table of first-class code pointers.
When an exception triggers (via interrupt), the kernel consults this table and invokes the corre-
sponding exception handler. For example, a page fault at the user level traps into the kernel. The
page fault handler then reserves a page for PFLA (if necessary) and returns to the user level. The
verification of the page fault handler depends on layer objects introduced at different abstraction
levels (see Fig. 6). Therefore, the behavior of the page fault handler is interpreted by the concrete
first-class code pointer until all the dependent layer objects are introduced. Then the handler code is
verified and the behavior is interpreted using its abstract atomic specification.

To further simplify the reasoning about user code, they have implemented and verified the
user level system call libraries directly in the user space. Since their machine semantics models
hardware behaviors like paging and ring switch, the specifications of user system call libraries
closely corresponds to the real execution model in the actual hardware. With this atomic system
call semantics in the user level, the user code can be proved much more easily.

20



TSysCall pagefault_handler 

TTrap 

TTrapArg 

PProc 

save_uctx 

proc_start 

pf_resv 

err_set 

uctx_set 

PCID 

PMap pt_resv 
cid_get 

MPTOp pt_insert 

MPTIntro set_pte 

MAT palloc 

PreInit 

MATOp at_get at_set 

cr2_get 

PUCtx 

ikern_set 

proc_exit 

pmi_set 

restore_uctx 

cr3_set 

Figure 6: Call graph of page fault handler

4.2 Extensions and Adaptation

One primary advantage of the PI and his team’s new extensible architecture is that it makes certified
kernel extension and reasoning much easier and more principled. In this section, they describe three
alternative mCertiKOS kernels that they created through relatively minor changes to the base kernel.
They then present a specific example of global reasoning over the mCertiKOS kernel — a simple
notion of address space isolation that will serve as a starting point for a full-fledged security proof
in the future.

mCertiKOS-hyp: supporting virtualization They also augmented mCertiKOS to support the
two hardware-assisted virtualization technologies Intel VT-x and AMD SVM, and built a certified
hypervisor mCertiKOS-hyp.

Fig. 7 shows the 7 layers of the virtual machine management of mCertiKOS-hyp on the Intel
platform. VMInfo is the layer object that axiomatizes some of the hardware specific features needed
for the virtualization support. Since it is orthogonal to memory and process management, the
VMInfo object can be horizontally composed with the layers below PProc in mCertiKOS. On top of
this extended PProc layer, the virtual machine management extends the abstract memory model with
the notions of Extended Page Table (EPT), the virtual machine control structure (VMCS), and the
virtual machine extension meta data (VMX), which are abstracted into corresponding layer objects.
These objects are again orthogonal to the trap module above and can be horizontally composed to
export related system calls with minimal cost.

21



PreInit x86bootloader machine mem

ShMem 
/ page  
/ CR2 

/ PMap 
/ Proc 

/ Container 

VMInfo

PProc proc_init abstract mem PMap page CR2 ShMem

EPTIntro proc_init EPT0guest mem

EPTOp ept_init guest mem

EPT ept_init guest mem

VMCSIntro ept_init VMCS0guest mem EPT

VMCS vmcs_init guest mem

VMXIntro vmcs_init VMX0guest mem

VMX vmx_init VMXguest mem

VMInfo

EPT0 VMInfo

EPT VMInfo

VMCS EPT

VMCS EPT

VMCS EPT

Proc
… 

Container

Figure 7: Layers of virtual machine management

mCertiKOS-rz: supporting ring 0 processes Thanks to the contextual refinement relation they
have proved for mCertiKOS, one can certify user programs using their formal specifications of
system calls. This gives end-to-end proofs on the behaviors of user programs when they run on
mCertiKOS. Furthermore, once certified, these processes can safely run in the privileged ring 0
mode. They extended mCertiKOS into mCertiKOS-rz by adding support for spawning “in-kernel
processes” that run in the privileged ring 0 mode. Ring 0 processes get much better system call
performance by directly calling kernel functions and avoiding ring switch and interrupt processing.

To introduce ring 0 processes to mCertiKOS, they added a single layer on top of the existing
process management module: Spawning a ring 0 process sets the initial ESP register to a preallocated
memory region and then spawns a proper kernel thread. The memory region must be verifiably
sufficient for the entire execution of the process.

mCertiKOS-emb: embedded systems The mCertiKOS-emb kernel is intended for embedded
settings. To develop this kernel they started with mCertiKOS-rz and removed the virtual machine
management, the virtual memory management, and some of the process management layers that are
related to user contexts and user process management. Thus mCertiKOS-emb only supports ring 0
processes which run directly inside the physical kernel address space instead of the user-level paged
virtual address space.

Removing plug-ins or layers does not take much effort. They only need to alter the contextual
refinement proof at the boundary so they can glue them back together.

Isolation in mCertiKOS They have begun exploring the verification of a global security property
on top of mCertiKOS. As a starting point, they proved a basic notion of isolation between user-level
processes running in different virtual address spaces. This isolation property is composed of two
theorems: one regarding integrity (write protection), and another regarding confidentiality (read

22



0 
1 
2 
3 
4 

i32 mult double 
add 

i64 mult 

ns

LMbench: Linux on mCTOS, Linux on KVM and Linux bare metal 

0 
0.2 
0.4 
0.6 
0.8 

1 

null call null io stat 

ms

0 
2000 
4000 
6000 
8000 

10000 

Pipe AF 
unix 

tcp file 
reread 

mmap 
reread 

MB/s

0 
1 
2 
3 
4 

8p/16K 8p/64K 16p/16K 16p/64K 

context switchms

0 
2000 
4000 
6000 
8000 

10000 

bcopy 
libc 

bcopy 
hand 

mem 
read 

mem 
write 

MB/s

IPC: mCTOS and seL4 on x86

Macro benchmarks: Linux on KVM 
and mCTOs; baseline is bare metal

0 
2000 
4000 
6000 
8000 

10000 

bcopy libc bcopy hand mem read mem write 

bare metal 
KVM 
mCTOS 

0 

200 

400 

600 

15 50 100 512 1024 

bare metal 
mCTOS 
KVM 

0 

200 

400 

600 

15 50 100 512 1024 

bare metal 
mCTOS 
KVM 

MB/s

MB

disk dump (lmdd)

0 
1 
2 
3 
4 

8/16K 8/64K 16/16K 16/64K 
context switch: #processes/workload

ms

Figure 8: Performance evaluation with micro benchmarks.

protection, or noninterference). The statements of these two theorems are as follows: suppose the
top layer abstract machine takes one step, changing the machine state from S to S

1, and let p be the
id of the currently-running process (which can be found in S).

Integrity: If the value at some non-kernel memory location l differs between S and S

1, then l

belongs to a page that is mapped in the virtual address space of p.

Confidentiality: If the step taken is not a primitive call to an IPC syscall (send, recv, etc.), then the
values of memory in any address space other than p’s cannot have an effect on the result of
the step. In other words, if they altered S by changing data in a different process’s address
space, the step would still have the same effect on p’s address space.

In the future, they plan to provide a more detailed security policy by describing what can happen
to confidentiality when IPC is used. This description will be expressed in terms of propagation of
security labels on the IPC data. Note, however, that their framework allows for security labels to be
specified at a purely logical level — there is no need for concrete representation and manipulation
of labels at run time.

Noninterference properties are generally not preserved across refinement due to nondeterminism.
It may therefore seem that the aforementioned confidentiality holds only at the topmost layer,
but not at lower layers. It turns out, however, that their notion of deep specification is strong
enough to preserve noninterference. Essentially, to give a deep specification to a nondeterministic
semantics, they must first externalize the source of nondeterminism (e.g., into an oracle). The
noninterference property then becomes parameterized over this source of nondeterminism, which
allows the parameterized property to be preserved across refinement. This relationship between
deep specification, noninterference, and refinement will be explored comprehensively in future
work.

23



4.3 Performance Evaluation and Proof Effort

The PI and his team have also analyzed the performance of the mCertiKOS-hyp hypervisor ker-
nel with a thorough experimental benchmark evaluation. Furthermore, an extended version of
mCertiKOS-hyp was deployed in a practical system that is used in the context of another related
research project funded by the DARPA HACMS program. Their experiments with benchmarks
confirm the observations made during deployment: the performance overhead of mCertiKOS-hyp
is moderate. They are convinced that it is practical to use their verification framework to produce
competitive real-world kernels with acceptable effort.

Performance evaluation They used a number of micro and macro benchmarks to measure the
overhead of mCertiKOS-hyp and to compare mCertiKOS-hyp to existing systems such as KVM
and seL4. All experiments have been performed on an Intel Core i7-2600 S with 8 MB L3 cache,
16 GB memory, and a 120 GB Intel 520 SSD. Since the power control code has not been verified,
they disabled the turbo boost and power management features of the hardware during experiments.

A comparison of the performance of seL4 and mCertiKOS-hyp is not straightforward since
the mCertiKOS kernels run on x86 platforms but the verified seL4 runs on ARMv6 and ARNv7
hardware. Moreover, the verified version of seL4 does not have virtualization support and cannot
boot Linux. As a result, they do not compare hypervisor performance but instead focus on a
comparison of the IPC performance of mCertiKOS-hyp and an unverified x86 version of seL4.

IPC Performance They compared IPC in mCertiKOS-hyp and the (unverified) x86 version of
seL4. They used seL4’s IPC benchmark sel4bench-manifest1 with processes in different address
spaces and with identical scheduler priorities, both in slowpath and fastpath configurations. To
run this benchmark on mCertiKOS-hyp, they replaced seL4’s Call and ReplyWait operations
with mCertiKOS-hyp synchronous send and receive operations. Fig. 8 (on the right) contains a
compilation of their results. It shows the average number of clock cycles needed for the operations
for message sizes 0 and 1000.

Because seL4 follows the microkernel design philosophy, its IPC performance is critical. IPC
implementations in seL4 are highly optimized, and heavily tailored to specific hardware platforms.
While this degree of optimization gives seL4 an advantage in IPC intensive systems, they currently
do not see the need to improve IPC performance in mCertiKOS-hyp for application scenarios of the
kernel that they have in mind.

Hypervisor Performance To evaluate mCertiKOS-hyp as a hypervisor, they measured the per-
formance of micro and macro benchmarks on Ubuntu 12.04.2 LTS running as a guest.

1https://github.com/smaccm/sel4bench-manifest

24



LMbench: Linux on mCTOS, Linux on KVM and Linux bare metal 

0 
0.2 
0.4 
0.6 
0.8 

1 

null call null io stat 

ms

0 
2000 
4000 
6000 
8000 

10000 

Pipe AF 
unix 

tcp file 
reread 

mmap 
reread 

MB/s

0 
1 
2 
3 
4 

8p/16K 8p/64K 16p/16K 16p/64K 

context switchms

0 
2000 
4000 
6000 
8000 

10000 

bcopy 
libc 

bcopy 
hand 

mem 
read 

mem 
write 

MB/s

IPC: mCTOS and seL4 on x86

Macro benchmarks: Linux on KVM 
and mCTOs; baseline is bare metal

0 
2000 
4000 
6000 
8000 

10000 

bcopy libc bcopy hand mem read mem write 

bare metal 
KVM 
mCTOS 

0 

200 

400 

600 

15 50 100 512 1024 

bare metal 
mCTOS 
KVM 

0 

200 

400 

600 

15 50 100 512 1024 

bare metal 
mCTOS 
KVM 

MB/s

MB

disk dump (lmdd)

Figure 9: Normalized macro benchmarks: Linux on KVM and mCTOS, baseline is Linux on bare
metal

Fig. 9 contains a compilation of standard macro benchmarks: unpacking of the Linux 4.0-rc4
kernel, compilation of the Linux 4.0-rc4 kernel, and Apache HTTPerf. They ran the benchmarks on
Linux as guest in KVM and mCertiKOS-hyp, as well as on bare metal. In Fig. 9 they normalized the
run times of the benchmarks using the bare metal performance as a baseline (100%). The overhead
of mCertiKOS-hyp is moderate and comparable to KVM. They attribute the larger overhead for
decompression to their unverified SSD driver that still contains performance bugs (compare disk
dump in Fig. 8).

Fig. 8 (on the left) shows a compilation of micro benchmarks from the LMbench benchmark
suite [29]. They measure the performance of the file system, some local communication systems,
virtual memory, context switch and, for sanity checking, basic arithmetic operations. On the x-axes
of the plots are the names of the respective LMbench benchmarks. The y-axes of the two plots
at the top left show the run time in nanoseconds and microseconds, respectively. The other three
y-axes show the throughput in MB/s.

In many cases, the performance of mCertiKOS-hyp is in between bare metal and KVM (Kernel
Virtual Machine). However, there are still some rough edges in the results that they mostly attribute
to performance problems with their unverified SSD driver. This is indicated for instance by the
disk dump benchmark in which the transfer rate seems to remain constant as the data size increases.
They are currently investigating the issue.

The virtualization drivers in mCertiKOS-hyp are running in a user process in the ring 3 mode.
This approach makes the kernel smaller and makes it possible to use an unverified driver. The
downside of this approach is that each VM entry and exit causes an additional ring switch, and
VM-related information must be copied to the user driver process in order for it to process the
exit. Therefore, it may have an impact on performance, especially for those guest programs that
frequently cause VM exits, such as web servers, which generate frequent network-related external
interrupts. Another approach is to verify the drivers and run them inside a kernel module, e.g., in a

25



ring 0 process.

Proof effort The PI and his team completed the verification of mCertiKOS-hyp in less than 18
person months (pm). The layer design and verification took about 3 pm for the physical memory
management (4 layers), 3.5 pm for the virtual memory module (7 layers), 1 pm for the shared
memory infrastructure (3 layers), 3.5 pm for the thread management (10 layers), 1 pm for the
process management (4 layers), 1.5 pm for the trap handler module (4 layers), 1.5 pm for the AMD
SVM virtualization (9 layers), and 2 pm for the Intel VT-x virtualization support (7 layers). In total
the verified mCertiKOS-hyp kernel consists of 5500 lines of C and x86 assembly code.

The verification effort roughly falls into three categories: layer design with specification and
invariants, refinement proofs between the layers, and verification of C and assembly code with
respect to the specifications. The time needed for each of the categories depends largely on the layer.
For instance, at the boundary of physical and virtual memory management (MPTIntro), almost
all effort is in the refinement proof, due to the proof for the refinement between two completely
different memory models. More effort went into the refinement proof when they introduced the
Intel virtual machine memory model, where they proved the refinement between the concrete four
level extended page table structure in memory and the abstract mapping from the guest addresses to
the host addresses. In contrast, for the layer MATOp, which initializes physical memory allocation,
most of the time was spent on verifying the non-trivial nested loops present in the C code, while the
refinement proofs were derived automatically.

The proofs were facilitated by automation tools for C code, layer design patterns, and tactics
libraries developed in recent years [14]. These tools have greatly reduced the amount of work
needed to verify extensions of the kernel.

4.4 Other Important Results

In addition to developing new cutting-edge technologies for building certified OS kernels, the PI
and his team have also obtained the following important results. We annotate each technology
with a publication venue where the main result is first published. Here, POPL refers to “ACM
SIGPLAN-SIGACT Annual Symposium on Principles of Programming Languages;” PLDI refers to
“ACM SIGPLAN Conference on Programming Language Design and Implementation;” ESOP refers
to “European Symposium on Programming;” APLAS refers to “Asian Symposium on Programming
Languages and Systems;” CPP refers to “International Conference on Certified Programs and
Proofs;” LICS refers to “IEEE International Conference on Logic in Computer Science;” POST
refers to “International Conference on Principles of Security and Trust;” CONCUR refers to
“International Conference on Concurrency Theory.” All papers referenced here are attached in the
Appendix.

26



Deep specifications and certified abstraction layers (POPL’15) Modern computer systems
consist of a multitude of abstraction layers (e.g., OS kernels, hypervisors, device drivers, network
protocols), each of which defines an interface that hides the implementation details of a particular
set of functionality. Client programs built on top of each layer can be understood solely based on the
interface, independent of the layer implementation. Despite their obvious importance, abstraction
layers have mostly been treated as a system concept; they have almost never been formally specified
or verified. This makes it difficult to establish strong correctness properties, and to scale program
verification across multiple layers.

In this work, the PI and his team present a novel language-based account of abstraction layers
and show that they correspond to a strong form of abstraction over a particularly rich class of
specifications which they call deep specifications. Just as data abstraction in typed functional
languages leads to the important representation independence property, abstraction over deep
specification is characterized by an important implementation independence property: any two
implementations of the same deep specification must have contextually equivalent behaviors. They
present a new layer calculus showing how to formally specify, program, verify, and compose
abstraction layers. They show how to instantiate the layer calculus in realistic programming
languages such as C and assembly, and how to adapt the CompCert verified compiler to compile
certified C layers such that they can be linked with assembly layers. Using these new languages and
tools, they have successfully developed multiple certified OS kernels in the Coq proof assistant.

Compositional Certified Resource Bounds (PLDI’15) In this work, the PI and his team de-
veloped a new approach for automatically deriving worst-case resource bounds for C programs.
The described technique combines ideas from amortized analysis and abstract interpretation in
a unified framework to address four challenges for state-of-the-art techniques: compositionality,
user interaction, generation of proof certificates, and scalability. Compositionality is achieved
by incorporating the potential method of amortized analysis. It enables the derivation of global
whole-program bounds with local derivation rules by naturally tracking size changes of variables in
sequenced loops and function calls. The resource consumption of functions is described abstractly
and a function call can be analyzed without access to the function body. User interaction is sup-
ported with a new mechanism that clearly separates qualitative and quantitative verification. A
user can guide the analysis to derive complex non-linear bounds by using auxiliary variables and
assertions. The assertions are separately proved using established qualitative techniques such as
abstract interpretation or Hoare logic. Proof certificates are automatically generated from the local
derivation rules. A soundness proof of the derivation system with respect to a formal cost semantics
guarantees the validity of the certificates. Scalability is attained by an efficient reduction of bound
inference to a linear optimization problem that can be solved by off-the-shelf LP solvers. The
analysis framework is implemented in the publicly-available tool C4B. An experimental evaluation
demonstrates the advantages of the new technique with a comparison of C4B with existing tools on
challenging micro benchmarks and the analysis of more than 2900 lines of C code from the cBench

27



benchmark suite.

Automatic Static Cost Analysis for Parallel Programs (ESOP’15) Static analysis of the eval-
uation cost of programs is an extensively studied problem that has many important applications.
However, most automatic methods for static cost analysis are limited to sequential evaluation while
programs are increasingly evaluated on modern multicore and multiprocessor hardware. This work
introduces the first automatic analysis for deriving bounds on the worst-case evaluation cost of
parallel first-order functional programs. The analysis is performed by a novel type system for
amortized resource analysis. The main innovation is a technique that separates the reasoning about
sizes of data structures and evaluation cost within the same framework. The cost semantics of
parallel programs is based on call-by-value evaluation and the standard cost measures work and
depth. A soundness proof of the type system establishes the correctness of the derived cost bounds
with respect to the cost semantics. The derived bounds are multivariate resource polynomials
which depend on the sizes of the arguments of a function. Type inference can be reduced to linear
programming and is fully automatic. A prototype implementation of the analysis system has been
developed to experimentally evaluate the effectiveness of the approach. The experiments show
that the analysis infers bounds for realistic example programs such as quick sort for lists of lists,
matrix multiplication, and an implementation of sets with lists. The derived bounds are often
asymptotically tight and the constant factors are close to the optimal ones.

A Compositional Semantics for Verified Separate Compilation and Linking (CPP’15) Re-
cent ground-breaking efforts such as CompCert have made a convincing case that mechanized
verification of the compiler correctness for realistic C programs is both viable and practical. Unfor-
tunately, existing verified compilers can only handle whole programs—this severely limits their
applicability and prevents the linking of verified C programs with verified external libraries. In this
work, the PI and his team present a novel compositional semantics for reasoning about open modules
and for supporting verified separate compilation and linking. More specifically, they replace external
function calls with explicit events in the behavioral semantics. They then develop a verified linking
operator that makes lazy substitutions on (potentially reacting) behaviors by replacing each external
function call event with a behavior simulating the requested function. Finally, they show how
our new semantics can be applied to build a refinement infrastructure that supports both vertical
composition and horizontal composition.

Compositional Verification of Termination-Preserving Refinement of Concurrent Programs
(LICS’14) Many verification problems can be reduced to refinement verification. However,
existing work on verifying refinement of concurrent programs either fails to prove the preservation
of termination, allowing a diverging program to trivially refine any programs, or is difficult to
apply in compositional thread-local reasoning. In this work, the PI and his colleague at USTC first
propose a new simulation technique, which establishes termination-preserving refinement and is a

28



congruence with respect to parallel composition. Then they give a proof theory for the simulation,
which is the first Hoare-style concurrent program logic supporting termination-preserving refinement
proofs. They show two key applications of our logic, i.e., verifying linearizability and lock-freedom
together for fine-grained concurrent objects, and verifying full correctness of optimizations of
concurrent algorithms.

End-to-End Verification of Stack-Space Bounds for C Programs (PLDI’14) Verified compil-
ers guarantee the preservation of semantic properties and thus enable formal verification of programs
at the source level. However, important quantitative properties such as memory and time usage
still have to be verified at the machine level where interactive proofs tend to be more tedious and
automation is more challenging. In this work, the PI and his team develop a new framework that
enables the formal verification of stack-space bounds of compiled machine code at the C level. It
consists of a verified CompCert-based compiler that preserves quantitative properties, a verified
quantitative program logic for interactive stack-bound development, and a verified stack analyzer
that automatically derives stack bounds during compilation.

The framework is based on event traces that record function calls and returns. The source
language is CompCert Clight and the target language is x86 assembly. The compiler is implemented
in the Coq Proof Assistant and it is proved that crucial properties of event traces are preserved
during compilation. A novel quantitative Hoare logic is developed to verify stack-space bounds at
the CompCert Clight level. The quantitative logic is implemented in Coq and proved sound with
respect to event traces generated by the small-step semantics of CompCert Clight. Stack-space
bounds can be proved at the source level without taking into account low-level details that depend on
the implementation of the compiler. The compiler fills in these low-level details during compilation
and generates a concrete stack-space bound that applies to the produced machine code. The verified
stack analyzer is guaranteed to automatically derive bounds for code with non-recursive functions.
It generates a derivation in the quantitative logic to ensure soundness as well as interoperability
with interactively developed stack bounds. In an experimental evaluation, the developed framework
is used to obtain verified stack-space bounds for micro benchmarks as well as real system code. The
examples include the verified operating-system kernel CertiKOS, parts of the MiBench embedded
benchmark suite, and programs from the CompCert benchmarks. The derived bounds are close to
the measured stack-space usage of executions of the compiled programs on a Linux x86 system.

A Separation Logic for Enforcing Declarative Information Flow Control Policies (POST’14)
In this work, the PI and his student develop a new program logic for proving that a program does
not release information about sensitive data in an unintended way. The most important feature of
the logic is that it provides a formal security guarantee while supporting ”declassification policies”
that describe precise conditions under which a piece of sensitive data can be released. They leverage
the power of Hoare Logic to express the policies and security guarantee in terms of state predicates.
This allows their system to be far more specific regarding declassification conditions than most

29



other information flow systems. The logic is designed for reasoning about a C-like, imperative
language with pointer manipulation and aliasing. They therefore make use of ideas from Separation
Logic to reason about data in the heap.

Characterizing Progress Properties of Concurrent Objects via Contextual Refinements (CON-
CUR’13) Implementations of concurrent objects should guarantee linearizability and a progress
property such as wait-freedom, lock-freedom, obstruction-freedom, starvation-freedom, or deadlock-
freedom. Conventional informal or semi-formal definitions of these progress properties describe
conditions under which a method call is guaranteed to complete, but it is unclear how these de-
motions can be utilized to formally verify system software in a layered and modular way. In this
work, the PI and his team propose a unified framework based on contextual refinements to show
exactly how progress properties aect the behaviors of client programs. They give formal operational
definitions of all common progress properties and prove that for linearizable objects, each progress
property is equivalent to a specific type of contextual refinement that preserves termination. The
equivalence ensures that verification of such a contextual refinement for a concurrent object guar-
antees both linearizability and the corresponding progress property. Contextual refinement also
enables them to verify safety and liveness properties of client programs at a high abstraction level
by soundly replacing concrete method implementations with abstract atomic operations.

Quantitative Reasoning for Proving Lock-Freedom (LICS’13) In this work, the PI and his
team present a novel quantitative proof technique for the modular and local verification of lock-
freedom. In contrast to proofs based on temporal rely-guarantee requirements, this new quantitative
reasoning method can be directly integrated in modern program logics that are designed for the
verification of safety properties. Using a single formalism for verifying memory safety and lock-
freedom allows a combined correctness proof that verifies both properties simultaneously. This
work presents one possible formalization of this quantitative proof technique by developing a variant
of concurrent separation logic (CSL) for total correctness. To enable quantitative reasoning, CSL
is extended with a predicate for affine tokens to account for, and provide an upper bound on the
number of loop iterations in a program. Lock-freedom is then reduced to total-correctness proofs.
Quantitative reasoning is demonstrated in detail, both informally and formally, by verifying the
lockfreedom of Treiber’s non-blocking stack. Furthermore, it is shown how the technique is used
to verify the lock-freedom of more advanced shared-memory data structures that use elimination
backoff schemes and hazard-pointers.

Compositional Verification of a Baby Virtual Memory Manager (CPP’12) A virtual memory
manager (VMM) is a part of an operating system that provides the rest of the kernel with an abstract
model of memory. Although small in size, it involves complicated and interdependent invariants
that make monolithic verification of the VMM and the kernel running on top of it difficult. In this
work, the PI and his team make the observation that a VMM is constructed in layers: physical page

30



allocation, page table drivers, address space API, etc., each layer providing an abstraction that the
next layer utilizes. They use this layering to simplify the verification of individual modules of VMM
and then to link them together by composing a series of small refinements. The compositional
verification also supports function calls from less abstract layers into more abstract ones, allowing
us to simplify the verification of initialization functions as well. To facilitate such compositional
verification, they develop a framework that assists in creation of verification systems for each layer
and refinements between the layers. Using this framework, they have produced a certification of
BabyVMM, a small VMM designed for simplified hardware. The same proof also shows that a
certified kernel using BabyVMM’s virtual memory abstraction can be refined following a similar
sequence of refinements, and can then be safely linked with BabyVMM. Both the verification
framework and the entire certification of BabyVMM have been mechanized in the Coq Proof
Assistant.

A Case for Behavior-Preserving Actions in Separation Logic (APLAS’12) Separation Logic
is a widely-used tool that allows for local reasoning about imperative programs with pointers.
A straightforward definition of this ”local reasoning” is that, whenever a program runs safely
on some state, any additional state has no effect on the program’s behavior. In the presence of
nondeterminism, however, local reasoning must be defined as something more subtle; specifically,
additional state is allowed to decrease the amount of nondeterminism of the program. This subtlety
causes difficulty in proving various metatheoretical facts about Separation Logic and its variants.
Four specific examples are: (1) specifying the behavior of a program on its minimal footprint does
not provide a complete specification; (2) data refinement requires a rather unintuitive restriction
that the memory used by an abstract module be a subset of the memory used by a concrete module
refining the abstract one; (3) Relational Separation Logic requires quite a bit of additional work
to prove the frame rule sound; and (4) it is quite tricky to define a model of Separation Logic in
which the total domain of memory is finite. In this work, the PI and his student show how to cleanly
resolve all of these issues by strengthening the definition of local reasoning to eliminate the subtlety.
They contend that this solution will also similarly resolve future metatheoretical issues.

Modular Verification of Concurrent Thread Management (APLAS’12) Thread management
is an essential functionality in OS kernels. However, verification of thread management remains a
challenge, due to two conflicting requirements: on the one hand, a thread manager—operating below
the thread abstraction layer–should hide its implementation details and be verified independently
from the threads being managed; on the other hand, the thread management code in many real-
world systems is concurrent, which might be executed by the threads being managed, so it seems
inappropriate to abstract threads away in the verification of thread managers. Previous approaches
on kernel verification view thread managers as sequential code, thus cannot be applied to thread
management in realistic kernels. In this work, the PI and his team propose a novel two-layer
framework to verify concurrent thread management. They choose a lower abstraction level than

31



the previous approaches, where they abstract away the context switch routine only, and allow
the rest of the thread management code to run concurrently in the upper level. They also treat
thread management data as abstract resources so that threads in the environment can be specified in
assertions and be reasoned about in a proof system similar to concurrent separation logic.

VeriML: A Dependently-Typed, User-Extensible, and Language-Centric Approach to Proof
Assistant Software certification is a promising approach to producing programs which are virtually
free of bugs. It requires the construction of a formal proof which establishes that the code in question
will behave according to its specification — a higher-level description of its functionality. The
construction of such formal proofs is carried out in tools called proof assistants. Advances in the
current state-of-the-art proof assistants have enabled the certification of a number of complex and
realistic systems software.

Despite such success stories, large-scale proof development is an arcane art that requires
significant manual effort and is extremely time-consuming. The widely accepted best practice for
limiting this effort is to develop domain-specific automation procedures to handle all but the most
essential steps of proofs. Yet this practice is rarely followed or needs comparable development effort
as well. This is due to a profound architectural shortcoming of existing proof assistants: developing
automation procedures is currently overly complicated and error-prone. It involves the use of an
amalgam of extension languages, each with a different programming model and a set of limitations,
and with significant interfacing problems between them.

This thesis by Antonis Stampoulis (supervised by the PI) posits that this situation can be
significantly improved by designing a proof assistant with extensibility as the central focus. Towards
that effect, Stampoulis and the PI have designed a novel programming language called VeriML,
which combines the benefits of the different extension languages used in current proof assistants
while eschewing their limitations. The key insight of the VeriML design is to combine a rich
programming model with a rich type system, which retains at the level of types information
about the proofs manipulated inside automation procedures. The effort required for writing new
automation procedures is significantly reduced by leveraging this typing information accordingly.

They show that generalizations of the traditional features of proof assistants are a direct conse-
quence of the VeriML design. Therefore the language itself can be seen as the proof assistant in
its entirety and also as the single language the user has to master. Also, they show how traditional
automation mechanisms offered by current proof assistants can be programmed directly within the
same language; users are thus free to extend them with domain-specific sophistication of arbitrary
complexity. In the dissertation they present all aspects of the VeriML language: the formal defini-
tion of the language; an extensive study of its metatheoretic properties; the details of a complete
prototype implementation; and a number of examples implemented and tested in the language.

32



Static and User-Extensible Proof Checking (POPL’12) Despite recent successes, large-scale
proof development within proof assistants remains an arcane art that is extremely time-consuming.
The PI and his team argue that this can be attributed to two profound shortcomings in the architecture
of modern proof assistants. The first is that proofs need to include a large amount of minute detail;
this is due to the rigidity of the proof checking process, which cannot be extended with domain-
specific knowledge. In order to avoid these details, they rely on developing and using tactics,
specialized procedures that produce proofs. Unfortunately, tactics are both hard to write and hard to
use, revealing the second shortcoming of modern proof assistants. This is because there is no static
knowledge about their expected use and behavior. As has recently been demonstrated, languages
that allow type-safe manipulation of proofs, like Beluga, Delphin and VeriML, can be used to partly
mitigate this second issue, by assigning rich types to tactics. Still, the architectural issues remain.
In this work, the PI and his team build on this existing work, and demonstrate two novel ideas: an
extensible conversion rule and support for static proof scripts. Together, these ideas enable us to
support both user-extensible proof checking, and sophisticated static checking of tactics, leading
to a new point in the design space of future proof assistants. Both ideas are based on the interplay
between a light-weight staging construct and the rich type information available.

33



5 CONCLUSIONS

Operating System (OS) kernels form the bedrock of all system software—they can have the greatest
impact on the resilience, extensibility, and security of today’s computing hosts. A single kernel bug
can easily wreck the entire system’s integrity and protection. During the last four years, the PI and
his team at Yale have successfully designed and implemented a clean-slate CertiKOS hypervisor
kernel that runs on Intel and AMD multicore platforms and supports Linux and ROS applications
on Landshark UGVs with good performance. They have also developed new certified programming
methodologies and tools that support programming and composing certified abstraction layers (in
C and assembly) and verify contextual safety, correctness, liveness, and security properties in one
unified setting. They developed a fully specificied and verified single-core mCertiKOS kernel in
Coq that is highly compositional with formally specified layers and strong contextual correctness
guarantees. They also developed new semantics and logics for reasoning about declarative and
decentralized information flow control with declassification, new certified resource anlaysis tools,
and new logics for verifying safety and liveness properties of fine-grained concurrent programs.
Finally, they developed new proof automation support including the design and implementation of
the VeriML language and new Coq Ltac libraries.

Traditional OS kernels use a hardware-enforced “red line” to isolate the behaviors of user
programs and to protect the integrity of the kernel code. The PI and his team’s new layered approach
to certified kernels replaces the red line with a large number of abstraction layers enforced via
formal specification and proofs. They believe this will open up a whole new dimension of research
efforts toward building truly reliable, secure, and extensible system software.

34



6 REFERENCES

[1] C. Baumann, B. Beckert, H. Blasum, and T. Bormer. Lessons learned from microkernel verification—
specification is the new bottleneck. In Proceedings of Systems Software Verification Conference (SSV
2012), pages 18–32, 2012.

[2] B. N. Bershad et al. Extensibility, safety and performance in the SPIN operating system. In 15th ACM
Symposium on Operating System Principles, 1995.

[3] Q. Carbonneaux, J. Hoffmann, T. Ramananandro, and Z. Shao. End-to-end verification of stack-space
bounds for C programs. In PLDI ’14: 2014 ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2014.

[4] Q. Carbonneaux, J. Hoffmann, and Z. Shao. Compositional certified resource bounds. In PLDI ’15:
2015 ACM SIGPLAN Conference on Programming Language Design and Implementation, 2015.

[5] A. Chlipala. Mostly-automated verification of low-level programs in computational separation logic. In
Proc. 2011 ACM Conference on Programming Language Design and Implementation, 2011.

[6] D. Costanzo and Z. Shao. A separation logic for enforcing declarative information flow control policies.
In Proc. 3rd Conference on Principles of Security and Trust (POST’14), volume 8414 of LNCS, pages
179–198. Springer-Verlag, Apr. 2014.

[7] M. Daum, N. Billing, and G. Klein. Concerned with the unprivileged: user programs in kernel extensions.
Formal Aspects of Computing, 26(6):1205–1229, 2014.

[8] R. A. DeMillo, R. J. Lipton, and A. J. Perlis. Social processes and proofs of theorems and programs.
In Proceedings of the 4th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL’77), pages 206–214, Jan. 1977.

[9] K. Elphinstone and G. Heiser. From l3 to sel4, what have we learnt in 20 years of l4 microkernels? In
Proc. 2013 ACM Symposium on Operating System Principles (SOSP), pages 133–150, 2013.

[10] D. R. Engler, M. F. Kaashoek, and J. O’Toole. Exokernel: An operating system architecture for
application-level resource management. In 15th ACM Symposium on Operating Systems Principles
(SOSP), Dec. 1995.

[11] X. Feng, Z. Shao, Y. Guo, and Y. Dong. Combining domain-specific and foundational logics to verify
complete software systems. In VSTTE’08, pages 54–69, 2008.

[12] X. Feng, Z. Shao, Y. Guo, and Y. Dong. Certifying low-level programs with hardware interrupts and
preemptive threads. J. Autom. Reasoning, 42(2-4):301–347, 2009.

35



[13] I. Filipovic, P. W. O’Hearn, N. Rinetzky, and H. Yang. Abstraction for concurrent objects. Theor.
Comput. Sci., 411(51-52):4379–4398, 2010.

[14] R. Gu, J. Koenig, T. Ramananandro, Z. Shao, X. Wu, S.-C. Weng, H. Zhang, and Y. Guo. Deep specifi-
cations and certified abstraction layers. In Proc. 42nd ACM Symposium on Principles of Programming
Languages, pages 595–608, 2015.

[15] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann, Apr. 2008.

[16] M. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent objects. ACM Trans.
Program. Lang. Syst., 12(3):463–492, 1990.

[17] G. C. Hunt and J. R. Larus. Singularity: rethinking the software stack. Operating Systems Review,
41(2):37–49, 2007.

[18] C. Klein, J. Clements, C. Dimoulas, C. Eastlund, M. Felleisen, M. Flatt, J. McCarthy, J. Rafkind,
S. Tobin-stadt, and R. B. Findler. Run your research: on the effectiveness of lightweight mechanization.
In Proc. 39th ACM Symposium on Principles of Programming Languages, 2012.

[19] G. Klein, J. Andronick, K. Elphinstone, T. Murray, T. Sewell, R. Kolanski, and G. Heiser. Comprehen-
sive formal verification of an OS microkernel. ACM Transactions on Computer Systems, 32(1), Feb.
2014.

[20] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
R. Kolanski, M. Norrish, et al. seL4: Formal verification of an OS kernel. In Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems principles, pages 207–220. ACM, 2009.

[21] X. Leroy. The CompCert verified compiler. http://compcert.inria.fr/, 2005–2013.

[22] X. Leroy. Formal verification of a realistic compiler. Communications of the ACM, 52(7):107–115,
2009.

[23] X. Leroy, A. W. Appel, S. Blazy, and G. Stewart. The compcert memory model, version 2. Technical
Report RR-7987, INRIA, 2012.

[24] X. Leroy and S. Blazy. Formal verification of a C-like memory model and its uses for verifying program
transformation. Journal of Automated Reasoning, 2008.

[25] H. Liang, X. Feng, and Z. Shao. Compositional verification of termination-preserving refinement of
concurrent programs. In Proc. 29th IEEE Symposium on Logic in Computer Science, page no. 65, July
2014.

[26] H. Liang, J. Hoffmann, X. Feng, and Z. Shao. Characterizing progress properties of concurrent
objects via contextual refinements. In Proc. 24th International Conference on Concurrency Theory
(CONCUR’13). Springer-Verlag, 2013.

[27] J. Liedtke. On micro-kernel construction. In 15th ACM Symposium on Operating System Principles,
1995.

36



[28] N. A. Lynch and F. W. Vaandrager. Forward and backward simulations: I. Untimed systems. Inf.
Comput., 121(2):214–233, 1995.

[29] L. McVoy and C. Staelin. Lmbench: Portable tools for performance analysis. In Proceedings of the
1996 Annual Conference on USENIX Annual Technical Conference, ATEC ’96, pages 23–23, Berkeley,
CA, USA, 1996. USENIX Association.

[30] T. C. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke, S. Seefried, C. Lewis, X. Gao, and
G. Klein. seL4: From general purpose to a proof of information flow enforcement. In Proc. IEEE
Symposium on Security and Privacy, pages 415–429, 2013.

[31] Z. Ni, D. Yu, and Z. Shao. Using xcap to certify realistic system code: Machine context management.
In Proc. 20th International Conference on Theorem Proving in Higher Order Logics, volume 4732 of
LNCS, pages 189–206. Springer-Verlag, Sept. 2007.

[32] W. Paul, M. Broy, and T. In der Rieden. The verisoft project. URL: http://www.verisoft.de,
2006.

[33] T. Sewell, M. O. Myreen, and G. Klein. Translation validation for a verified OS kernel. In PLDI13,
pages 471–482, 2013.

[34] T. Sewell, S. Winwood, P. Gammie, T. C. Murray, J. Andronick, and G. Klein. seL4 enforces integrity.
In ITP, pages 325–340, 2011.

[35] Z. Shao. Certified software. Communications of the ACM, 53(12):56–66, December 2010.

[36] Z. Shao and B. Ford. Advanced development of certified os kernels. Technical Report YALEU/DCS/TR-
1436, Dept. of Computer Science, Yale University, New Haven, CT, July 2010.

[37] A. Stampoulis. VeriML: A Dependently-Typed, User-Extensible, and Language-Centric Approach to
Proof Assistant. PhD thesis, Department of Computer Science, Yale University, November 2012.

[38] A. Stampoulis and Z. Shao. VeriML:typed computation of logical terms inside a language with effects.
In Proc. 2010 ACM SIGPLAN International Conference on Functional Programming, pages 333–344,
2010. flint.cs.yale.edu/publications/veriml.html.

[39] A. Stampoulis and Z. Shao. Static and user-extensible proof checking. In POPL ’12: Proceedings of
the 39th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages
273–284, New York, NY, USA, 2012. ACM.

[40] The Coq development team. The Coq proof assistant. http://coq.inria.fr, 1999 – 2012.

[41] A. Vaynberg and Z. Shao. Compositional verification of a baby virtual memory manager. In Proc. 2nd
International Conf. on Certified Programs and Proofs, pages 143–159, Dec 2012.

[42] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières. Making information flow explicit in
HiStar. In OSDI, pages 263–278, 2006.

37



LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS

API Application Programming Interface
APLAS Asian Symposium on Programming Languages and Systems
CONCUR Conference on Concurrency Theory
CPP Certified Programs and Proofs
CRASH Clean-Slate Design of Resilient, Adaptive, Secure Hosts
DIFC Declarative Decentralized Information Flow Control
EIP Extended Instruction Pointer register
ESOP European Symposium on Programming
ESP Extended Stack Pointer register
EPT Extended Page Table
HACMS High-Assurance Cyber Military Systems
IPC Inter-Process Communication
KVM Kernel-based Virtual Machine
LICS Logic In Computer Science
MMU memory management unit
OS Operating System
PI Primary Investigator
PLDI Programming Language Design and Implementation
pm Person Months
POPL Symposium on Principles of Programming Languages
POST Principles of Security and Trust
ROS Robot Operating System
VMCS Virtual Machine Control Structure
VMM Virtual Memory Manager
VMX Virtual Machine eXtension

38



APPENDIX

Here are a list of important and representative publications produced by the PI and his team during
the funding period of this DARPA CRASH project.

1. POPL12: Static and User-Extensible Proof Checking (pages 40-159)

2. APLAS12a: A Case for Behavior-Preserving Actions in Separation Logic. (pages 160-177)

3. APLAS12b: Modular Verification of Concurrent Thread Management. (pages 178-194)

4. CPP12: Compositional Verification of a Baby Virtual Memory Manager. (pages 195-210)

5. LICS13: Quantitative Reasoning for Proving Lock-Freedom. (pages 211-228)

6. CONCUR13: Characterizing Progress Properties of Concurrent Objects via Contextual
Refinements. (pages 229-309)

7. POST14: A Separation Logic for Enforcing Declarative Information Flow Control Policies.
(pages 310-330)

8. PLDI14: End-to-End Verification of Stack-Space Bounds for C Programs. (pages 331-342)

9. LICS14: Compositional Verification of Termination-Preserving Refinement of Concurrent
Programs. (pages 343-434)

10. CPP15: A Compositional Semantics for Verified Separate Compilation and Linking. (pages
435-446)

11. POPL15: Deep Specifications and Certified Abstraction Layers. (pages 447-460)

12. ESOP15: Automatic Static Cost Analysis for Parallel Programs. (pages 461-486)

13. PLDI15: Compositional Certified Resource Bounds. (pages 487-498)

39



Static and User-Extensible Proof Checking

Antonis Stampoulis Zhong Shao
Department of Computer Science

Yale University
New Haven, CT 06520, USA

{antonis.stampoulis,zhong.shao}@yale.edu

Abstract
Despite recent successes, large-scale proof development within
proof assistants remains an arcane art that is extremely time-
consuming. We argue that this can be attributed to two profound
shortcomings in the architecture of modern proof assistants. The
first is that proofs need to include a large amount of minute detail;
this is due to the rigidity of the proof checking process, which can-
not be extended with domain-specific knowledge. In order to avoid
these details, we rely on developing and using tactics, specialized
procedures that produce proofs. Unfortunately, tactics are both hard
to write and hard to use, revealing the second shortcoming of mod-
ern proof assistants. This is because there is no static knowledge
about their expected use and behavior.

As has recently been demonstrated, languages that allow type-
safe manipulation of proofs, like Beluga, Delphin and VeriML,
can be used to partly mitigate this second issue, by assigning rich
types to tactics. Still, the architectural issues remain. In this paper,
we build on this existing work, and demonstrate two novel ideas:
an extensible conversion rule and support for static proof scripts.
Together, these ideas enable us to support both user-extensible
proof checking, and sophisticated static checking of tactics, leading
to a new point in the design space of future proof assistants. Both
ideas are based on the interplay between a light-weight staging
construct and the rich type information available.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory

General Terms Languages, Verification

1. Introduction
There have been various recent successes in using proof assistants
to construct foundational proofs of large software, like a C com-
piler [Leroy 2009] and an OS microkernel [Klein et al. 2009], as
well as complicated mathematical proofs [Gonthier 2008]. Despite
this success, the process of large-scale proof development using
the foundational approach remains a complicated endeavor that re-
quires significant manual effort and is plagued by various architec-
tural issues.

The big benefit of using a foundational proof assistant is that
the proofs involved can be checked for validity using a very small
proof checking procedure. The downside is that these proofs are

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’12, January 25–27, 2012, Philadelphia, PA, USA.
Copyright c© 2012 ACM 978-1-4503-1083-3/12/01. . . $10.00

very large, since proof checking is fixed. There is no way to add
domain-specific knowledge to the proof checker, which would en-
able proofs that spell out less details. There is good reason for this,
too: if we allowed arbitrary extensions of the proof checker, we
could very easily permit it to accept invalid proofs.

Because of this lack of extensibility in the proof checker, users
rely on tactics: procedures that produce proofs. Users are free to
write their own tactics, that can create domain-specific proofs. In
fact, developing domain-specific tactics is considered to be good
engineering when doing large developments, leading to signifi-
cantly decreased overall effort – as shown, e.g. in Chlipala [2011].
Still, using and developing tactics is error-prone. Tactics are essen-
tially untyped functions that manipulate logical terms, and thus tac-
tic programming is untyped. This means that common errors, like
passing the wrong argument, or expecting the wrong result, are not
caught statically. Exacerbating this, proofs contained within tactics
are not checked statically, when the tactic is defined. Therefore,
even if the tactic is used correctly, it could contain serious bugs that
manifest only under some conditions.

With the recent advent of programming languages that sup-
port strongly typed manipulation of logical terms, such as Beluga
[Pientka and Dunfield 2008], Delphin [Poswolsky and Schürmann
2008] and VeriML [Stampoulis and Shao 2010], this situation can
be somewhat mitigated. It has been shown in Stampoulis and Shao
[2010] that we can specify what kinds of arguments a tactic expects
and what kind of proof it produces, leading to a type-safe program-
ming style. Still, this does not address the fundamental problem of
proof checking being fixed – users still have to rely on using tac-
tics. Furthermore, the proofs contained within the type-safe tactics
are in fact proof-producing programs, which need to be evaluated
upon invocation of the tactic. Therefore proofs within tactics are
not checked statically, and they can still cause the tactics to fail
upon invocation.

In this paper, we build on the past work on these languages,
aiming to solve both of these issues regarding the architecture of
modern proof assistants. We introduce two novel ideas: support
for an extensible conversion rule and static proof scripts inside
tactics. The former technique enables proof checking to become
user-extensible, while maintaining the guarantee that only logically
sound proofs are admitted. The latter technique allows for statically
checking the proofs contained within tactics, leading to increased
guarantees about their runtime behavior. Both techniques are based
on the same mechanism, which consists of a light-weight staging
construct. There is also a deep synergy between them, allowing us
to use the one to the benefit of the other.

Our main contributions are the following:
• First, we present what we believe is the first technique for hav-

ing an extensible conversion rule, which combines the follow-
ing characteristics: it is safe, meaning that it preserves logical
soundness; it is user-extensible, using a familiar, generic pro-

40



proof script

call eval. conv. tactic

call arith. conv. tactic

call user conv. tactic

proof script

eval. steps (implicit)

call arith. conv. tactic

call user conv. tactic

typed proof script

eval. steps (implicit)
arith. steps (implicit)
user steps (implicit)

proof checker
eval. conv. tactic

execute

(invalid)

√

(invalid)
×

×

√

execute

(invalid)

×

√

(a) HOL approach
static dynamic

type checker

tactic
eval.
conv.

tactic
arith.conv.

tactic

user
conv.

checkedusing

(invalid)
×

execute

(invalid)

×

√

×
√

√

smaller proof chk.

(invalid)

has been

(b) Coq approach

(c) our approach

Figure 1. Checking proof scripts in various proof assistants

gramming model; and, it does not require metatheoretic addi-
tions to the logic, but can be used to simplify the logic instead.
• Second, building on existing work for typed tactic development,

we introduce static checking of the proof scripts contained
within tactics. This significantly reduces the development effort
required, allowing us to write tactics that benefit from existing
tactics and from the rich type information available.
• Third, we show how typed proof scripts can be seen as an

alternative form of proof witness, which falls between a proof
object and a proof script. Receivers of the certificate are able to
decide on the tradeoff between the level of trust they show and
the amount of resources needed to check its validity.
In terms of technical contributions, we present a number of tech-

nical advances in the metatheory of the aforementioned program-
ming languages. These include a simple staging construct that is
crucial to our development and a new technique for variable rep-
resentation. We also show a condition under which static checking
of proof scripts inside tactics is possible. Last, we have extended
an existing prototype implementation with a significant number of
features, enabling it to support our claims, while also rendering its
use as a proof assistant more practical.

2. Informal presentation
Glossary of terms. We will start off by introducing some con-
cepts that will be used throughout the paper. The first fundamental
concept we will consider is the notion of a proof object: given a
derivation of a proposition inside a formal logic, a proof object is a
term representation of this derivation. A proof checker is a program
that can decide whether a given proof object is a valid derivation

of a specific proposition or not. Proof objects are extremely ver-
bose and are thus hard to write by hand. For this reason, we use
tactics: functions that produce proof objects. By combining tactics
together, we create proof-producing programs, which we call proof
scripts. If a proof script is evaluated, and the evaluation completes
successfully, the resulting proof object can be checked using the
original proof checker. In this way, the trusted base of the system
is kept at the absolute minimum. The language environment where
proof scripts and tactics are written and evaluated is called a proof
assistant; evidently, it needs to include a proof checker.
Checking proof objects. In order to keep the size of proof objects
manageable, many of the logics used for mechanized proof check-
ing include a conversion rule. This rule is used implicitly by the
proof checker to decide whether any two propositions are equiv-
alent; if it determines that they are indeed so, the proof of their
equivalence can be omitted. We can thus think of it as a special tac-
tic that is embedded within the proof checker, and used implicitly.

The more sophisticated the relation supported by the conversion
rule is, the simpler are proof objects to write, since more details can
be omitted. On the other hand, the proof checker becomes more
complicated, as does the metatheory proof showing the soundness
of the associated logic. The choice in Coq [Barras et al. 2010],
one of the most widely used proof assistants, with respect to this
trade-off, is to have a conversion rule that identifies propositions
up to evaluation. Nevertheless, extended notions of conversion are
desirable, leading to proposals like CoqMT [Strub 2010], where
equivalence up to first-order theories is supported. In both cases,
the conversion rule is fixed, and extending it requires significant
amounts of work. It is thus not possible for users to extend it using
their own, domain-specific tactics, and proof objects are thus bound
to get large. This is why we have to resort to writing proof scripts.
Checking proof scripts. As mentioned earlier, in order to validate
a proof script we need to evaluate it (see Fig. 1a); this is the
modus operandi in proof assistants of the HOL family [Harrison
1996; Slind and Norrish 2008]. Therefore, it is easy to extend the
checking procedure for proof scripts by writing a new tactic, and
calling it as part of a script. The price that this comes to is that there
is no way to have any sort of static guarantee about the validity
of the script, as proof scripts are completely untyped. This can be
somewhat mitigated in Coq by utilizing the static checking that it
already supports: the proof checker, and especially, the conversion
rule it contains (see Fig. 1b). We can employ proof objects in
our scripts; this is especially useful when the proof objects are
trivial to write but trigger complex conversion checks. This is the
essential idea behind techniques like proof-by-reflection [Boutin
1997], which lead to more robust proof scripts.

In previous work [Stampoulis and Shao 2010] we introduced
VeriML, a language that enables programming tactics and proof
scripts in a typeful manner using a general-purpose, side-effectful
programming model. Combining typed tactics leads to typed proof
scripts. These are still programs producing proof objects, but the
proposition they prove is carried within their type. Information
about the current proof state (the set of hypotheses and goals) is also
available statically at every intermediate point of the proof script. In
this way, the static assurances about proof scripts are significantly
increased and many potential sources of type errors are removed.
On the other hand, the proof objects contained within the scripts
are still checked using a fixed proof checker; this ultimately means
that the set of possible static guarantees is still fixed.
Extensible conversion rule. In this paper, we build on our earlier
work on VeriML. In order to further increase the amount of static
checking of proof scripts that is possible within this language, we
propose the notion of an extensible conversion rule (see Fig. 1c). It
enables users to write their own domain-specific conversion checks

41



program

static tactic
type stage-1

program
(proof object

normal

× ×

√ √ √

static dynamic

values)
checker eval. eval.

calls

residual

Figure 2. Staging in VeriML

that get included in the conversion rule. This leads to simpler proof
scripts, as more parts of the proof can be inferred by the conversion
rule and can therefore be omitted. Also, it leads to increased static
guarantees for proof scripts, since the conversion checks happen
before the rest of the proof script is evaluated.

The way we achieve this is by programming the conversion
checks as type-safe tactics within VeriML, and then evaluating
them statically using a simple staging mechanism (see Fig. 2). The
type of the conversion tactics requires that they produce a proof ob-
ject which proves the claimed equivalence of the propositions. In
this way, type safety of VeriML guarantees that soundness is main-
tained. At the same time, users are free to extend the conversion
rule with their own conversion tactics written in a familiar program-
ming model, without requiring any metatheoretic additions or ter-
mination proofs. Such proofs are only necessary if decidability of
the extra conversion checks is desired. Furthermore, this approach
allows for metatheoretic reductions as the original conversion rule
can be programmed within the language. Thus it can be removed
from the logic, and replaced by the simpler notion of explicit equal-
ities, leading to both simpler metatheory and a smaller trusted base.

Checking tactics. The above approach addresses the issue of
being able to extend the amount of static checking possible for
proof scripts. But what about tactics? Our existing work on VeriML
shows how the increased type information addresses some of the
issues of tactic development using current proof assistants, where
tactics are programmed in a completely untyped manner.

Still, if we consider the case of tactics more closely, we will
see that there is a limitation to the amount of checking that is
done statically, even using this language. When programming a
new tactic, we would like to reuse existing tactics to produce the
required proofs. Therefore, rather than writing proof objects by
hand inside the code of a tactic, we would rather use proof scripts.
The issue is that in order to check whether the contained proof
scripts are valid, they need to be evaluated – but this only happens
when an invocation of the tactic reaches the point where the proof
script is used. Therefore, the static guarantees that this approach
provides are severely limited by the fact that the proof scripts inside
the tactics cannot be checked statically, when the tactic is defined.

Static proof scripts. This is the second fundamental issue we ad-
dress in this paper. We show that the same staging construct uti-
lized for introducing the extensible conversion rule, can be lever-
aged to perform static proof checking for tactics. The crucial point
of our approach is the proof of existence of a transformation be-
tween proof objects, which suggests that under reasonable condi-
tions, a proof script contained within a tactic can be transformed
into a static proof script. This static script can then be evaluated at
tactic definition time, to be checked for validity.

Last, we will show that this approach lends itself well to writing
extensions of the conversion rule. We show that we can create a lay-
ering of conversion rules: using a basic conversion rule as a starting
point, we can utilize it inside static proof scripts to implicitly prove
the required obligations of a more advanced version, and so on.
This minimizes the required user effort for writing new conversion
rules, and enables truly modular proof checking.

t ::= proof object constructors | propositions
| natural numbers, lists, etc. | sorts and types | X/σ

Φ ::= • | Φ, x : t T ::= [Φ] t
Ψ ::= • | Ψ, X : T σ ::= • | σ, x 7→ t
main judgement: Ψ; Φ ` t : t ′ (type of a logical term)

Figure 3. Assumptions about the logic language

3. Our toolbox
In this section, we will present the essential ingredients that are
needed for the rest of our development. The main requirement is
a language that supports type-safe manipulation of terms of a par-
ticular logic, as well as a general-purpose programming model that
includes general recursion and other side-effectful operations. Two
recently proposed languages for manipulating LF terms, Beluga
[Pientka and Dunfield 2008] and Delphin [Poswolsky and Schür-
mann 2008], fit this requirement, as does VeriML [Stampoulis and
Shao 2010], which is a language used to write type-safe tactics. Our
discussion is focused on the latter, as it supports a richer ML-style
calculus compared to the others, something useful for our purposes.
Still, our results apply to all three.

We will now briefly describe the constructs that these languages
support, as well as some new extensions that we propose. The
interested reader can read more about these constructs in Sec. 6
and in our technical report [Stampoulis and Shao 2012].
A formal logic. The computational language we are presenting is
centered around manipulation of terms of a specific formal logic.
We will see more details about this logic in Sec. 4. For the time
being, it will suffice to present a set of assumptions about the syn-
tactic classes and typing judgements of this logic, shown in Fig. 3.
Logical terms are represented by the syntactic class t, and include
proof objects, propositions, terms corresponding to the domain of
discourse (e.g. natural numbers), and the needed sorts and type con-
structors to classify such terms. Their variables are assigned types
through an ordered context Φ. A package of a logical term t to-
gether with the variables context it inhabits Φ is called a contex-
tual term and denoted as T = [Φ] t. Our computational language
works over contextual terms for reasons that will be evident later.
The logic incorporates such terms by allowing them to get substi-
tuted for meta-variables X , using the constructor X/σ. When a term
T = [Φ′] t gets substituted for X , we go from the Φ′ context to the
current context Φ using the substitution σ.

Logical terms are classified using other logical terms, based on
the normal variables environment Φ, and also an environment Ψ

that types meta-variables, thus leading to the Ψ; Φ ` t : t ′ judge-
ment. For example, a term t representing a closed proposition will
be typed as •; • ` t : Prop, while a proof object tpf proving that
proposition will satisfy the judgement •; • ` tpf : t.
ML-style functional programming. We move on to the compu-
tational language. As its main core, we assume an ML-style func-
tional language, supporting general recursion, algebraic data types
and mutable references (see Fig. 4). Terms of this fragment are
typed under a computational variables environment Γ and a store
typing environment Σ, mapping mutable locations to types. Typing
judgements are entirely standard, leading to a Σ; Γ ` e : τ judge-
ment for typing expressions.
Dependently-typed programming over logical terms. As shown
in Fig. 5, the first important additions to the ML computational core
are constructs for dependent functions and products over contextual
terms T . Abstraction over contextual terms is denoted as λX : T.e. It
has the dependent function type (X : T )→ τ. The type is dependent
since the introduced logical term might be used as the type of

42



k ::= ∗ | k1→ k2
τ ::= unit | int | bool | τ1→ τ2 | τ1 + τ2 | τ1× τ2 | µα : k.τ
| ∀α : k.τ | α | array τ | λα : k.τ | τ1 τ2 | · · ·

e ::= () | n | e1 + e2 | e1 ≤ e2 | true | false | if e then e1 elsee2
| λx : τ.e | e1 e2 | (e1, e2) | proji e | inji e
| case(e, x1.e1, x2.e2) | fold e | unfold e | Λα : k.e | e τ

| fix x : τ.e | mkarray(e,e′) | e[e′] | e[e′] := e′′ | l | error | · · ·
Γ ::= • | Γ, x : τ | Γ, α : k Σ ::= • | Σ, l : array τ

Figure 4. Syntax for the computational language (ML fragment)

τ ::= · · · | (X : T )→ τ | (X : T )× τ | (φ : ctx)→ τ

e ::= · · · | λX : T.e | e T | λφ : ctx.e | e Φ | 〈T, e〉
| let 〈X , x〉= e in e′

| holcase T return τ of (T1 7→ e1) · · ·(Tn 7→ en)

| ctxcase Φ return τ of (Φ1 7→ e1) · · ·(Φn 7→ en)

Figure 5. Syntax for the computational language (logical term
constructs)

another term. An example would be a function that receives a
proposition plus a proof object for that proposition, with type:
(P : Prop) → (X : P) → τ. Dependent products that package a
contextual logical term with an expression are introduced through
the 〈T, e〉 construct and eliminated using let 〈X , x〉 = e in e′; their
type is denoted as (X : T )× τ. Especially for packages of proof
objects with the unit type, we introduce the syntax LT(T ).

Last, in order to be able to support functions that work over
terms in any context, we introduce context polymorphism, through
a similarly dependent function type over contexts. With these in
mind, we can define a simple tactic that gets a packaged proof
of a universally quantified formula, and an instantiation term, and
returns a proof of the instantiated formula as follows:

instantiate : (φ : ctx, T : [φ]Type, P : [φ, x : T ]Prop, a : [φ]T )→
LT([φ]∀x : T,P)→ LT([φ]P/[idφ, a])

instantiate φ T P a pf = let 〈H〉 = pf in 〈H a〉
From here on, we will omit details about contexts and substitutions
in the interest of presentation.

Pattern matching over terms. The most important new construct
that VeriML supports is a pattern matching construct over logical
terms denoted as holcase. This construct is used for dependent
matching of a logical term against a set of patterns. The return
clause specifies its return type; we omit it when it is easy to infer.
Patterns are normal terms that include unification variables, which
can be present under binders. This is the essential reason why
contextual terms are needed.

Pattern matching over environments. For the purposes of our de-
velopment, it is very useful to support one more pattern matching
construct: matching over logical variable contexts. When trying to
construct a certain proof, the logical environment represents what
the current proof context is: what the current logical hypotheses at
hand are, what types of terms have been quantified over, etc. By be-
ing able to pattern match over the environment, we can “look up”
things in our current set of hypotheses, in order to prove further
propositions. We can thus view the current environment as repre-
senting a simple form of the current proof state; the pattern match-
ing construct enables us to manipulate it in a type-safe manner.

One example is an “assumption” tactic, that tries to prove a
proposition by searching for a matching hypotheses in the context:

assumption : (φ : ctx,P : Prop)→ option LT(P)
assumption φ P =

ctxcase φ of
φ′, H : P 7→ return 〈H〉
| φ′, _ 7→ assumption φ′ P

Proof object erasure semantics (new feature). The only con-
struct that can influence the evaluation of a program based on the
structure of a logical term is the pattern matching construct. For
our purposes, pattern matching on proof objects is not necessary –
we never look into the structure of a completed proof. Thus we can
have the typing rules of the pattern matching construct specifically
disallow matching on proof objects.

In that case, we can define an alternate operational semantics for
our language where all proof objects are erased before using the
original small-step reduction rules. Because of type safety, these
proof-erasure semantics are guaranteed to yield equivalent results:
even if no proof objects are generated, they are still bound to exist.

Implicit arguments. Let us consider again the instantiate func-
tion defined earlier. This function expects five arguments. From its
type alone, it is evident that only the last two arguments are strictly
necessary. The last argument, corresponding to a proof expression
for the proposition ∀x : T,P, can be used to reconstruct exactly the
arguments φ, T and P. Furthermore, if we know what the result-
ing type of a call to the function needs to be, we can choose even
the instantiation argument a appropriately. We employ a simple in-
ferrence mechanism so that such arguments are omitted from our
programs. This feature is also crucial in our development in order
to implicitly maintain and utilize the current proof state within our
proof scripts.

Minimal staging support (new feature). Using the language we
have seen so far we are able to write powerful tactics using a
general-purpose programming model. But what if, inside our pro-
grams, we have calls to tactics where all of their arguments are
constant? Presumably, those tactic calls could be evaluated to proof
objects prior to tactic invocation. We could think of this as a form
of generalized constant folding, which has one intriguing benefit:
we can tell statically whether the tactic calls succeed or not.

This paper is exactly about exploring this possibility. Towards
this effect, we introduce a rudimentary staging construct in our
computational language. This takes the form of a letstatic construct,
which binds a static expression to a variable. The static expression
is evaluated during stage one (see Fig. 2), and can only depend on
other static expressions. Details of this construct are presented in
Fig. 11d and also in Sec. 6. After this addition, expressions in our
language have a three-phase lifetime, that are also shown in Fig. 2.

− type-checking, where the well-formedness of expressions ac-
cording to the rules of the language is checked, and inference
of implicit arguments is performed

− static evaluation, where expressions inside letstatic are reduced
to values, yielding a residual expression

− run-time, where the residual expression is evaluated

4. Extensible conversion rule
With these tools at hand, let us now return to the first issue that
motivates us: the fact that proof checking is rigid and cannot be
extended with user-defined procedures. As we have said in our in-
troduction, many modern proof assistants are based on logics that
include a conversion rule. This rule essentially identifies proposi-

43



(sorts) s ::= Type | Type′

(kinds) K ::= Prop | Nat | K1→K2
(props.) P ::= P1→ P2 | ∀x : K.P | x | True

| False | P1∧P2 | · · ·
(dom.obj.) d ::= Zero | Succ d | P | · · ·

(proof objects) π ::= x | λx : P.π | π1 π2 | λx : K.π

| π d | · · ·
(HOL terms) t ::= s | K | P | d | π

Selected rules:

→ INTRO
Ψ; Φ,x : P ` π : P′

Ψ; Φ ` λx : P.π : P→ P′

→ ELIM
Ψ; Φ ` π : P→ P′

Ψ; Φ ` π
′ : P

Ψ; Φ ` π π
′ : P′

Figure 6. Syntax and selected rules of the logic language λHOL

CONVERSION
Ψ; Φ `c π : P P =βN P′

Ψ; Φ `c π : P′

d→βN d′
(λx : K.d) d′→βN d[d′/x]
natElimK dz ds zero→βN dz
natElimK dz ds (succ d)→βN ds d (natElimK dz ds d)

d =βN d′
is the compatible, reflexive, symmetric and transitive
closure of d→βN d′

Figure 7. Extending λHOL with the conversion rule (λHOLc)

tions up to some equivalence relation: usually this is equivalence up
to partial evaluation of the functions contained within propositions.

The supported relation is decided when the logic is designed.
Any extension to this relation requires a significant amount of work,
both in terms of implementation, and in terms of metatheoretic
proof required. This is evidenced by projects that extend the con-
version rule in Coq, such as Blanqui et al. [1999] and Strub [2010].
Even if user extensions are supported, those only take the form of
first-order theories. Can we do better than this, enabling arbitrarily
complex user extensions, written with the full power of ML, yet
maintaining soundness?

It turns out that we can: this is the subject of this section. The
key idea is to recognize that the conversion rule is essentially a
tactic, embedded within the type checker of the logic. Calls to
this tactic are made implicitly as part of checking a given proof
object for validity. So how can we support a flexible, extensible
alternative? Instead of hardcoding a conversion tactic within the
logic type checker, we can program a type-safe version of the same
tactic within VeriML, with the requirement that it provides proof of
the claimed equivalence. Instead of calling the conversion tactic as
part of proof checking, we use staging to call the tactic statically
– after (VeriML) type checking, but before runtime execution.
This can be viewed as a second, potentially non-terminating proof
checking stage. Users are now free to write their own conversion
tactics, extending the static checking available for proof objects and
proof scripts. Still, soundness is maintained, since full proof objects
in the original logic can always be constructed. As an example,
we have extended the conversion rule that we use by a congruence
closure procedure, which makes use of mutable data structures, and
by an arithmetic simplification procedure.

4.1 Introducing: the conversion rule
First, let us present what the conversion rule really is in more detail.
We will base our discussion on a simple type-theoretic higher-order

Ψ; Φ `e d1 : K Ψ; Φ `c d2 : K
Ψ; Φ `e d1 = d2 : Prop

Ψ; Φ `e d : K
Ψ; Φ `e refl d : d = d

Ψ; Φ, x : K `e P : Prop Ψ; Φ `e d1 : K
Ψ; Φ `e π : P[d1/x] Ψ; Φ `e π

′ : d1 = d2

Ψ; Φ `e leibniz (λx : K.P) π π
′ : P[d2/x]

Ψ; Φ, x : K `e π : d1 = d2

Ψ; Φ `e lamEq (λx : K.π) : (λx : K.d1) = (λx : K.d2)

Ψ; Φ, x : K `e π : d1 = d2 Ψ; Φ `e d1 : Prop

Ψ; Φ `e forallEq (λx : K.π) : (∀x : K.d1) = (∀x : K.d2)

Ψ; Φ, x : K `e d : K′ Ψ; Φ `e d′ : K
Ψ; Φ `e betaEq (λx : K.d) d′ : (λx : K.d) d′ = d[d′/x]

Axioms assumed:
natElimBaseK : ∀ fz.∀ fs.natElimK fz fs zero = fz
natElimStepK : ∀ fz.∀ fs.∀n. natElimK fz fs (succ n) =

fs n (natElimK fz fs n)

Figure 8. Extending λHOL with explicit equality (λHOLe)

logic, based on the λHOL logic as described in Barendregt and
Geuvers [1999], and used in our original work on VeriML [Stam-
poulis and Shao 2010]. We can think of such a logic composed by
the following broad classes: the objects of the domain of discourse
d, which are the objects that the logic reasons about, such as natural
numbers and lists; their classifiers, the kinds K (classified in turn
by sorts s); the propositions P; and the derivations, which prove
that a certain proposition is true. We can represent derivations in
a linear form as terms π in a typed lambda-calculus; we call such
terms proof objects, and their types represent propositions in the
logic. Checking whether a derivation is a valid proof of a certain
proposition amounts to type-checking its corresponding proof ob-
ject. Some details of this logic are presented in Fig. 6; the interested
reader can find more information about it in the above references
and in our technical report [Stampoulis and Shao 2012].

In Fig. 6, we show what the conversion rule looks like for this
logic: it is a typing judgement that effectively identifies proposi-
tions up to an equivalence relation, with respect to checking proof
objects. We call this version of the logic λHOLc and use `c to
denote its entailment relation. The equivalence relation we con-
sider in the conversion rule is evaluation up to β-reductions and
uses of primitive recursion of natural numbers, denoted as natElim.
In this way, trivial arguments based on this notion of computa-
tion alone need not be witnessed, as for example is the fact that
(Succ x)+y = Succ (x+y) – when the addition function is defined
by primitive recursion on the first argument. Of course, this is only
a very basic use of the conversion rule. It is possible to omit larger
proofs through much more sophisticated uses. This leads to simpler
proofs and smaller proof objects.

Still, when using this approach, the choice of what relation is
supported by the conversion rule needs to be made during the defi-
nition of the logic. This choice permeates all aspects of the metathe-
ory of the logic. It is easy to see why, even with the tiny fragment
of logic we have introduced. Most typing rules for proof objects in
the logic are similar to the rules →INTRO and →ELIM: they are
syntax-directed. This means that upon seeing the associated proof
object constructor, like λx : P.π in the case of→INTRO, we can di-
rectly tell that it applies. If all rules were syntax directed, it would

44



βNequal : (φ : ctx,T : Type, t1 : T, t2 : T )→ option LT(t1 = t2)
βNequal φ T t1 t2 =

holcase whnf φ T t1, whnf φ T t2 of
((ta : T ′→ T ) tb),(tc td) 7→

do 〈pf1〉 ← βNequal φ (T ′→ T ) ta tc
〈pf1〉 ← βNequal φ T ′ tb td
return 〈· · · proof of ta tb = tc td · · · 〉

| (ta→ tb),(tc→ td) 7→
do 〈pf1〉 ← βNequal φ Prop ta tc
〈pf1〉 ← βNequal φ Prop tb td
return 〈· · · proof of ta→ tb = tc→ td · · · 〉

| (λx : T.t1),(λx : T.t2) 7→
do 〈pf〉 ← βNequal [φ, x : T ] Prop t1 t2

return 〈· · · proof of λx : T.t1 = λx : T.t2 · · · 〉
| t1, t1 7→ do return 〈· · · proof of t1 = t1 · · · 〉
| t1, t2 7→ None

requireEqual : (φ : ctx,T : Type, t1 : T, t2 : T ).LT(t1 = t2)
requireEqual φ T t1 t2 =

match βNequal φ T t1 t2 with Some x 7→ x | None 7→ error

Figure 9. VeriML tactic for checking equality up to β-conversion

be entirely simple to prove that the logic is sound by an inductive
argument: essentially, since no proof constructor for False exists,
there is no valid derivation for False.

In this logic, the only rule that is not syntax directed is exactly
the conversion rule. Therefore, in order to prove the soundness of
the logic, we have to show that the conversion rule does not some-
how introduce a proof of False. This means that proving the sound-
ness of the logic passes essentially through the specific relation we
have chosen for the conversion rule. Therefore, this approach is
foundationally limited from supporting user extensions, since any
new extension would require a new metatheoretic result in order to
make sure that it does not violate logical soundness.

4.2 Throwing conversion away
Since having a fixed conversion rule is bound to fail if we want
it to be extensible, what choice are we left with, but to throw it
away? This radical sounding approach is what we will do here. We
can replace the conversion rule by an explicit notion of equality,
and provide explicit proof witnesses for rewriting based on that
equality. Essentially, all the points where the conversion rule was
alluded to and proofs were omitted, need now be replaced by proof
objects witnessing the equivalence. Some details for the additions
required to the base λHOL logic are shown in Fig. 8, yielding the
λHOLe logic. There are good reasons for choosing this version:
first, the proof checker is as simple as possible, and does not need
to include the conversion checking routine. We could view this
routine as performing proof search over the replacement rules,
so it necessarily is more complicated, especially since it needs
to be relatively efficient. Also, the metatheory of the logic itself
can be simplified. Even when the conversion rule is supported, the
metatheory for the associated logic is proved through the explicit
equality approach; this is because model construction for a logic
benefits from using explicit equality [Siles and Herbelin 2010].

Still, this approach has a big disadvantage: the proof objects
soon become extremely large, since they include painstakingly de-
tailed proofs for even the simplest of equivalences. This precludes
their use as independently checkable proof certificates that can be
sent to a third party. It is possible that this is one of the reasons
why systems based on logics with explicit equalities, such as HOL4

whnf : (φ : ctx,T : Type, t : T )→ (t ′ : T )×LT(t = t ′)
whnf φ T t = holcase t of

(t1 : T ′→ T )(t2 : T ′) 7→
let
〈
t ′1, p f1

〉
= whnf φ (T ′→ T ) t1 in

holcase t ′1 of
λx : T ′.t f 7→ 〈[φ] t f /[idΦ, t2], · · · 〉
| t ′1 7→ 〈[φ] t ′1 t2, · · · 〉

| natElimK fz fs n 7→
let 〈n′, p f1〉= whnf φ Nat n in holcase n′ of

zero 7→ 〈[φ] fz, · · · 〉
| succ n′ 7→ 〈[φ] fs n′ (natElimK fz fs n′), · · · 〉
| n′ 7→ 〈[φ]natElimK fz fs n′, · · · 〉

| t 7→ 〈t, · · ·〉

Figure 10. VeriML tactic for rewriting to weak head-normal form

[Slind and Norrish 2008] and Isabelle/HOL [Nipkow et al. 2002],
do not generate proof objects by default.

4.3 Getting conversion back
We will now see how it is possible to reconcile the explicit equality
based approach with the conversion rule: we will gain the conver-
sion rule back, albeit it will remain completely outside the logic.
Therefore we will be free to extend it, all the while without risking
introducing unsoundness in the logic, since the logic remains fixed
(λHOLe as presented above).

We do this by revisiting the view of the conversion rule as a
special “trusted” tactic, through the tools presented in the previous
section. First, instead of hardcoding a conversion tactic in the type
checker, we program a type-safe conversion tactic, utilizing the
features of VeriML. Based on typing alone we require that it returns
a valid proof of the claimed equivalences:

βNequal : (φ : ctx, T : Type, t : T, t ′ : T )→ option LT(t = t ′)

Second, we evaluate this tactic under proof erasure semantics. This
means that no proof objects are produced, leading to the same space
gains as the original conversion rule. Third, we use the staging
construct in order to check conversion statically.

Details. We now present our approach in more detail. First, in
Fig. 9, we show a sketch of the code behind the type-safe conver-
sion check tactic. It works by first rewriting its input terms into
weak head-normal form, via the whnf function in Fig. 10, and then
recursively checking their subterms for equality. In the equivalence
checking function, more cases are needed to deal with quantifi-
cation; while in the rewriting procedure, a recursive call is miss-
ing, which would complicate our presentation here. We also de-
fine a version of the tactic that raises an error instead of returning
an option type if we fail to prove the terms equal, which we call
requireEqual. The full details can be found in our implementation.

The code of the βNequal tactic is in fact entirely similar to
the code one would write for the conversion check routine inside
a logic type checker, save for the extra types and proof objects. It
therefore follows trivially that everything that holds for the standard
implementation of the conversion check also holds for this code:
e.g. it corresponds exactly to the =βN relation as defined in the
logic; it is bound to terminate because of the strong normalization
theorem for this relation; and its proof-erased version is at least as
trustworthy as the standard implementation.

Furthermore, given this code, we can produce a form of typed
proof scripts inside VeriML that correspond exactly to proof objects
in the logic with the conversion rule, both in terms of their actual
code, and in terms of the steps required to validate them. This is

45



done by constructing a proof script in VeriML by induction on
the derivation of the proof object in λHOLc, replacing each proof
object constructor by an equivalent VeriML tactic as follows:

constructor to tactic of type
λx : P.π Assume e LT([φ, H : P]P′)→ LT(P→ P′)
π1 π2 Apply e1 e2 LT(P→ P′)→ LT(P)→ LT(P′)
λx : K.π Intro e LT([φ, x : T ]P′)→ LT(∀x : T,P′)
π d Inst e a LT(∀x : T,P)→ (a : T )→

LT(P/[id, a])
c Lift c (H : P)→ LT(P)
(conversion) Conversion LT(P)→ LT(P = P′)→ LT(P′)

Here we have omitted the current logical environment φ; it is
maintained through syntactic means as discussed in Sec. 7 and
through type inference. The only subtle case is conversion. Given
the transformed proof e for the proof object π contained within a
use of the conversion rule, we call the conversion tactic as follows:

letstatic pf = requireEqual P P′ in Conversion e pf

The arguments to requireEqual can be easily inferred, making cru-
cial use of the rich type information available. Conversion could
also be used implicitly in the other tactics. Thus the resulting ex-
pression looks entirely identical to the original proof object.

Correspondence with original proof object. In order to elucidate
the correspondence between the resulting proof script expression
and the original proof object, it is fruitful to view the proof script
as a proof certificate, sent to a third party. The steps required to
check whether it constitutes a valid proof are the following. First,
the whole expression is checked using the type checker of the com-
putational language. Then, the calls to the requireEqual function are
evaluated during stage one, using proof erasure semantics. We ex-
pect them to be successful, just as we would expect the conversion
rule to be applicable when it is used. Last, the rest of the tactics
are evaluated; by a simple argument, based on the fact that they do
not use pattern matching or side-effects, they are guaranteed to ter-
minate and produce a proof object in λHOLe. This validity check
is entirely equivalent to the behavior of type-checking the λHOLc
proof object, save for pushing all conversion checks towards the
end.

4.4 Extending conversion at will
In our treatment of the conversion rule we have so far focused
on regaining the βN conversion in our framework. Still, there is
nothing confining us to supporting this conversion check only. As
long as we can program a conversion tactic in VeriML that has the
right type, it can safely be made part of our conversion rule.

For example, we have written an eufEqual function, which
checks terms for equivalence based on the equality with uninter-
preted functions decision procedure. It is adapted from our previous
work on VeriML [Stampoulis and Shao 2010]. This equivalence
checking tactic isolates hypotheses of the form d1 = d2 from the
current context, using the newly-introduced context matching sup-
port. Then, it constructs a union-find data structure in order to form
equivalence classes of terms. Based on this structure, and using
code similar to βNequal (recursive calls on subterms), we can de-
cide whether two terms are equal up to simple uses of the equality
hypotheses at hand. We have combined this tactic with the original
βNequal tactic, making the implicit equivalence supported similar
to the one in the Calculus of Congruent Constructions [Blanqui
et al. 2005]. This demonstrates the flexibility of this approach:
equivalence checking is extended with a sophisticated decision
procedure, which is programmed using its original, imperative for-
mulation. We have programmed both the rewriting procedure and
the equality checking procedure in an extensible manner, so that
we can globally register further extensions.

4.5 Typed proof scripts as certificates
Earlier we discussed how we can validate the proof scripts resulting
from turning the conversion rule into explicit tactic calls. This
discussion shows an interesting aspect of typed proof scripts: they
can be viewed as a proof witness that is a flexible compromise
between untyped proof scripts and proof objects. When a typed
proof script consists only of static calls to conversion tactics and
uses of total tactics, it can be thought of as a proof object in a
logic with the corresponding conversion rule. When it also contains
other tactics, that perform potentially expensive proof search, it
corresponds more closely to an untyped proof script, since it needs
to be fully evaluated. Still, we are allowed to validate parts of
it statically. This is especially useful when developing the proof
script, because we can avoid the evaluation of expensive tactic calls
while we focus on getting the skeleton of the proof correct.

Using proof erasure for evaluating requireEqual is only one
of the choices the receiver of such a proof certificate can make.
Another choice would be to have the function return an actual proof
object, which we can check using the λHOLe type checker. In that
case, the VeriML interpreter does not need to become part of the
trusted base of the system. Last, the ‘safest possible’ choice would
be to avoid doing any evaluation of the function, and ask the proof
certificate provider to do the evaluation of requireEqual themselves.
In that case, no evaluation of computational code would need to
happen at the proof certificate receiver’s side. This mitigates any
concerns one might have for code execution as part of proof validity
checking, and guarantees that the small λHOLe type checker is the
trusted base in its entirety. Also, the receiver can decide on the
above choices selectively for different conversion tactics – e.g. use
proof erasure for βNequal but not for eufEqual, leading to a trusted
base identical to the λHOLc case. This means that the choice of
the conversion rule rests with the proof certificate receiver and not
with the designer of the logic. Thus the proof certificate receiver
can choose the level of trust they require at will.

5. Static proof scripts
In the previous section, we have demonstrated how proof checking
for typed proof scripts can be made user-extensible, through a
new treatment of the conversion rule. It makes use of user-defined,
type-safe tactics, which are evaluated statically. The question that
remains is what happens with respect to proofs within tactics. If
a proof script is found within a tactic, must we wait until that
evaluation point is reached to know whether the proof script is
correct or not? Or is there a way to check this statically, as soon
as the tactic is defined?

In this section we show how this is possible to do in VeriML
using the staging construct we have introduced. Still, in this case
matters are not as simple as evaluating certain expressions statically
rather than dynamically. The reason is that proof scripts contained
within tactics mention uninstantiated meta-variables, and thus can-
not be evaluated through staging. We resolve this by showing the
existence of a transformation, which “collapses” logical terms from
an arbitrary meta-variables context into the empty one.

We will focus on the case of developing conversion routines,
similar to the ones we saw earlier. The ideas we present are gen-
erally applicable when writing other types of tactics as well; we
focus on conversion routines in order to demonstrate that the two
main ideas we present in this paper can work in tandem.

A rewriter for plus. We will consider the case of writing a
rewriter –similar to whnf– for simplifying expressions of the form
x+ y, depending on the second argument. The addition function is
defined by induction on the first argument, as follows:

(+) = λx.λy.natElimNat y (λp.λr.Succ r) x

46



In order for rewriters to be able to use existing as well as future
rewriters to perform their recursive calls, we write them in the
open recursion style – they receive a function of the same type that
corresponds to the “current” rewriter. The code looks as follows:

rewriterType = (φ : ctx,T : Type, t : T )→ (t ′ : T )×LT(t = t ′)
plusRewriter1 : rewriterType→ rewriterType
plusRewriter1 recursive φ T t = holcase t with

x+ y 7→
let 〈y′, 〈pfy′〉〉= recursive φ y in
let 〈t ′, 〈pft′〉〉 =

holcase y′ return Σt ′ : [φ]Nat.LT([φ]x+ y′ = t ′) of
0 7→ 〈x, · · · proof of x+0 = x · · · 〉
| Succ y′ 7→

〈
Succ(x+ y′),

· · · proof of x+Succ y′ = Succ (x+ y′) · · ·
〉

| y′ 7→ 〈x+ y′, · · · proof of x+ y′ = x+ y′ · · · 〉
in〈t ′, 〈· · · proof of x+ y = t ′ · · · 〉〉

| t 7→ 〈t, · · · proof of t = t · · · 〉

While developing such a tactic, we can leverage the VeriML
type checker to know the types of missing proofs. But how do we
fill them in? For the interesting cases of x+0 = x and x+Succ y′ =
Succ (x+ y′), we would certainly need to prove the corresponding
lemmas. But for the rest of the cases, the corresponding lemmas
would be uninteresting and tedious to state, such as the following
for the x+ y = t ′ case:

lemma1 : ∀x,y,y′, t ′,y = y′→ (x+ y′ = t ′)→ x+ y = t

Stating and proving such lemmas soon becomes a hindrance when
writing tactics. An alternative is to use the congruence closure
conversion rule to solve this trivial obligation for us directly at the
point where it is required. Our first attempt would be:

proof of x+ y = t ′ ≡
let 〈pf〉= requireEqual [φ,H1 : y = y′,H2 : x+ y′ = t ′] (x+ y) t ′

in
〈
[φ]pf/[idφ, pfy′, pft’]

〉
The benefit of this approach is evident when utilizing implicit argu-
ments, since most of the details can be inferred and therefore omit-
ted. Here we had to alter the environment passed to requireEqual,
which includes several extra hypotheses. Once the resulting proof
has been computed, the hypotheses are substituted by the actual
proofs that we have.

The problem with this approach is two-fold: first, the call to the
requireEqual tactic is recomputed every time we reach that point of
our function. For such a simple tactic call, this does not impact the
runtime significantly; still, if we could avoid it, we would be able
use more sophisticated and expensive tactics. The second problem
is that if for some reason the requireEqual is not able to prove what
it is supposed to, we will not know until we actually reach that point
in the function.

Moving to static proofs. This is where using the letstatic construct
becomes essential. We can evaluate the call to requireEqual stat-
ically, during stage one interpretation. Thus we will know at the
time that plusRewriter1 is defined whether the call succeeded; also,
it will be replaced by a concrete value, so it will not affect the run-
time behavior of each invocation of plusRewriter1 anymore. To do
that, we need to avoid mentioning any of the metavariables that are
bound during runtime, like x, y, and t ′. This is done by specifying
an appropriate environment in the call to requireEqual, similarly to
the way we incorporated the extra knowledge above and substituted

it later. Using this approach, we have:

proof of x+ y = t ′ ≡
letstatic 〈pf〉 =

let φ′ = [x,y,y′, t ′ : Nat,H1 : y = y′,H2 : x+ y′ = t ′] in
requireEqual φ′ (x+ y) t ′

in
〈
[φ]pf/[x/idφ,y/idφ,y′/idφ, t ′/idφ,pfy′/idφ,pft′/idφ]

〉
What we are essentially doing here is replacing the meta-

variables by normal logical variables, which our tactics can deal
with. The meta-variable context is “collapsed” into a normal con-
text; proofs are constructed using tactics in this environment; last,
the resulting proofs are transported back into the desired context by
substituting meta-variables for variables. We have explicitly stated
the substitutions in order to distinguish between normal logical
variables and meta-variables.

The reason why this transformation needs to be done is that
functions in our computational language can only manipulate logi-
cal terms that are open with respect to a normal variables context;
not logical terms that are open with respect to the meta-variables
context too. A much more complicated, but also more flexible al-
ternative to using this “collapsing” trick would be to support meta-
n-variables within our computational language directly.

Overall, this approach is entirely similar to proving the auxiliary
lemma mentioned above, prior to the tactic definition. The benefit
is that by leveraging the type information together with type in-
ference, we can avoid stating such lemmas explicitly, while retain-
ing the same runtime behavior. We thus end up with very concise
proof expressions that are statically validated. We introduce syn-
tactic sugar for binding a static proof script to a variable, and then
performing a substitution to bring it into the current context, since
this is a common operation.

〈e〉static ≡ letstatic 〈pf〉 = e in 〈[φ]pf/ · · ·〉
Based on these, the trivial proofs in the above tactic can be filled
in using a simple 〈requireEqual〉static call; for the other two we use
〈Instantiate (NatInduction requireEqual requireEqual) x〉static.

After we define plusRewriter1, we can register it with the
global equivalence checking procedure. Thus, all later calls to
requireEqual will benefit from this simplification. It is then sim-
ple to prove commutativity for addition:

plusComm : LT(∀x,y.x+ y = y+ x)
plusComm = NatInduction requireEqual requireEqual

Based on this proof, we can write a rewriter that takes commu-
tativity into account and uses the hash values of logical terms to
avoid infinite loops. We have worked on an arithmetic simplifica-
tion rewriter that is built by layering such rewriters together, using
previous ones to aid us in constructing the proofs required in later
ones. It works by converting expressions into a list of monomi-
als, sorting the list based on the hash values of the variables, and
then factoring monomials on the same variable. Also, the eufEqual
procedure mentioned earlier has all of its associated proofs auto-
mated through static proof scripts, using a naive, potentially non-
terminating, equality rewriter.

Is collapsing always possible? A natural question to ask is
whether collapsing the metavariables context into a normal context
is always possible. In order to cast this as a more formal ques-
tion, we notice that the essential step is replacing a proof object π

of type [Φ] t, typed under the meta-variables environment Ψ, by a
proof object π′ of type [Φ′] t ′ typed under the empty meta-variables
environment. There needs to be a substitution so that π′ gets trans-
ported back to the Φ, Ψ environment, and has the appropriate type.

47



Syntax of the logic (terms) t ::= s | c | fi | bi | λ(t1).t2 | t1 t2 | Π(t1).t2 | t1 = t2 | refl t | leibniz t1 t2 | lamEq t | forallEq t1 t2 | betaEq t1 t2
(sorts) s ::= Prop | Type | Type′ (var. context) Φ ::= • | Φ, t (substitutions) σ ::= • | σ, t

Example of representation: a : Nat ` λx : Nat.(λy : Nat.refl (plus a y))(plus a x) 7→ Nat ` λ(Nat).(λ(Nat).refl (plus f0 b0)) (plus f0 b0)

Freshen: dtenm

d fie = fi
dbnenm = fm
dbien = bi when i < n
d(λ(t1).t2)en = λ(dt1en).dt2en+1

dt1 t2e = dt1e dt2e

Bind: btcnm

b fm−1cnm = bn
b ficnm = fi when i < m−1
bbic = bi+1

b(λ(t1).t2)c = λ(bt1cn).bt2cn+1

bt1 t2c = bt1c bt2c
(a) Hybrid deBruijn levels-deBruijn indices representation technique

Syntax t ::= · · · | fI | Xi/σ Φ ::= • | Φ, t | Φ, φi σ ::= • | σ, t | σ, id(φi) (indices) I ::= n | I+ |φi| (ctx.terms) T ::= [Φ] t | [Φ]Φ′

(ctx.kinds) K ::= [Φ] t | [Φ]ctx (extension context) Ψ ::= • | Ψ, K (ext. subst.) σΨ ::= • | σΨ, T

Ψ; Φ ` t : t ′ (sample)
Φ.I = t

Ψ; Φ ` fI : t
Ψ; Φ ` t1 : Π(t).t ′ Ψ; Φ ` t2 : t

Ψ; Φ ` t1 t2 :
⌈
t ′
⌉
· (idΦ, t2)

Ψ.i = [Φ′] t ′ Ψ; Φ ` σ : Φ
′

Ψ; Φ ` Xi/σ : t ′ ·σ

Ψ ` T : K
Ψ; Φ ` t : t ′

Ψ ` [Φ] t : [Φ] t ′
Ψ `Φ, Φ

′ wf
Ψ ` [Φ]Φ′ : [Φ]ctx

Ψ `Φ wf (sample)
Ψ `Φ wf Ψ.i = [Φ]ctx

Ψ ` (Φ, φi) wf

(b) Extension variables: meta-variables and context variables

Subst. application: t ·σ c ·σ = c fI ·σ = σ.I bi ·σ = bi (λ(t1).t2) ·σ = λ(t1 ·σ).(t2 ·σ) (t1 t2) ·σ = (t1 ·σ) (t2 ·σ)

Ext. subst. application (sample) (I, |φi|) ·σΨ = (I ·σΨ), |Φ′| when σΨ.i = [_]Φ′ (Xi/σ) ·σΨ = t · (σ ·σΨ) when σΨ.i = [_] t
(σ, id(φi)) ·σΨ = σ ·σΨ, idσΨ .i (Φ, φi) ·σΨ = Φ ·σΨ, Φ′ when σΨ.i = [_]Φ′

Ψ; Φ ` σ : Φ′
Ψ; Φ ` • : •

Ψ; Φ ` σ : Φ
′

Ψ; Φ ` t : t ′ ·σ
Ψ; Φ ` (σ, t) : (Φ′, t ′)

Ψ; Φ ` σ : Φ
′

Ψ.i = [Φ′]ctx
Φ
′, φi ⊆Φ

Ψ; Φ ` (σ, id(φi)) : (Φ′, φi)

Ψ ` σΨ : Ψ′

(selected)

Ψ ` σΨ : Ψ
′

Ψ ` T : K ·σΨ

Ψ ` (σΨ, T ) : (Ψ′, K)

Subst. lemmas:
Ψ; Φ ` t : t ′ Ψ; Φ

′ ` σ : Φ

Ψ; Φ
′ ` t ·σ : t ′ ·σ

Ψ; Φ
′ ` σ : Φ Ψ; Φ

′′ ` σ
′ : Φ

′

Ψ; Φ
′′ ` σ ·σ′ : Φ

Ψ ` T : K Ψ
′ ` σΨ : Ψ

Ψ
′ ` T ·σΨ : K ·σΨ

(c) Substitutions over logical variables and extension variables

Syntax: Γ ::= • | Γ, x : τ | Γ, x :s τ | Γ, α : k e ::= · · · | letstatic x = e in e′ Limit ctx:

•|static = •
(Γ, x :s t)|static = Γ|static, x : t
(Γ, x : t)|static = Γ|static
(Γ, α : k)|static = Γ|static

Ψ; Σ; Γ ` e : τ (part)
•; Σ; Γ|static ` e : τ Ψ; Σ; Γ,x :s τ ` e′ : τ

Ψ; Σ; Γ ` letstatic x = e in e′ : τ

x :s τ ∈ Γ

Ψ; Σ; Γ ` x : τ

Evaluation:

v ::= Λ(K).ed | pack T return (.τ) with v | () | λx : τ.ed | (v, v′) | inji v | fold v | l | Λα : k.ed
S ::= letstatic x = • in e′ | letstatic x = S in e′ | Λ(K).S | λx : τ.S | unpack ed (.)x.(S) | case(ed , x.S, x.e2)

| case(ed , x.ed , x.S) | Λα : k.S | fix x : τ.S | unify T return (.τ) with (Ψ.T ′ 7→ S) | Es[S]
Es ::= Es T | pack T return (.τ) with Es | unpack Es (.)x.(e′) | Es e′ | ed Es | (Es, e) | (ed , Es) | proji Es | inji Es

| case(Es, x.e1, x.e2) | fold Es | unfold Es | ref Es | Es := e′ | ed := Es | !Es | Es τ

ed ::= all of e except letstatic x = e in e′ E ::= exactly as Es with Es→ E and e→ ed

Stage 1 op.sem.:
( µ , ed )−→ ( µ′ , e′d )

( µ , S[ed ] )−→s ( µ′ , S[e′d ] )
( µ , S[letstatic x = v in e] )−→s ( µ , S[e[v/x]] )

( µ , letstatic x = v in e )−→s ( µ , e[v/x] )

(d) Computational language: staging support

Figure 11. Main definitions in metatheory

48



We have proved that this is possible under certain restrictions:
the types of the metavariables in the current context need to depend
on the same free variables context Φmax, or prefixes of that context.
Also the substitutions they are used with need to be prefixes of
the identity substitution for Φmax. Such terms are characterized as
collapsible. We have proved that collapsible terms can be replaced
using terms that do not make use of metavariables; more details
can be found in Sec. 6 and in the accompanying technical report
[Stampoulis and Shao 2012].

This restriction corresponds very well to the treatment of vari-
able contexts in the Delphin language. This language assumes an
ambient context of logical variables, instead of full, contextual
modal terms. Constructs to extend this context and substitute a spe-
cific variable exist. If this last feature is not used, the ambient con-
text grows monotonically and the mentioned restriction holds triv-
ially. In our tests, this restriction has not turned out to be limiting.

6. Metatheory
We have completed an extensive reworking of the metatheory of
VeriML, in order to incorporate the features that we have presented
in this paper. Our new metatheory includes a number of techni-
cal advances compared to our earlier work [Stampoulis and Shao
2010]. We will present a technical overview of our metatheory in
this section; full details can be found in our technical report [Stam-
poulis and Shao 2012].

Variable representation technique. Though our metatheory is
done on paper, we have found that using a concrete variable repre-
sentation technique elucidates some aspects of how different kinds
of substitutions work in our language, compared to having nor-
mal named variables. For example, instantiating a context variable
with a concrete context triggers a set of potentially complicated
α-renamings, which a concrete representation makes explicit. We
use a hybrid technique representing bound variables as deBruijn in-
dices, and free variables as deBruijn levels. Our technique is a small
departure from the named approach, requiring fewer extra annota-
tions and lemmas than normal deBruijn indices. Also it identifies
terms not only up to α-equivalence, but also up to extension of the
context with new variables; this is why it is also used within the Ver-
iML implementation.The two fundamental operations of this tech-
nique are freshening and binding, which are shown in Fig. 11a.

Extension variables. We extend the logic with support for meta-
variables and context variables – we refer to both these sorts of
variables as extension variables. A meta-variable Xi stands for a
contextual term T = [Φ] t, which packages a term together with
the context it inhabits. Context variables φi stand for a context Φ,
and are used to “weaken” parametric contexts in specific positions.
Both kinds of variables are needed to support manipulation of open
logical terms. Details of their definition and typing are shown in
Fig. 11b. We use the same hybrid approach as above for represent-
ing these variables. A somewhat subtle aspect of this extension is
that we generalize the deBruijn levels I used to index free variables,
in order to deal effectively with parametric contexts.

Substitutions. The hybrid representation technique we use for
variables renders simultaneous substitutions for all variables in
scope as the most natural choice. In Fig. 11c, we show some ex-
ample rules of how to apply a full simultaneous substitution σ to a
term t, denoted as t ·σ. Similarly, we define full simultaneous sub-
stitutions σΨ for extension contexts; defining their application has
a very natural description, because of our variable representation
technique. We prove a number of substitution lemmas which have
simple statements, as shown in Fig. 11c. The proofs of these lem-
mas comprise the main effort required in proving the type-safety
of a computational language such as the one we support, as they

represent the point where computation specific to logical term ma-
nipulation takes place.
Computational language. We define an ML-style computational
language that supports dependent functions and dependent pairs
over contextual terms T , as well as pattern matching over them.
Lack of space precludes us from including details here; full details
can be found in the accompanying technical report [Stampoulis and
Shao 2012]. A fairly complete ML calculus is supported, with mu-
table references and recursive types. Type safety is proved using
standard techniques; its central point is extending the logic sub-
stitution lemmas to expressions and using them to prove progress
and preservation of dependent functions and dependent pairs. This
proof is modular with respect to the logic and other logics can eas-
ily be supported.
Pattern matching. Our metatheory includes many extensions in
the pattern matching that is supported, as well as a new approach for
dealing with typing patterns. We include support for pattern match-
ing over contexts (e.g. to pick out hypotheses from the context) and
for non-linear patterns. The allowed patterns are checked through a
restriction of the usual typing rules Ψ `p T : K.

The essential idea behind our approach to pattern matching
is to identify what the relevant variables in a typing derivation
are. Since contexts are ordered, “removing” non-relevant variables
amounts to replacing their definitions in the context with holes,
which leads us to partial contexts Ψ̂. The corresponding notion
of partial substitutions is denoted as σ̂Ψ. Our main theorem about
pattern matching can then be stated as:
Theorem 6.1 (Decidability of pattern matching) If Ψ `p T : K,
• `p T ′ : K and relevant(Ψ; Φ ` T : K) = Ψ̂, then either there
exists a unique partial substitution σ̂Ψ such that • ` σ̂Ψ : Ψ̂ and
T · σ̂Ψ = T ′, or no such substitution exists.

Staging. Our development in this paper critically depends on the
letstatic construct we presented earlier. It can be seen as a dual of
the traditional box construct of Davies and Pfenning [1996]. De-
tails of its typing and semantics are shown in Fig. 11d. We define a
notion of “static evaluation contexts” S, which enclose a hole of the
form letstatic x = • in e. They include normal evaluation contexts,
as well as evaluation contexts under binding structures. We evaluate
expressions e that include staging constructs using the −→s rela-
tion; internally, this uses the normal evaluation rules, that are used
in the second stage as well, for evaluating expressions which do
not include other staging constructs. If stage-one evaluation is suc-
cessful, we are left with a residual dynamic configuration (µ′, ed)
which is then evaluated normally. We prove type-safety for stage-
one evaluation; its statement follows.
Theorem 6.2 (Stage-one Type Safety) If •; Σ; • ` e : τ then: ei-
ther e is a dynamic expression ed; or, for every store µ such that
` µ : Σ, we have: either µ,e−→s error, or, there exists an e′, a new
store typing Σ′ ⊇ Σ and a new store µ′ such that: (µ,e)−→ (µ′,e′);
` µ′ : Σ′; and •; Σ′; • ` e′ : τ.

Collapsing extension variables. Last, we have proved the fact
that under the conditions described in Sec. 5, it is possible to col-
lapse a term t into a term t ′ which is typed under the empty exten-
sion variables context; a substitution σ with which we can regain
the original term t exists. This suggests that whenever a proof ob-
ject t for a specific proposition is required, an equivalent proof ob-
ject that does not mention uninstantiated extension variables exists.
Therefore, we can write an equivalent proof script producing the
collapsed proof object instead, and evaluate that script statically.
The statement of this theorem is the following:
Theorem 6.3 If Ψ` [Φ] t : [Φ] tT and collapsible(Ψ ` [Φ] t : [Φ] tT ),
then there exist Φ′, t ′, t ′T and σ such that • ` Φ′ wf, • ` [Φ′] t ′ :
[Φ′] t ′T , Ψ; Φ ` σ : Φ′, t ′ ·σ = t and t ′T ·σ = tT .

49



The main idea behind the proof is to maintain a number of sub-
stitutions and their inverses: one to go from a general Ψ extension
context into an “equivalent” Ψ′ context, which includes only defini-
tions of the form [Φ] t, for a constant Φ context that uses no exten-
sion variables. Then, another substitution and its inverse are main-
tained to go from that extension variables context into the empty
one; this is simpler, since terms typed under Ψ′ are already essen-
tially free of metavariables. The computational content within the
proof amounts to a procedure for transforming proof scripts inside
tactics into static proof scripts.

7. Implementation
We have completed a prototype implementation of the VeriML
language, as described in this paper, that supports all of our
claims. We have built on our existing prototype [Stampoulis
and Shao 2010] and have added an extensive set of new fea-
tures and improvements. The prototype is written in OCaml and
is about 6k lines of code. Using the prototype we have imple-
mented a number of examples, that are about 1.5k lines of code.
Readers are encouraged to download and try the prototype from
http://flint.cs.yale.edu/publications/supc.html.

New features. We have implemented the new features we have
described so far: context matching, non-linear patterns, proof-
erasure semantics, staging, and inferencing for logical and com-
putational terms. Proof-erasure semantics are utilized only if re-
quested by a per-function flag, enabling us to selectively “trust”
tactics. The staging construct we support is more akin to the 〈·〉static
form described as syntactic sugar in Sec. 5, and it is able to infer
the collapsing substitutions that are needed, following the approach
used in our metatheory.

Changes. We have also changed quite a number of things in the
prototype and improved many of its aspects. A central change, me-
diated by our new treatment of the conversion rule, was to modify
the used logic in order to use the explicit equality approach; the ex-
isting prototype used the λHOLc logic. We also switched the vari-
able representation to the hybrid deBruijn levels-deBruijn indices
technique we described, which enabled us to implement subtyping
based on context subsumption. Also, we have adapted the typing
rules of the pattern matching construct in order to support refining
the environment based on the current branch.

Examples implemented. We have implemented a number of ex-
amples to support our claims. First, we have written the type-safe
conversion check routine for βN, and extended it to support congru-
ence closure based on equalities in the context. Proofs of this lat-
ter tactic are constructed automatically through static proof scripts,
using a naive rewriter that is non-terminating in the general case.
We have also completed proofs for theorems of arithmetic for the
properties of addition and multiplication, and used them to write an
arithmetic simplification tactic. All of the theorems are proved by
making essential use of existing conversion rules, and are imme-
diately added into new conversion rules, leading to a compact and
clean development style. The resulting code does not need to make
use of translation validation or proof by reflection, which are typi-
cally used to implement similar tactics in existing proof assistants.

Towards a practical proof assistant. In order to facilitate practi-
cal proof and program construction in VeriML, we introduced some
features to support surface syntax, enabling users to omit most de-
tails about the environments of contextual terms and the substi-
tutions used with meta-variables. This syntax follows the style of
Delphin, assuming an ambient logical variable environment which
is extended through a construct denoted as νx : t.e. Still, the full
power of contextual modal type theory is available, which is cru-
cial in order to change what the current ambient environment is,

used, as we saw earlier, for static calls to tactics. In general the
surface syntax leads to much more concise and readable code.

Last, we introduced syntax support for calls to tactics, enabling
users to write proof expressions that look very similar to proof
scripts in current proof assistants. We developed a rudimentary
ProofGeneral mode for VeriML, that enables us to call the VeriML
type-checker and interpreter for parts of source files. By adding
holes to our sources, we can be informed by the type inference
mechanism about their expected types. Those types correspond to
what the current “proof state” is at that point. Therefore, a possi-
ble workflow for developing tactics or proofs, is writing the known
parts, inserting holes in missing points to know what remains to
be proved, and calling the typechecker to get the proof state infor-
mation. This workflow corresponds closely to the interactive proof
development support in proof assistants like Coq and Isabelle, but
generalizes it to the case of tactics as well.

8. Related work
There is a large body of work that is related to the ideas we have
presented here.
Techniques for robust proof development. There have been
multiple proposals for making proof development inside existing
proof assistants more robust. A well-known technique is proof-by-
reflection [Boutin 1997]: writing total and certified decision proce-
dures within the functional language contained in a logic like CIC.
A recently introduced technique is automation through canonical
structures [Gonthier et al. 2011]: the resolution mechanism for
finding instances of canonical structures (a generalization of type
classes) is cleverly utilized in order to program automation proce-
dures for specific classes of propositions. We view both approaches
as somewhat similar, as both are based in cleverly exploiting static
“interpreters” that are available in a modern proof assistant: the
partial evaluator within the conversion rule in the former case; the
unification algorithm within instance discovery in the latter case.

Our approach can thus be seen as similar, but also as a gen-
eralization of these approaches, since a general-purpose program-
ming model is supported. Therefore, users do not have to adapt to
a specific programming style for writing automation code, but can
rather use a familiar functional language. Proof-by-reflection could
perhaps be used to support the same kind of extensions to the con-
version rule; still, this would require reflecting a large part of the
logic in itself, through a prohibitively complicated encoding. Both
techniques are applicable to our setting as well and could be used
to provide benefits to large developments within our language.

The style advocated in Chlipala [2011] (and elsewhere) suggests
that proper proof engineering entails developing sophisticated au-
tomation tactics in a modular style, and extending their power by
adding proved lemmas as hints. We are largely inspired by this ap-
proach, and believe that our introduction of the extensible conver-
sion rule and static checking of tactics can significantly benefit it.
We demonstrate similar ideas in layering conversion tactics.
Traditional proof assistants. There are many parallels of our
work with the LCF family of proof assistants, like HOL4 [Slind and
Norrish 2008] and HOL-Light [Harrison 1996], which have served
as inspiration. First, the foundational logic that we use is similar.
Also, our use of a dedicated ML-like programming language to
program tactics and proof scripts is similar to the approach taken
by HOL4 and HOL-Light. Last, the fact that no proof objects need
to be generated is shared. Still, checking a proof script in HOL
requires evaluating it fully. Using our approach, we can selectively
evaluate parts of proof scripts; we focus on conversion-like tactics,
but we are not limited inherrently to those. This is only possible
because our proof scripts carry proof state information within their
types. Similarly, proof scripts contained within LCF tactics cannot

50



be evaluated statically, so it is impossible to establish their validity
upon tactic definition. It is possible to do a transformation similar to
ours manually (lifting proof scripts into auxiliary lemmas that are
proved prior to the tactic), but the lack of type information means
that many more details need to be provided.

The Coq proof assistant [Barras et al. 2010] is another obvious
point of reference for our work. We will focus on the conversion
rule that CIC, its accompanying logic, supports – the same prob-
lems with respect to proof scripts and tactics that we described in
the LCF case also apply for Coq. The conversion rule, which identi-
fies computationally equivalent propositions, coupled with the rich
type universe available, opens up many possibilities for construct-
ing small and efficiently checkable proof objects. The implementa-
tion of the conversion rule needs to be part of the trusted base of
the proof assistant. Also, the fact that the conversion check is built-
in to the proof assistant makes the supported equivalence rigid and
non-extensible by frequently used decision procedures.

There is a large body of work that aims to extend the conver-
sion rule to arbitrary confluent rewrite systems (e.g. Blanqui et al.
[1999]) and to include decision procedures [Strub 2010]. These
approaches assume some small or larger addition to the trusted
base, and extend the already complex metatheory of Coq. Further-
more, the NuPRL proof assistant [Constable et al. 1986] is based
on extensional type theory which includes an extensional conver-
sion rule. This enables complex decision procedures to be part of
conversion; but it results in a very large trusted base. We show how,
for a subset of these type theories, the conversion check can be re-
covered outside the trusted base. It can be extended with arbitrarily
complex new tactics, written in a familiar programming style, with-
out any metatheoretic additions and without hurting the soundness
of the logic. The question of whether these type theories can be
supported in full remains as future work, but as far as we know,
there is no inherrent limitation to our approach.

Dependently-typed programming. The large body of work on
dependently-typed languages has close parallels to our work. Out
of the multitude of proposals, we consider the Russell framework
[Sozeau 2006] as the current state-of-the-art, because of its high
expressivity and automation in discharging proof obligations. In
our setting, we can view dependently-typed programming as a spe-
cific case of tactics producing complex data types that include
proof objects. Static proof scripts can be leveraged to support ex-
pressivity similar to the Russell framework. Furthermore, our ap-
proach opens up a new intriguing possibility: dependently-typed
programs whose obligations are discharged statically and automat-
ically, through code written within the same language.

Last, we have been largely inspired by the work on languages
like Beluga [Pientka and Dunfield 2008] and Delphin [Poswolsky
and Schürmann 2008], and build on our previous work on VeriML
[Stampoulis and Shao 2010]. We investigate how to leverage type-
safe tactics, as well as a number of new constructs we introduce, so
as to offer an extensible notion of proof checking. Also, we address
the issue of statically checking the proof scripts contained within
tactics written in VeriML. As far as we know, our development is
the first time languages such as these have been demonstrated to
provide a workflow similar to interactive proof assistants.

Acknowledgments
We thank anonymous referees for their suggestions and comments
on an earlier version of this paper. This research is based on work
supported in part by DARPA CRASH grant FA8750-10-2-0254 and
NSF grants CCF-0811665, CNS-0910670, and CNS 1065451. Any
opinions, findings, and conclusions contained in this document are
those of the authors and do not reflect the views of these agencies.

References
H.P. Barendregt and H. Geuvers. Proof-assistants using dependent type sys-

tems. In A. Robinson and A. Voronkov, editors, Handbook of Automated
Reasoning. Elsevier Sci. Pub. B.V., 1999.

B. Barras, S. Boutin, C. Cornes, J. Courant, Y. Coscoy, D. Delahaye,
D. de Rauglaudre, J.C. Filliâtre, E. Giménez, H. Herbelin, et al. The
Coq proof assistant reference manual (version 8.3), 2010.

F. Blanqui, J.P. Jouannaud, and M. Okada. The calculus of algebraic
constructions. In Rewriting Techniques and Applications, pages 671–
671. Springer, 1999.

F. Blanqui, J.P. Jouannaud, and P.Y. Strub. A calculus of congruent con-
structions. Unpublished draft, 2005.

S. Boutin. Using reflection to build efficient and certified decision proce-
dures. Lecture Notes in Computer Science, 1281:515–529, 1997.

A. Chlipala. Mostly-automated verification of low-level programs in com-
putational separation logic. In Proceedings of the 2011 ACM SIG-
PLAN conference on Programming Language Design and Implementa-
tion. ACM, 2011.

R.L. Constable, S.F. Allen, H.M. Bromley, W.R. Cleaveland, J.F. Cremer,
R.W. Harper, D.J. Howe, T.B. Knoblock, N.P. Mendler, P. Panangaden,
et al. Implementing Mathematics with the Nuprl Proof Development
System. Prentice-Hall, NJ, 1986.

R. Davies and F. Pfenning. A modal analysis of staged computation.
In Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 258–270. ACM, 1996.

G. Gonthier. Formal proof–the four-color theorem. Notices of the AMS, 55
(11):1382–1393, 2008.

G. Gonthier, B. Ziliani, A. Nanevski, and D. Dreyer. How to make ad hoc
proof automation less ad hoc. In Proceeding of the 16th ACM SIGPLAN
International Conference on Functional Programming, pages 163–175.
ACM, 2011.

J. Harrison. HOL Light: A tutorial introduction. Lecture Notes in Computer
Science, pages 265–269, 1996.

G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, et al. seL4:
Formal verification of an OS kernel. In Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Principles, pages 207–
220. ACM, 2009.

X. Leroy. Formal verification of a realistic compiler. Communications of
the ACM, 52(7):107–115, 2009.

T. Nipkow, L.C. Paulson, and M. Wenzel. Isabelle/HOL : A Proof Assistant
for Higher-Order Logic, volume 2283 of LNCS, 2002.

B. Pientka and J. Dunfield. Programming with proofs and explicit contexts.
In Proceedings of the 10th international ACM SIGPLAN conference on
Principles and Practice of Declarative Programming, pages 163–173.
ACM New York, NY, USA, 2008.

A. Poswolsky and C. Schürmann. Practical programming with higher-order
encodings and dependent types. Lecture Notes in Computer Science,
4960:93, 2008.

V. Siles and H. Herbelin. Equality is typable in semi-full pure type systems.
In 2010 25th Annual IEEE Symposium on Logic in Computer Science,
pages 21–30. IEEE, 2010.

K. Slind and M. Norrish. A brief overview of HOL4. Theorem Proving in
Higher Order Logics, pages 28–32, 2008.

M. Sozeau. Subset coercions in coq. In Proceedings of the 2006 Interna-
tional Conference on Types for Proofs and Programs, pages 237–252.
Springer-Verlag, 2006.

A. Stampoulis and Z. Shao. VeriML: Typed computation of logical terms in-
side a language with effects. In Proceedings of the 15th ACM SIGPLAN
International Conference on Functional Programming, pages 333–344.
ACM, 2010.

A. Stampoulis and Z. Shao. Static and user-extensible proof checking
(extended version). Available in the ACM Digital Library, 2012.

P.Y. Strub. Coq modulo theory. In Proceedings of the 24th International
Conference on Computer Science Logic, pages 529–543. Springer-
Verlag, 2010.

51



Static and user-extensible proof checking
Extended Version

Antonis Stampoulis Zhong Shao

Department of Computer Science
Yale University

New Haven, CT 06520, USA

{antonis.stampoulis,zhong.shao}@yale.edu

Abstract

Despite recent successes, large-scale proof development within proof assistants remains an arcane art that is
extremely time-consuming. We argue that this can be attributed to two profound shortcomings in the architecture
of modern proof assistants. The first is that proofs need to include a large amount of minute detail; this is due to
the rigidity of the proof checking process, which cannot be extended with domain-specific knowledge. In order
to avoid these details, we rely on developing and using tactics, specialized procedures that produce proofs.
Unfortunately, tactics are both hard to write and hard to use, revealing the second shortcoming of modern proof
assistants. This is because there is no static knowledge about their expected use and behavior.

As has recently been demonstrated, languages that allow type-safe manipulation of proofs, like Beluga,
Delphin and VeriML, can be used to partly mitigate this second issue, by assigning rich types to tactics. Still,
the architectural issues remain. In this paper, we build on this existing work, and demonstrate two novel ideas:
an extensible conversion rule and support for static proof scripts. Together, these ideas enable us to support both
user-extensible proof checking, and sophisticated static checking of tactics, leading to a new point in the design
space of future proof assistants. Both ideas are based on the interplay between a light-weight staging construct
and the rich type information available.

Categories and Subject Descriptors D.3.1 [Programming Languages]: Formal Definitions and Theory

General Terms Languages, Verification

1. Introduction

There have been various recent successes in using proof assistants to construct foundational proofs of large
software, like a C compiler [Leroy 2009] and an OS microkernel [Klein et al. 2009], as well as complicated
mathematical proofs [Gonthier 2008]. Despite this success, the process of large-scale proof development using
the foundational approach remains a complicated endeavor that requires significant manual effort and is plagued
by various architectural issues.

The big benefit of using a foundational proof assistant is that the proofs involved can be checked for validity
using a very small proof checking procedure. The downside is that these proofs are very large, since proof
checking is fixed. There is no way to add domain-specific knowledge to the proof checker, which would enable
proofs that spell out less details. There is good reason for this, too: if we allowed arbitrary extensions of the
proof checker, we could very easily permit it to accept invalid proofs.

Because of this lack of extensibility in the proof checker, users rely on tactics: procedures that produce proofs.
Users are free to write their own tactics, that can create domain-specific proofs. In fact, developing domain-

52



specific tactics is considered to be good engineering when doing large developments, leading to significantly
decreased overall effort – as shown, e.g. in Chlipala [2011]. Still, using and developing tactics is error-prone.
Tactics are essentially untyped functions that manipulate logical terms, and thus tactic programming is untyped.
This means that common errors, like passing the wrong argument, or expecting the wrong result, are not caught
statically. Exacerbating this, proofs contained within tactics are not checked statically, when the tactic is defined.
Therefore, even if the tactic is used correctly, it could contain serious bugs that manifest only under some
conditions.

With the recent advent of programming languages that support strongly typed manipulation of logical
terms, such as Beluga [Pientka and Dunfield 2008], Delphin [Poswolsky and Schürmann 2008] and VeriML
[Stampoulis and Shao 2010], this situation can be somewhat mitigated. It has been shown in Stampoulis and
Shao [2010] that we can specify what kinds of arguments a tactic expects and what kind of proof it produces,
leading to a type-safe programming style. Still, this does not address the fundamental problem of proof checking
being fixed – users still have to rely on using tactics. Furthermore, the proofs contained within the type-safe
tactics are in fact proof-producing programs, which need to be evaluated upon invocation of the tactic. Therefore
proofs within tactics are not checked statically, and they can still cause the tactics to fail upon invocation.

In this paper, we build on the past work on these languages, aiming to solve both of these issues regarding
the architecture of modern proof assistants. We introduce two novel ideas: support for an extensible conversion
rule and static proof scripts inside tactics. The former technique enables proof checking to become user-
extensible, while maintaining the guarantee that only logically sound proofs are admitted. The latter technique
allows for statically checking the proofs contained within tactics, leading to increased guarantees about their
runtime behavior. Both techniques are based on the same mechanism, which consists of a light-weight staging
construct. There is also a deep synergy between them, allowing us to use the one to the benefit of the other.

Our main contributions are the following:
• First, we present what we believe is the first technique for having an extensible conversion rule, which

combines the following characteristics: it is safe, meaning that it preserves logical soundness; it is user-
extensible, using a familiar, generic programming model; and, it does not require metatheoretic additions to
the logic, but can be used to simplify the logic instead.
• Second, building on existing work for typed tactic development, we introduce static checking of the proof

scripts contained within tactics. This significantly reduces the development effort required, allowing us to
write tactics that benefit from existing tactics and from the rich type information available.
• Third, we show how typed proof scripts can be seen as an alternative form of proof witness, which falls

between a proof object and a proof script. Receivers of the certificate are able to decide on the tradeoff
between the level of trust they show and the amount of resources needed to check its validity.

In terms of technical contributions, we present a number of technical advances in the metatheory of
the aforementioned programming languages. These include a simple staging construct that is crucial to our
development and a new technique for variable representation. We also show a condition under which static
checking of proof scripts inside tactics is possible. Last, we have extended an existing prototype implementation
with a significant number of features, enabling it to support our claims, while also rendering its use as a proof
assistant more practical.

2. Informal presentation

Glossary of terms. We will start off by introducing some concepts that will be used throughout the paper. The
first fundamental concept we will consider is the notion of a proof object: given a derivation of a proposition
inside a formal logic, a proof object is a term representation of this derivation. A proof checker is a program
that can decide whether a given proof object is a valid derivation of a specific proposition or not. Proof objects
are extremely verbose and are thus hard to write by hand. For this reason, we use tactics: functions that produce

53



proof script

call eval. conv. tactic

call arith. conv. tactic

call user conv. tactic

proof script

eval. steps (implicit)

call arith. conv. tactic

call user conv. tactic

typed proof script

eval. steps (implicit)
arith. steps (implicit)
user steps (implicit)

proof checker
eval. conv. tactic

execute

(invalid)

√

(invalid)
×

×

√

execute

(invalid)

×

√

(a) HOL approach
static dynamic

type checker

tactic
eval.
conv.

tactic
arith.conv.

tactic

user
conv.

checkedusing

(invalid)
×

execute

(invalid)

×

√

×
√

√

smaller proof chk.

(invalid)

has been

(b) Coq approach

(c) our approach

Figure 1. Checking proof scripts in various proof assistants

proof objects. By combining tactics together, we create proof-producing programs, which we call proof scripts.
If a proof script is evaluated, and the evaluation completes successfully, the resulting proof object can be checked
using the original proof checker. In this way, the trusted base of the system is kept at the absolute minimum.
The language environment where proof scripts and tactics are written and evaluated is called a proof assistant;
evidently, it needs to include a proof checker.

Checking proof objects. In order to keep the size of proof objects manageable, many of the logics used for
mechanized proof checking include a conversion rule. This rule is used implicitly by the proof checker to
decide whether any two propositions are equivalent; if it determines that they are indeed so, the proof of their
equivalence can be omitted. We can thus think of it as a special tactic that is embedded within the proof checker,
and used implicitly.

54



The more sophisticated the relation supported by the conversion rule is, the simpler are proof objects to write,
since more details can be omitted. On the other hand, the proof checker becomes more complicated, as does
the metatheory proof showing the soundness of the associated logic. The choice in Coq [Barras et al. 2010],
one of the most widely used proof assistants, with respect to this trade-off, is to have a conversion rule that
identifies propositions up to evaluation. Nevertheless, extended notions of conversion are desirable, leading to
proposals like CoqMT [Strub 2010], where equivalence up to first-order theories is supported. In both cases, the
conversion rule is fixed, and extending it requires significant amounts of work. It is thus not possible for users
to extend it using their own, domain-specific tactics, and proof objects are thus bound to get large. This is why
we have to resort to writing proof scripts.

Checking proof scripts. As mentioned earlier, in order to validate a proof script we need to evaluate it (see Fig.
1a); this is the modus operandi in proof assistants of the HOL family [Harrison 1996; Slind and Norrish 2008].
Therefore, it is easy to extend the checking procedure for proof scripts by writing a new tactic, and calling
it as part of a script. The price that this comes to is that there is no way to have any sort of static guarantee
about the validity of the script, as proof scripts are completely untyped. This can be somewhat mitigated in Coq
by utilizing the static checking that it already supports: the proof checker, and especially, the conversion rule
it contains (see Fig. 1b). We can employ proof objects in our scripts; this is especially useful when the proof
objects are trivial to write but trigger complex conversion checks. This is the essential idea behind techniques
like proof-by-reflection [Boutin 1997], which lead to more robust proof scripts.

In previous work [Stampoulis and Shao 2010] we introduced VeriML, a language that enables programming
tactics and proof scripts in a typeful manner using a general-purpose, side-effectful programming model.
Combining typed tactics leads to typed proof scripts. These are still programs producing proof objects, but
the proposition they prove is carried within their type. Information about the current proof state (the set of
hypotheses and goals) is also available statically at every intermediate point of the proof script. In this way, the
static assurances about proof scripts are significantly increased and many potential sources of type errors are
removed. On the other hand, the proof objects contained within the scripts are still checked using a fixed proof
checker; this ultimately means that the set of possible static guarantees is still fixed.

Extensible conversion rule. In this paper, we build on our earlier work on VeriML. In order to further increase
the amount of static checking of proof scripts that is possible within this language, we propose the notion of an
extensible conversion rule (see Fig. 1c). It enables users to write their own domain-specific conversion checks
that get included in the conversion rule. This leads to simpler proof scripts, as more parts of the proof can be
inferred by the conversion rule and can therefore be omitted. Also, it leads to increased static guarantees for
proof scripts, since the conversion checks happen before the rest of the proof script is evaluated.

The way we achieve this is by programming the conversion checks as type-safe tactics within VeriML, and
then evaluating them statically using a simple staging mechanism (see Fig. 2). The type of the conversion tactics
requires that they produce a proof object which proves the claimed equivalence of the propositions. In this way,
type safety of VeriML guarantees that soundness is maintained. At the same time, users are free to extend the
conversion rule with their own conversion tactics written in a familiar programming model, without requiring
any metatheoretic additions or termination proofs. Such proofs are only necessary if decidability of the extra
conversion checks is desired. Furthermore, this approach allows for metatheoretic reductions as the original
conversion rule can be programmed within the language. Thus it can be removed from the logic, and replaced
by the simpler notion of explicit equalities, leading to both simpler metatheory and a smaller trusted base.

Checking tactics. The above approach addresses the issue of being able to extend the amount of static
checking possible for proof scripts. But what about tactics? Our existing work on VeriML shows how the
increased type information addresses some of the issues of tactic development using current proof assistants,
where tactics are programmed in a completely untyped manner.

55



program

static tactic
type stage-1

program
(proof object

normal

× ×

√ √ √

static dynamic

values)
checker eval. eval.

calls

residual

Figure 2. Staging in VeriML

Still, if we consider the case of tactics more closely, we will see that there is a limitation to the amount of
checking that is done statically, even using this language. When programming a new tactic, we would like to
reuse existing tactics to produce the required proofs. Therefore, rather than writing proof objects by hand inside
the code of a tactic, we would rather use proof scripts. The issue is that in order to check whether the contained
proof scripts are valid, they need to be evaluated – but this only happens when an invocation of the tactic reaches
the point where the proof script is used. Therefore, the static guarantees that this approach provides are severely
limited by the fact that the proof scripts inside the tactics cannot be checked statically, when the tactic is defined.

Static proof scripts. This is the second fundamental issue we address in this paper. We show that the same
staging construct utilized for introducing the extensible conversion rule, can be leveraged to perform static proof
checking for tactics. The crucial point of our approach is the proof of existence of a transformation between
proof objects, which suggests that under reasonable conditions, a proof script contained within a tactic can be
transformed into a static proof script. This static script can then be evaluated at tactic definition time, to be
checked for validity.

Last, we will show that this approach lends itself well to writing extensions of the conversion rule. We show
that we can create a layering of conversion rules: using a basic conversion rule as a starting point, we can utilize
it inside static proof scripts to implicitly prove the required obligations of a more advanced version, and so
on. This minimizes the required user effort for writing new conversion rules, and enables truly modular proof
checking.

3. Our toolbox

In this section, we will present the essential ingredients that are needed for the rest of our development. The
main requirement is a language that supports type-safe manipulation of terms of a particular logic, as well
as a general-purpose programming model that includes general recursion and other side-effectful operations.
Two recently proposed languages for manipulating LF terms, Beluga [Pientka and Dunfield 2008] and Delphin
[Poswolsky and Schürmann 2008], fit this requirement, as does VeriML [Stampoulis and Shao 2010], which is a
language used to write type-safe tactics. Our discussion is focused on the latter, as it supports a richer ML-style
calculus compared to the others, something useful for our purposes. Still, our results apply to all three.

We will now briefly describe the constructs that these languages support, as well as some new extensions that
we propose. The interested reader can read more about these constructs in Sec. 6 and in the appendix.

A formal logic. The computational language we are presenting is centered around manipulation of terms of a
specific formal logic. We will see more details about this logic in Sec. 4. For the time being, it will suffice
to present a set of assumptions about the syntactic classes and typing judgements of this logic, shown in
Fig. 3. Logical terms are represented by the syntactic class t, and include proof objects, propositions, terms
corresponding to the domain of discourse (e.g. natural numbers), and the needed sorts and type constructors to
classify such terms. Their variables are assigned types through an ordered context Φ. A package of a logical
term t together with the variables context it inhabits Φ is called a contextual term and denoted as T = [Φ] t. Our
computational language works over contextual terms for reasons that will be evident later. The logic incorporates

56



t ::= proof object constructors | propositions | natural numbers, lists, etc. | sorts and types | X/σ

Φ ::= • | Φ, x : t T ::= [Φ] t
Ψ ::= • | Ψ, X : T σ ::= • | σ, x 7→ t
main judgement: Ψ; Φ ` t : t ′ (type of a logical term)

Figure 3. Assumptions about the logic language

k ::= ∗ | k1→ k2

τ ::= unit | int | bool | τ1→ τ2 | τ1 + τ2 | τ1× τ2 | µα : k.τ | ∀α : k.τ | α | array τ | λα : k.τ | τ1 τ2 | · · ·
e ::= () | n | e1 + e2 | e1 ≤ e2 | true | false | if e then e1 elsee2 | λx : τ.e | e1 e2 | (e1, e2) | proji e | inji e
| case(e, x1.e1, x2.e2) | fold e | unfold e | Λα : k.e | e τ | fix x : τ.e | mkarray(e,e′) | e[e′] | e[e′] := e′′

| l | error | · · ·
Γ ::= • | Γ, x : τ | Γ, α : k Σ ::= • | Σ, l : array τ

Figure 4. Syntax for the computational language (ML fragment)

τ ::= · · · | (X : T )→ τ | (X : T )× τ | (φ : ctx)→ τ

e ::= · · · | λX : T.e | e T | λφ : ctx.e | e Φ | 〈T, e〉 | let 〈X , x〉= e in e′

| holcase T return τ of (T1 7→ e1) · · ·(Tn 7→ en) | ctxcase Φ return τ of (Φ1 7→ e1) · · ·(Φn 7→ en)

Figure 5. Syntax for the computational language (logical term constructs)

such terms by allowing them to get substituted for meta-variables X , using the constructor X/σ. When a term
T = [Φ′] t gets substituted for X , we go from the Φ′ context to the current context Φ using the substitution σ.

Logical terms are classified using other logical terms, based on the normal variables environment Φ, and also
an environment Ψ that types meta-variables, thus leading to the Ψ; Φ ` t : t ′ judgement. For example, a term t
representing a closed proposition will be typed as •; • ` t : Prop, while a proof object tpf proving that proposition
will satisfy the judgement •; • ` tpf : t.

ML-style functional programming. We move on to the computational language. As its main core, we assume
an ML-style functional language, supporting general recursion, algebraic data types and mutable references
(see Fig. 4). Terms of this fragment are typed under a computational variables environment Γ and a store typing
environment Σ, mapping mutable locations to types. Typing judgements are entirely standard, leading to a
Σ; Γ ` e : τ judgement for typing expressions.

Dependently-typed programming over logical terms. As shown in Fig. 5, the first important additions to
the ML computational core are constructs for dependent functions and products over contextual terms T .
Abstraction over contextual terms is denoted as λX : T.e. It has the dependent function type (X : T )→ τ. The type
is dependent since the introduced logical term might be used as the type of another term. An example would be a
function that receives a proposition plus a proof object for that proposition, with type: (P : Prop)→ (X : P)→ τ.
Dependent products that package a contextual logical term with an expression are introduced through the 〈T, e〉
construct and eliminated using let 〈X , x〉= e in e′; their type is denoted as (X : T )× τ. Especially for packages
of proof objects with the unit type, we introduce the syntax LT(T ).

57



Last, in order to be able to support functions that work over terms in any context, we introduce context
polymorphism, through a similarly dependent function type over contexts. With these in mind, we can define
a simple tactic that gets a packaged proof of a universally quantified formula, and an instantiation term, and
returns a proof of the instantiated formula as follows:

instantiate : (φ : ctx, T : [φ]Type, P : [φ, x : T ]Prop, a : [φ]T )→
LT([φ]∀x : T,P)→ LT([φ]P/[idφ, a])

instantiate φ T P a pf = let 〈H〉 = pf in 〈H a〉

From here on, we will omit details about contexts and substitutions in the interest of presentation.

Pattern matching over terms. The most important new construct that VeriML supports is a pattern matching
construct over logical terms denoted as holcase. This construct is used for dependent matching of a logical term
against a set of patterns. The return clause specifies its return type; we omit it when it is easy to infer. Patterns
are normal terms that include unification variables, which can be present under binders. This is the essential
reason why contextual terms are needed.

Pattern matching over environments. For the purposes of our development, it is very useful to support one
more pattern matching construct: matching over logical variable contexts. When trying to construct a certain
proof, the logical environment represents what the current proof context is: what the current logical hypotheses
at hand are, what types of terms have been quantified over, etc. By being able to pattern match over the
environment, we can “look up” things in our current set of hypotheses, in order to prove further propositions.
We can thus view the current environment as representing a simple form of the current proof state; the pattern
matching construct enables us to manipulate it in a type-safe manner.

One example is an “assumption” tactic, that tries to prove a proposition by searching for a matching
hypotheses in the context:

assumption : (φ : ctx,P : Prop)→ option LT(P)
assumption φ P =

ctxcase φ of
φ′, H : P 7→ return 〈H〉
| φ′, _ 7→ assumption φ′ P

Proof object erasure semantics (new feature). The only construct that can influence the evaluation of a
program based on the structure of a logical term is the pattern matching construct. For our purposes, pattern
matching on proof objects is not necessary – we never look into the structure of a completed proof. Thus we can
have the typing rules of the pattern matching construct specifically disallow matching on proof objects.

In that case, we can define an alternate operational semantics for our language where all proof objects are
erased before using the original small-step reduction rules. Because of type safety, these proof-erasure semantics
are guaranteed to yield equivalent results: even if no proof objects are generated, they are still bound to exist.

Implicit arguments. Let us consider again the instantiate function defined earlier. This function expects five
arguments. From its type alone, it is evident that only the last two arguments are strictly necessary. The last
argument, corresponding to a proof expression for the proposition ∀x : T,P, can be used to reconstruct exactly
the arguments φ, T and P. Furthermore, if we know what the resulting type of a call to the function needs to be,
we can choose even the instantiation argument a appropriately. We employ a simple inferrence mechanism so
that such arguments are omitted from our programs. This feature is also crucial in our development in order to
implicitly maintain and utilize the current proof state within our proof scripts.

58



(sorts) s ::= Type | Type′

(kinds) K ::= Prop | Nat | K1→K2

(props.) P ::= P1→ P2 | ∀x : K.P | x | True | False | P1∧P2 | · · ·
(dom.obj.) d ::= Zero | Succ d | P | · · ·

(proof objects) π ::= x | λx : P.π | π1 π2 | λx : K.π | π d | · · ·
(HOL terms) t ::= s | K | P | d | π

Selected rules:

→ INTRO
Ψ; Φ,x : P ` π : P′

Ψ; Φ ` λx : P.π : P→ P′

→ ELIM
Ψ; Φ ` π : P→ P′

Ψ; Φ ` π
′ : P

Ψ; Φ ` π π
′ : P′

Figure 6. Syntax and selected rules of the logic language λHOL

CONVERSION
Ψ; Φ `c π : P P =βN P′

Ψ; Φ `c π : P′

d→βN d′
(λx : K.d) d′→βN d[d′/x]
natElimK dz ds zero→βN dz

natElimK dz ds (succ d)→βN ds d (natElimK dz ds d)

d =βN d′
is the compatible, reflexive, symmetric and transitive
closure of d→βN d′

Figure 7. Extending λHOL with the conversion rule (λHOLc)

Minimal staging support (new feature). Using the language we have seen so far we are able to write powerful
tactics using a general-purpose programming model. But what if, inside our programs, we have calls to tactics
where all of their arguments are constant? Presumably, those tactic calls could be evaluated to proof objects prior
to tactic invocation. We could think of this as a form of generalized constant folding, which has one intriguing
benefit: we can tell statically whether the tactic calls succeed or not.

This paper is exactly about exploring this possibility. Towards this effect, we introduce a rudimentary staging
construct in our computational language. This takes the form of a letstatic construct, which binds a static
expression to a variable. The static expression is evaluated during stage one (see Fig. 2), and can only depend on
other static expressions. Details of this construct are presented in Fig. 11d and also in Sec. 6. After this addition,
expressions in our language have a three-phase lifetime, that are also shown in Fig. 2.

− type-checking, where the well-formedness of expressions according to the rules of the language is checked,
and inference of implicit arguments is performed

− static evaluation, where expressions inside letstatic are reduced to values, yielding a residual expression

− run-time, where the residual expression is evaluated

59



4. Extensible conversion rule

With these tools at hand, let us now return to the first issue that motivates us: the fact that proof checking is rigid
and cannot be extended with user-defined procedures. As we have said in our introduction, many modern proof
assistants are based on logics that include a conversion rule. This rule essentially identifies propositions up to
some equivalence relation: usually this is equivalence up to partial evaluation of the functions contained within
propositions.

The supported relation is decided when the logic is designed. Any extension to this relation requires a
significant amount of work, both in terms of implementation, and in terms of metatheoretic proof required.
This is evidenced by projects that extend the conversion rule in Coq, such as Blanqui et al. [1999] and Strub
[2010]. Even if user extensions are supported, those only take the form of first-order theories. Can we do better
than this, enabling arbitrarily complex user extensions, written with the full power of ML, yet maintaining
soundness?

It turns out that we can: this is the subject of this section. The key idea is to recognize that the conversion
rule is essentially a tactic, embedded within the type checker of the logic. Calls to this tactic are made implicitly
as part of checking a given proof object for validity. So how can we support a flexible, extensible alternative?
Instead of hardcoding a conversion tactic within the logic type checker, we can program a type-safe version of
the same tactic within VeriML, with the requirement that it provides proof of the claimed equivalence. Instead of
calling the conversion tactic as part of proof checking, we use staging to call the tactic statically – after (VeriML)
type checking, but before runtime execution. This can be viewed as a second, potentially non-terminating proof
checking stage. Users are now free to write their own conversion tactics, extending the static checking available
for proof objects and proof scripts. Still, soundness is maintained, since full proof objects in the original logic
can always be constructed. As an example, we have extended the conversion rule that we use by a congruence
closure procedure, which makes use of mutable data structures, and by an arithmetic simplification procedure.

4.1 Introducing: the conversion rule

First, let us present what the conversion rule really is in more detail. We will base our discussion on a simple
type-theoretic higher-order logic, based on the λHOL logic as described in Barendregt and Geuvers [1999], and
used in our original work on VeriML [Stampoulis and Shao 2010]. We can think of such a logic composed
by the following broad classes: the objects of the domain of discourse d, which are the objects that the logic
reasons about, such as natural numbers and lists; their classifiers, the kinds K (classified in turn by sorts s); the
propositions P; and the derivations, which prove that a certain proposition is true. We can represent derivations in
a linear form as terms π in a typed lambda-calculus; we call such terms proof objects, and their types represent
propositions in the logic. Checking whether a derivation is a valid proof of a certain proposition amounts to
type-checking its corresponding proof object. Some details of this logic are presented in Fig. 6; the interested
reader can find more information about it in the above references and in the appendix (Sec. A).

In Fig. 6, we show what the conversion rule looks like for this logic: it is a typing judgement that effectively
identifies propositions up to an equivalence relation, with respect to checking proof objects. We call this version
of the logic λHOLc and use `c to denote its entailment relation. The equivalence relation we consider in the
conversion rule is evaluation up to β-reductions and uses of primitive recursion of natural numbers, denoted
as natElim. In this way, trivial arguments based on this notion of computation alone need not be witnessed, as
for example is the fact that (Succ x)+ y = Succ (x+ y) – when the addition function is defined by primitive
recursion on the first argument. Of course, this is only a very basic use of the conversion rule. It is possible to
omit larger proofs through much more sophisticated uses. This leads to simpler proofs and smaller proof objects.

Still, when using this approach, the choice of what relation is supported by the conversion rule needs to be
made during the definition of the logic. This choice permeates all aspects of the metatheory of the logic. It is
easy to see why, even with the tiny fragment of logic we have introduced. Most typing rules for proof objects in

60



Ψ; Φ `e d1 : K Ψ; Φ `c d2 : K

Ψ; Φ `e d1 = d2 : Prop

Ψ; Φ `e d : K

Ψ; Φ `e refl d : d = d

Ψ; Φ, x : K `e P : Prop Ψ; Φ `e d1 : K Ψ; Φ `e π : P[d1/x] Ψ; Φ `e π
′ : d1 = d2

Ψ; Φ `e leibniz (λx : K.P) π π
′ : P[d2/x]

Ψ; Φ, x : K `e π : d1 = d2

Ψ; Φ `e lamEq (λx : K.π) : (λx : K.d1) = (λx : K.d2)

Ψ; Φ, x : K `e π : d1 = d2 Ψ; Φ `e d1 : Prop

Ψ; Φ `e forallEq (λx : K.π) : (∀x : K.d1) = (∀x : K.d2)

Ψ; Φ, x : K `e d : K′ Ψ; Φ `e d′ : K

Ψ; Φ `e betaEq (λx : K.d) d′ : (λx : K.d) d′ = d[d′/x]

Axioms assumed:

natElimBaseK : ∀ fz.∀ fs.natElimK fz fs zero = fz

natElimStepK : ∀ fz.∀ fs.∀n. natElimK fz fs (succ n) =
fs n (natElimK fz fs n)

Figure 8. Extending λHOL with explicit equality (λHOLe)

the logic are similar to the rules→INTRO and→ELIM: they are syntax-directed. This means that upon seeing
the associated proof object constructor, like λx : P.π in the case of→INTRO, we can directly tell that it applies.
If all rules were syntax directed, it would be entirely simple to prove that the logic is sound by an inductive
argument: essentially, since no proof constructor for False exists, there is no valid derivation for False.

In this logic, the only rule that is not syntax directed is exactly the conversion rule. Therefore, in order to
prove the soundness of the logic, we have to show that the conversion rule does not somehow introduce a proof
of False. This means that proving the soundness of the logic passes essentially through the specific relation we
have chosen for the conversion rule. Therefore, this approach is foundationally limited from supporting user
extensions, since any new extension would require a new metatheoretic result in order to make sure that it does
not violate logical soundness.

4.2 Throwing conversion away

Since having a fixed conversion rule is bound to fail if we want it to be extensible, what choice are we left with,
but to throw it away? This radical sounding approach is what we will do here. We can replace the conversion
rule by an explicit notion of equality, and provide explicit proof witnesses for rewriting based on that equality.
Essentially, all the points where the conversion rule was alluded to and proofs were omitted, need now be
replaced by proof objects witnessing the equivalence. Some details for the additions required to the base λHOL
logic are shown in Fig. 8, yielding the λHOLe logic. There are good reasons for choosing this version: first, the
proof checker is as simple as possible, and does not need to include the conversion checking routine. We could
view this routine as performing proof search over the replacement rules, so it necessarily is more complicated,
especially since it needs to be relatively efficient. Also, the metatheory of the logic itself can be simplified. Even
when the conversion rule is supported, the metatheory for the associated logic is proved through the explicit

61



βNequal : (φ : ctx,T : Type, t1 : T, t2 : T )→ option LT(t1 = t2)
βNequal φ T t1 t2 =

holcase whnf φ T t1, whnf φ T t2 of
((ta : T ′→ T ) tb),(tc td) 7→

do 〈pf1〉 ← βNequal φ (T ′→ T ) ta tc
〈pf1〉 ← βNequal φ T ′ tb td
return 〈· · · proof of ta tb = tc td · · · 〉

| (ta→ tb),(tc→ td) 7→
do 〈pf1〉 ← βNequal φ Prop ta tc
〈pf1〉 ← βNequal φ Prop tb td
return 〈· · · proof of ta→ tb = tc→ td · · · 〉

| (λx : T.t1),(λx : T.t2) 7→
do 〈pf〉 ← βNequal [φ, x : T ] Prop t1 t2

return 〈· · · proof of λx : T.t1 = λx : T.t2 · · · 〉
| t1, t1 7→ do return 〈· · · proof of t1 = t1 · · · 〉
| t1, t2 7→ None

requireEqual : (φ : ctx,T : Type, t1 : T, t2 : T ).LT(t1 = t2)
requireEqual φ T t1 t2 =

match βNequal φ T t1 t2 with Some x 7→ x | None 7→ error

Figure 9. VeriML tactic for checking equality up to β-conversion

equality approach; this is because model construction for a logic benefits from using explicit equality [Siles and
Herbelin 2010].

Still, this approach has a big disadvantage: the proof objects soon become extremely large, since they include
painstakingly detailed proofs for even the simplest of equivalences. This precludes their use as independently
checkable proof certificates that can be sent to a third party. It is possible that this is one of the reasons why
systems based on logics with explicit equalities, such as HOL4 [Slind and Norrish 2008] and Isabelle/HOL
[Nipkow et al. 2002], do not generate proof objects by default.

4.3 Getting conversion back

We will now see how it is possible to reconcile the explicit equality based approach with the conversion rule: we
will gain the conversion rule back, albeit it will remain completely outside the logic. Therefore we will be free
to extend it, all the while without risking introducing unsoundness in the logic, since the logic remains fixed
(λHOLe as presented above).

We do this by revisiting the view of the conversion rule as a special “trusted” tactic, through the tools
presented in the previous section. First, instead of hardcoding a conversion tactic in the type checker, we program
a type-safe conversion tactic, utilizing the features of VeriML. Based on typing alone we require that it returns
a valid proof of the claimed equivalences:

βNequal : (φ : ctx, T : Type, t : T, t ′ : T )→ option LT(t = t ′)

Second, we evaluate this tactic under proof erasure semantics. This means that no proof objects are produced,
leading to the same space gains as the original conversion rule. Third, we use the staging construct in order to
check conversion statically.

62



whnf : (φ : ctx,T : Type, t : T )→ (t ′ : T )×LT(t = t ′)
whnf φ T t = holcase t of
(t1 : T ′→ T )(t2 : T ′) 7→

let 〈t ′1, p f1〉= whnf φ (T ′→ T ) t1 in
holcase t ′1 of

λx : T ′.t f 7→ 〈[φ] t f /[idΦ, t2], · · · 〉
| t ′1 7→ 〈[φ] t ′1 t2, · · · 〉

| natElimK fz fs n 7→
let 〈n′, p f1〉= whnf φ Nat n in holcase n′ of

zero 7→ 〈[φ] fz, · · · 〉
| succ n′ 7→ 〈[φ] fs n′ (natElimK fz fs n′), · · · 〉
| n′ 7→ 〈[φ]natElimK fz fs n′, · · · 〉

| t 7→ 〈t, · · ·〉

Figure 10. VeriML tactic for rewriting to weak head-normal form

Details. We now present our approach in more detail. First, in Fig. 9, we show a sketch of the code behind the
type-safe conversion check tactic. It works by first rewriting its input terms into weak head-normal form, via the
whnf function in Fig. 10, and then recursively checking their subterms for equality. In the equivalence checking
function, more cases are needed to deal with quantification; while in the rewriting procedure, a recursive call
is missing, which would complicate our presentation here. We also define a version of the tactic that raises an
error instead of returning an option type if we fail to prove the terms equal, which we call requireEqual. The full
details can be found in our implementation.

The code of the βNequal tactic is in fact entirely similar to the code one would write for the conversion check
routine inside a logic type checker, save for the extra types and proof objects. It therefore follows trivially that
everything that holds for the standard implementation of the conversion check also holds for this code: e.g. it
corresponds exactly to the =βN relation as defined in the logic; it is bound to terminate because of the strong
normalization theorem for this relation; and its proof-erased version is at least as trustworthy as the standard
implementation.

Furthermore, given this code, we can produce a form of typed proof scripts inside VeriML that correspond
exactly to proof objects in the logic with the conversion rule, both in terms of their actual code, and in terms of
the steps required to validate them. This is done by constructing a proof script in VeriML by induction on the
derivation of the proof object in λHOLc, replacing each proof object constructor by an equivalent VeriML tactic
as follows:

constructor to tactic of type
λx : P.π Assume e LT([φ, H : P]P′)→ LT(P→ P′)
π1 π2 Apply e1 e2 LT(P→ P′)→ LT(P)→ LT(P′)
λx : K.π Intro e LT([φ, x : T ]P′)→ LT(∀x : T,P′)
π d Inst e a LT(∀x : T,P)→ (a : T )→

LT(P/[id, a])
c Lift c (H : P)→ LT(P)
(conversion) Conversion LT(P)→ LT(P = P′)→ LT(P′)

Here we have omitted the current logical environment φ; it is maintained through syntactic means as discussed
in Sec. 7 and through type inference. The only subtle case is conversion. Given the transformed proof e for the

63



proof object π contained within a use of the conversion rule, we call the conversion tactic as follows:

letstatic pf = requireEqual P P′ in Conversion e pf

The arguments to requireEqual can be easily inferred, making crucial use of the rich type information available.
Conversion could also be used implicitly in the other tactics. Thus the resulting expression looks entirely
identical to the original proof object.

Correspondence with original proof object. In order to elucidate the correspondence between the resulting
proof script expression and the original proof object, it is fruitful to view the proof script as a proof certificate,
sent to a third party. The steps required to check whether it constitutes a valid proof are the following. First,
the whole expression is checked using the type checker of the computational language. Then, the calls to the
requireEqual function are evaluated during stage one, using proof erasure semantics. We expect them to be
successful, just as we would expect the conversion rule to be applicable when it is used. Last, the rest of the
tactics are evaluated; by a simple argument, based on the fact that they do not use pattern matching or side-
effects, they are guaranteed to terminate and produce a proof object in λHOLe. This validity check is entirely
equivalent to the behavior of type-checking the λHOLc proof object, save for pushing all conversion checks
towards the end.

4.4 Extending conversion at will

In our treatment of the conversion rule we have so far focused on regaining the βN conversion in our framework.
Still, there is nothing confining us to supporting this conversion check only. As long as we can program a
conversion tactic in VeriML that has the right type, it can safely be made part of our conversion rule.

For example, we have written an eufEqual function, which checks terms for equivalence based on the equality
with uninterpreted functions decision procedure. It is adapted from our previous work on VeriML [Stampoulis
and Shao 2010]. This equivalence checking tactic isolates hypotheses of the form d1 = d2 from the current
context, using the newly-introduced context matching support. Then, it constructs a union-find data structure in
order to form equivalence classes of terms. Based on this structure, and using code similar to βNequal (recursive
calls on subterms), we can decide whether two terms are equal up to simple uses of the equality hypotheses at
hand. We have combined this tactic with the original βNequal tactic, making the implicit equivalence supported
similar to the one in the Calculus of Congruent Constructions [Blanqui et al. 2005]. This demonstrates the
flexibility of this approach: equivalence checking is extended with a sophisticated decision procedure, which is
programmed using its original, imperative formulation. We have programmed both the rewriting procedure and
the equality checking procedure in an extensible manner, so that we can globally register further extensions.

4.5 Typed proof scripts as certificates

Earlier we discussed how we can validate the proof scripts resulting from turning the conversion rule into
explicit tactic calls. This discussion shows an interesting aspect of typed proof scripts: they can be viewed as
a proof witness that is a flexible compromise between untyped proof scripts and proof objects. When a typed
proof script consists only of static calls to conversion tactics and uses of total tactics, it can be thought of as a
proof object in a logic with the corresponding conversion rule. When it also contains other tactics, that perform
potentially expensive proof search, it corresponds more closely to an untyped proof script, since it needs to be
fully evaluated. Still, we are allowed to validate parts of it statically. This is especially useful when developing
the proof script, because we can avoid the evaluation of expensive tactic calls while we focus on getting the
skeleton of the proof correct.

Using proof erasure for evaluating requireEqual is only one of the choices the receiver of such a proof
certificate can make. Another choice would be to have the function return an actual proof object, which we
can check using the λHOLe type checker. In that case, the VeriML interpreter does not need to become part of

64



the trusted base of the system. Last, the ‘safest possible’ choice would be to avoid doing any evaluation of the
function, and ask the proof certificate provider to do the evaluation of requireEqual themselves. In that case, no
evaluation of computational code would need to happen at the proof certificate receiver’s side. This mitigates
any concerns one might have for code execution as part of proof validity checking, and guarantees that the
small λHOLe type checker is the trusted base in its entirety. Also, the receiver can decide on the above choices
selectively for different conversion tactics – e.g. use proof erasure for βNequal but not for eufEqual, leading to a
trusted base identical to the λHOLc case. This means that the choice of the conversion rule rests with the proof
certificate receiver and not with the designer of the logic. Thus the proof certificate receiver can choose the level
of trust they require at will.

5. Static proof scripts

In the previous section, we have demonstrated how proof checking for typed proof scripts can be made user-
extensible, through a new treatment of the conversion rule. It makes use of user-defined, type-safe tactics, which
are evaluated statically. The question that remains is what happens with respect to proofs within tactics. If a
proof script is found within a tactic, must we wait until that evaluation point is reached to know whether the
proof script is correct or not? Or is there a way to check this statically, as soon as the tactic is defined?

In this section we show how this is possible to do in VeriML using the staging construct we have introduced.
Still, in this case matters are not as simple as evaluating certain expressions statically rather than dynamically.
The reason is that proof scripts contained within tactics mention uninstantiated meta-variables, and thus cannot
be evaluated through staging. We resolve this by showing the existence of a transformation, which “collapses”
logical terms from an arbitrary meta-variables context into the empty one.

We will focus on the case of developing conversion routines, similar to the ones we saw earlier. The ideas we
present are generally applicable when writing other types of tactics as well; we focus on conversion routines in
order to demonstrate that the two main ideas we present in this paper can work in tandem.

A rewriter for plus. We will consider the case of writing a rewriter –similar to whnf– for simplifying
expressions of the form x+y, depending on the second argument. The addition function is defined by induction
on the first argument, as follows:

(+) = λx.λy.natElimNat y (λp.λr.Succ r) x

In order for rewriters to be able to use existing as well as future rewriters to perform their recursive calls, we
write them in the open recursion style – they receive a function of the same type that corresponds to the “current”
rewriter. The code looks as follows:

rewriterType = (φ : ctx,T : Type, t : T )→ (t ′ : T )×LT(t = t ′)
plusRewriter1 : rewriterType→ rewriterType
plusRewriter1 recursive φ T t = holcase t with

x+ y 7→
let 〈y′, 〈pfy′〉〉= recursive φ y in
let 〈t ′, 〈pft′〉〉 =

holcase y′ return Σt ′ : [φ]Nat.LT([φ]x+ y′ = t ′) of
0 7→ 〈x, · · · proof of x+0 = x · · · 〉
| Succ y′ 7→

〈
Succ(x+ y′),

· · · proof of x+Succ y′ = Succ (x+ y′) · · ·
〉

| y′ 7→ 〈x+ y′, · · · proof of x+ y′ = x+ y′ · · · 〉
in〈t ′, 〈· · · proof of x+ y = t ′ · · · 〉〉

| t 7→ 〈t, · · · proof of t = t · · · 〉

65



While developing such a tactic, we can leverage the VeriML type checker to know the types of missing
proofs. But how do we fill them in? For the interesting cases of x+ 0 = x and x+Succ y′ = Succ (x+ y′),
we would certainly need to prove the corresponding lemmas. But for the rest of the cases, the corresponding
lemmas would be uninteresting and tedious to state, such as the following for the x+ y = t ′ case:

lemma1 : ∀x,y,y′, t ′,y = y′→ (x+ y′ = t ′)→ x+ y = t

Stating and proving such lemmas soon becomes a hindrance when writing tactics. An alternative is to use the
congruence closure conversion rule to solve this trivial obligation for us directly at the point where it is required.
Our first attempt would be:

proof of x+ y = t ′ ≡
let 〈pf〉= requireEqual [φ,H1 : y = y′,H2 : x+ y′ = t ′] (x+ y) t ′

in
〈
[φ]pf/[idφ, pfy′, pft’]

〉
The benefit of this approach is evident when utilizing implicit arguments, since most of the details can be
inferred and therefore omitted. Here we had to alter the environment passed to requireEqual, which includes
several extra hypotheses. Once the resulting proof has been computed, the hypotheses are substituted by the
actual proofs that we have.

The problem with this approach is two-fold: first, the call to the requireEqual tactic is recomputed every time
we reach that point of our function. For such a simple tactic call, this does not impact the runtime significantly;
still, if we could avoid it, we would be able use more sophisticated and expensive tactics. The second problem
is that if for some reason the requireEqual is not able to prove what it is supposed to, we will not know until we
actually reach that point in the function.

Moving to static proofs. This is where using the letstatic construct becomes essential. We can evaluate the
call to requireEqual statically, during stage one interpretation. Thus we will know at the time that plusRewriter1
is defined whether the call succeeded; also, it will be replaced by a concrete value, so it will not affect the
runtime behavior of each invocation of plusRewriter1 anymore. To do that, we need to avoid mentioning any
of the metavariables that are bound during runtime, like x, y, and t ′. This is done by specifying an appropriate
environment in the call to requireEqual, similarly to the way we incorporated the extra knowledge above and
substituted it later. Using this approach, we have:

proof of x+ y = t ′ ≡
letstatic 〈pf〉 =
let φ′ = [x,y,y′, t ′ : Nat,H1 : y = y′,H2 : x+ y′ = t ′] in
requireEqual φ′ (x+ y) t ′

in
〈
[φ]pf/[x/idφ,y/idφ,y′/idφ, t ′/idφ,pfy′/idφ,pft′/idφ]

〉
What we are essentially doing here is replacing the meta-variables by normal logical variables, which our

tactics can deal with. The meta-variable context is “collapsed” into a normal context; proofs are constructed
using tactics in this environment; last, the resulting proofs are transported back into the desired context by
substituting meta-variables for variables. We have explicitly stated the substitutions in order to distinguish
between normal logical variables and meta-variables.

The reason why this transformation needs to be done is that functions in our computational language can only
manipulate logical terms that are open with respect to a normal variables context; not logical terms that are open
with respect to the meta-variables context too. A much more complicated, but also more flexible alternative to
using this “collapsing” trick would be to support meta-n-variables within our computational language directly.

Overall, this approach is entirely similar to proving the auxiliary lemma mentioned above, prior to the tactic
definition. The benefit is that by leveraging the type information together with type inference, we can avoid

66



stating such lemmas explicitly, while retaining the same runtime behavior. We thus end up with very concise
proof expressions that are statically validated. We introduce syntactic sugar for binding a static proof script
to a variable, and then performing a substitution to bring it into the current context, since this is a common
operation.

〈e〉static ≡ letstatic 〈pf〉 = e in 〈[φ]pf/ · · ·〉

Based on these, the trivial proofs in the above tactic can be filled in using a simple 〈requireEqual〉static call; for
the other two we use 〈Instantiate (NatInduction requireEqual requireEqual) x〉static.

After we define plusRewriter1, we can register it with the global equivalence checking procedure. Thus, all
later calls to requireEqual will benefit from this simplification. It is then simple to prove commutativity for
addition:

plusComm : LT(∀x,y.x+ y = y+ x)
plusComm = NatInduction requireEqual requireEqual

Based on this proof, we can write a rewriter that takes commutativity into account and uses the hash values
of logical terms to avoid infinite loops. We have worked on an arithmetic simplification rewriter that is built by
layering such rewriters together, using previous ones to aid us in constructing the proofs required in later ones.
It works by converting expressions into a list of monomials, sorting the list based on the hash values of the
variables, and then factoring monomials on the same variable. Also, the eufEqual procedure mentioned earlier
has all of its associated proofs automated through static proof scripts, using a naive, potentially non-terminating,
equality rewriter.

Is collapsing always possible? A natural question to ask is whether collapsing the metavariables context into
a normal context is always possible. In order to cast this as a more formal question, we notice that the essential
step is replacing a proof object π of type [Φ] t, typed under the meta-variables environment Ψ, by a proof object
π′ of type [Φ′] t ′ typed under the empty meta-variables environment. There needs to be a substitution so that π′

gets transported back to the Φ, Ψ environment, and has the appropriate type.

We have proved that this is possible under certain restrictions: the types of the metavariables in the current
context need to depend on the same free variables context Φmax, or prefixes of that context. Also the substitutions
they are used with need to be prefixes of the identity substitution for Φmax. Such terms are characterized
as collapsible. We have proved that collapsible terms can be replaced using terms that do not make use of
metavariables; more details can be found in Sec. 6 and in Sec. F of the appendix.

This restriction corresponds very well to the treatment of variable contexts in the Delphin language. This
language assumes an ambient context of logical variables, instead of full, contextual modal terms. Constructs
to extend this context and substitute a specific variable exist. If this last feature is not used, the ambient context
grows monotonically and the mentioned restriction holds trivially. In our tests, this restriction has not turned out
to be limiting.

6. Metatheory

We have completed an extensive reworking of the metatheory of VeriML, in order to incorporate the features
that we have presented in this paper. Our new metatheory includes a number of technical advances compared
to our earlier work [Stampoulis and Shao 2010]. We will present a technical overview of our metatheory in this
section; full details can be found in the appendix.

Variable representation technique. Though our metatheory is done on paper, we have found that using a
concrete variable representation technique elucidates some aspects of how different kinds of substitutions work
in our language, compared to having normal named variables. For example, instantiating a context variable with

67



Syntax of the logic (terms) t ::= s | c | fi | bi | λ(t1).t2 | t1 t2 | Π(t1).t2 | t1 = t2 | refl t | leibniz t1 t2 | lamEq t | forallEq t1 t2 | betaEq t1 t2
(sorts) s ::= Prop | Type | Type′ (var. context) Φ ::= • | Φ, t (substitutions) σ ::= • | σ, t

Example of representation: a : Nat ` λx : Nat.(λy : Nat.refl (plus a y))(plus a x) 7→ Nat ` λ(Nat).(λ(Nat).refl (plus f0 b0)) (plus f0 b0)

Freshen: dtenm

d fie = fi
dbnenm = fm
dbien = bi when i < n
d(λ(t1).t2)en = λ(dt1en).dt2en+1

dt1 t2e = dt1e dt2e

Bind: btcnm

b fm−1cnm = bn
b ficnm = fi when i < m−1
bbic = bi+1
b(λ(t1).t2)c = λ(bt1cn).bt2cn+1

bt1 t2c = bt1c bt2c

(a) Hybrid deBruijn levels-deBruijn indices representation technique

Syntax t ::= · · · | fI | Xi/σ Φ ::= • | Φ, t | Φ, φi σ ::= • | σ, t | σ, id(φi) (indices) I ::= n | I+ |φi| (ctx.terms) T ::= [Φ] t | [Φ]Φ′

(ctx.kinds) K ::= [Φ] t | [Φ]ctx (extension context) Ψ ::= • | Ψ, K (ext. subst.) σΨ ::= • | σΨ, T

Ψ; Φ ` t : t ′ (sample)
Φ.I = t

Ψ; Φ ` fI : t
Ψ; Φ ` t1 : Π(t).t ′ Ψ; Φ ` t2 : t

Ψ; Φ ` t1 t2 :
⌈
t ′
⌉
· (idΦ, t2)

Ψ.i = [Φ′] t ′ Ψ; Φ ` σ : Φ
′

Ψ; Φ ` Xi/σ : t ′ ·σ

Ψ ` T : K
Ψ; Φ ` t : t ′

Ψ ` [Φ] t : [Φ] t ′
Ψ `Φ, Φ

′ wf
Ψ ` [Φ]Φ′ : [Φ]ctx

Ψ `Φ wf (sample)
Ψ `Φ wf Ψ.i = [Φ]ctx

Ψ ` (Φ, φi) wf

(b) Extension variables: meta-variables and context variables

Subst. application: t ·σ c ·σ = c fI ·σ = σ.I bi ·σ = bi (λ(t1).t2) ·σ = λ(t1 ·σ).(t2 ·σ) (t1 t2) ·σ = (t1 ·σ) (t2 ·σ)

Ext. subst. application (sample) (I, |φi|) ·σΨ = (I ·σΨ), |Φ′| when σΨ.i = [_]Φ′ (Xi/σ) ·σΨ = t · (σ ·σΨ) when σΨ.i = [_] t
(σ, id(φi)) ·σΨ = σ ·σΨ, idσΨ.i (Φ, φi) ·σΨ = Φ ·σΨ, Φ′ when σΨ.i = [_]Φ′

Ψ; Φ ` σ : Φ′
Ψ; Φ ` • : •

Ψ; Φ ` σ : Φ
′

Ψ; Φ ` t : t ′ ·σ
Ψ; Φ ` (σ, t) : (Φ′, t ′)

Ψ; Φ ` σ : Φ
′

Ψ.i = [Φ′]ctx
Φ
′, φi ⊆Φ

Ψ; Φ ` (σ, id(φi)) : (Φ′, φi)
Ψ ` σΨ : Ψ′
(selected)

Ψ ` σΨ : Ψ
′

Ψ ` T : K ·σΨ

Ψ ` (σΨ, T ) : (Ψ′, K)

Subst. lemmas: Ψ; Φ ` t : t ′ Ψ; Φ
′ ` σ : Φ

Ψ; Φ
′ ` t ·σ : t ′ ·σ

Ψ; Φ
′ ` σ : Φ Ψ; Φ

′′ ` σ
′ : Φ

′

Ψ; Φ
′′ ` σ ·σ′ : Φ

Ψ ` T : K Ψ
′ ` σΨ : Ψ

Ψ
′ ` T ·σΨ : K ·σΨ

(c) Substitutions over logical variables and extension variables

Syntax: Γ ::= • | Γ, x : τ | Γ, x :s τ | Γ, α : k e ::= · · · | letstatic x = e in e′ Limit ctx:

•|static = •
(Γ, x :s t)|static = Γ|static, x : t
(Γ, x : t)|static = Γ|static
(Γ, α : k)|static = Γ|static

Ψ; Σ; Γ ` e : τ (part) •; Σ; Γ|static ` e : τ Ψ; Σ; Γ,x :s τ ` e′ : τ

Ψ; Σ; Γ ` letstatic x = e in e′ : τ

x :s τ ∈ Γ

Ψ; Σ; Γ ` x : τ

Evaluation:

v ::= Λ(K).ed | pack T return (.τ) with v | () | λx : τ.ed | (v, v′) | inji v | fold v | l | Λα : k.ed
S ::= letstatic x = • in e′ | letstatic x = S in e′ | Λ(K).S | λx : τ.S | unpack ed (.)x.(S) | case(ed , x.S, x.e2)

| case(ed , x.ed , x.S) | Λα : k.S | fix x : τ.S | unify T return (.τ) with (Ψ.T ′ 7→ S) | Es[S]
Es ::= Es T | pack T return (.τ) with Es | unpack Es (.)x.(e′) | Es e′ | ed Es | (Es, e) | (ed , Es) | proji Es | inji Es

| case(Es, x.e1, x.e2) | fold Es | unfold Es | ref Es | Es := e′ | ed := Es | !Es | Es τ

ed ::= all of e except letstatic x = e in e′ E ::= exactly as Es with Es→ E and e→ ed

Stage 1 op.sem.:
( µ , ed )−→ ( µ′ , e′d )

( µ , S[ed ] )−→s ( µ′ , S[e′d ] )
( µ , S[letstatic x = v in e] )−→s ( µ , S[e[v/x]] )

( µ , letstatic x = v in e )−→s ( µ , e[v/x] )

(d) Computational language: staging support

Figure 11. Main definitions in metatheory

68



a concrete context triggers a set of potentially complicated α-renamings, which a concrete representation makes
explicit. We use a hybrid technique representing bound variables as deBruijn indices, and free variables as
deBruijn levels. Our technique is a small departure from the named approach, requiring fewer extra annotations
and lemmas than normal deBruijn indices. Also it identifies terms not only up to α-equivalence, but also up to
extension of the context with new variables; this is why it is also used within the VeriML implementation.The
two fundamental operations of this technique are freshening and binding, which are shown in Fig. 11a. Details
can be found in section A of the appendix.

Extension variables. We extend the logic with support for meta-variables and context variables – we refer to
both these sorts of variables as extension variables. A meta-variable Xi stands for a contextual term T = [Φ] t,
which packages a term together with the context it inhabits. Context variables φi stand for a context Φ, and
are used to “weaken” parametric contexts in specific positions. Both kinds of variables are needed to support
manipulation of open logical terms. Details of their definition and typing are shown in Fig. 11b. We use the
same hybrid approach as above for representing these variables. A somewhat subtle aspect of this extension is
that we generalize the deBruijn levels I used to index free variables, in order to deal effectively with parametric
contexts.

Substitutions. The hybrid representation technique we use for variables renders simultaneous substitutions for
all variables in scope as the most natural choice. In Fig. 11c, we show some example rules of how to apply a
full simultaneous substitution σ to a term t, denoted as t ·σ. Similarly, we define full simultaneous substitutions
σΨ for extension contexts; defining their application has a very natural description, because of our variable
representation technique. We prove a number of substitution lemmas which have simple statements, as shown
in Fig. 11c. The proofs of these lemmas comprise the main effort required in proving the type-safety of a
computational language such as the one we support, as they represent the point where computation specific to
logical term manipulation takes place. Details can be found in section B of the appendix.

Computational language. We define an ML-style computational language that supports dependent functions
and dependent pairs over contextual terms T , as well as pattern matching over them. Lack of space precludes us
from including details here; full details can be found in section C of the appendix. A fairly complete ML calculus
is supported, with mutable references and recursive types. Type safety is proved using standard techniques; its
central point is extending the logic substitution lemmas to expressions and using them to prove progress and
preservation of dependent functions and dependent pairs. This proof is modular with respect to the logic and
other logics can easily be supported.

Pattern matching. Our metatheory includes many extensions in the pattern matching that is supported, as well
as a new approach for dealing with typing patterns. We include support for pattern matching over contexts (e.g.
to pick out hypotheses from the context) and for non-linear patterns. The allowed patterns are checked through
a restriction of the usual typing rules Ψ `p T : K.

The essential idea behind our approach to pattern matching is to identify what the relevant variables in a
typing derivation are. Since contexts are ordered, “removing” non-relevant variables amounts to replacing their
definitions in the context with holes, which leads us to partial contexts Ψ̂. The corresponding notion of partial
substitutions is denoted as σ̂Ψ. Our main theorem about pattern matching can then be stated as:

Theorem 6.1 (Decidability of pattern matching) If Ψ `p T : K, • `p T ′ : K and relevant(Ψ; Φ ` T : K) = Ψ̂,
then either there exists a unique partial substitution σ̂Ψ such that • ` σ̂Ψ : Ψ̂ and T · σ̂Ψ = T ′, or no such
substitution exists.

Details are found in section D of the appendix.

69



Staging. Our development in this paper critically depends on the letstatic construct we presented earlier. It
can be seen as a dual of the traditional box construct of Davies and Pfenning [1996]. Details of its typing and
semantics are shown in Fig. 11d. We define a notion of “static evaluation contexts” S, which enclose a hole
of the form letstatic x = • in e. They include normal evaluation contexts, as well as evaluation contexts under
binding structures. We evaluate expressions e that include staging constructs using the −→s relation; internally,
this uses the normal evaluation rules, that are used in the second stage as well, for evaluating expressions
which do not include other staging constructs. If stage-one evaluation is successful, we are left with a residual
dynamic configuration (µ′, ed) which is then evaluated normally. We prove type-safety for stage-one evaluation;
its statement follows.

Theorem 6.2 (Stage-one Type Safety) If •; Σ; • ` e : τ then: either e is a dynamic expression ed; or, for every
store µ such that ` µ : Σ, we have: either µ,e −→s error, or, there exists an e′, a new store typing Σ′ ⊇ Σ and a
new store µ′ such that: (µ,e)−→ (µ′,e′); ` µ′ : Σ′; and •; Σ′; • ` e′ : τ.

Details are found in section E of the appendix.

Collapsing extension variables. Last, we have proved the fact that under the conditions described in Sec. 5,
it is possible to collapse a term t into a term t ′ which is typed under the empty extension variables context; a
substitution σ with which we can regain the original term t exists. This suggests that whenever a proof object t
for a specific proposition is required, an equivalent proof object that does not mention uninstantiated extension
variables exists. Therefore, we can write an equivalent proof script producing the collapsed proof object instead,
and evaluate that script statically. The statement of this theorem is the following:

Theorem 6.3 If Ψ ` [Φ] t : [Φ] tT and collapsible(Ψ ` [Φ] t : [Φ] tT ), then there exist Φ′, t ′, t ′T and σ such that
• `Φ′ wf, • ` [Φ′] t ′ : [Φ′] t ′T , Ψ; Φ ` σ : Φ′, t ′ ·σ = t and t ′T ·σ = tT .

The main idea behind the proof is to maintain a number of substitutions and their inverses: one to go from
a general Ψ extension context into an “equivalent” Ψ′ context, which includes only definitions of the form
[Φ] t, for a constant Φ context that uses no extension variables. Then, another substitution and its inverse are
maintained to go from that extension variables context into the empty one; this is simpler, since terms typed
under Ψ′ are already essentially free of metavariables. The computational content within the proof amounts to
a procedure for transforming proof scripts inside tactics into static proof scripts. Details are found in section F
of the appendix.

7. Implementation

We have completed a prototype implementation of the VeriML language, as described in this paper, that supports
all of our claims. We have built on our existing prototype [Stampoulis and Shao 2010] and have added an exten-
sive set of new features and improvements. The prototype is written in OCaml and is about 6k lines of code. Us-
ing the prototype we have implemented a number of examples, that are about 1.5k lines of code. Readers are en-
couraged to download and try the prototype from http://flint.cs.yale.edu/publications/supc.html.

New features. We have implemented the new features we have described so far: context matching, non-linear
patterns, proof-erasure semantics, staging, and inferencing for logical and computational terms. Proof-erasure
semantics are utilized only if requested by a per-function flag, enabling us to selectively “trust” tactics. The
staging construct we support is more akin to the 〈·〉static form described as syntactic sugar in Sec. 5, and it is able
to infer the collapsing substitutions that are needed, following the approach used in our metatheory.

Changes. We have also changed quite a number of things in the prototype and improved many of its aspects.
A central change, mediated by our new treatment of the conversion rule, was to modify the used logic in

70



order to use the explicit equality approach; the existing prototype used the λHOLc logic. We also switched the
variable representation to the hybrid deBruijn levels-deBruijn indices technique we described, which enabled
us to implement subtyping based on context subsumption. Also, we have adapted the typing rules of the pattern
matching construct in order to support refining the environment based on the current branch.

Examples implemented. We have implemented a number of examples to support our claims. First, we have
written the type-safe conversion check routine for βN, and extended it to support congruence closure based on
equalities in the context. Proofs of this latter tactic are constructed automatically through static proof scripts,
using a naive rewriter that is non-terminating in the general case. We have also completed proofs for theorems of
arithmetic for the properties of addition and multiplication, and used them to write an arithmetic simplification
tactic. All of the theorems are proved by making essential use of existing conversion rules, and are immediately
added into new conversion rules, leading to a compact and clean development style. The resulting code does not
need to make use of translation validation or proof by reflection, which are typically used to implement similar
tactics in existing proof assistants.

Towards a practical proof assistant. In order to facilitate practical proof and program construction in Ver-
iML, we introduced some features to support surface syntax, enabling users to omit most details about the
environments of contextual terms and the substitutions used with meta-variables. This syntax follows the style
of Delphin, assuming an ambient logical variable environment which is extended through a construct denoted
as νx : t.e. Still, the full power of contextual modal type theory is available, which is crucial in order to change
what the current ambient environment is, used, as we saw earlier, for static calls to tactics. In general the surface
syntax leads to much more concise and readable code.

Last, we introduced syntax support for calls to tactics, enabling users to write proof expressions that look very
similar to proof scripts in current proof assistants. We developed a rudimentary ProofGeneral mode for VeriML,
that enables us to call the VeriML type-checker and interpreter for parts of source files. By adding holes to
our sources, we can be informed by the type inference mechanism about their expected types. Those types
correspond to what the current “proof state” is at that point. Therefore, a possible workflow for developing
tactics or proofs, is writing the known parts, inserting holes in missing points to know what remains to be
proved, and calling the typechecker to get the proof state information. This workflow corresponds closely to the
interactive proof development support in proof assistants like Coq and Isabelle, but generalizes it to the case of
tactics as well.

8. Related work

There is a large body of work that is related to the ideas we have presented here.

Techniques for robust proof development. There have been multiple proposals for making proof development
inside existing proof assistants more robust. A well-known technique is proof-by-reflection [Boutin 1997]:
writing total and certified decision procedures within the functional language contained in a logic like CIC. A
recently introduced technique is automation through canonical structures [Gonthier et al. 2011]: the resolution
mechanism for finding instances of canonical structures (a generalization of type classes) is cleverly utilized
in order to program automation procedures for specific classes of propositions. We view both approaches as
somewhat similar, as both are based in cleverly exploiting static “interpreters” that are available in a modern
proof assistant: the partial evaluator within the conversion rule in the former case; the unification algorithm
within instance discovery in the latter case.

Our approach can thus be seen as similar, but also as a generalization of these approaches, since a general-
purpose programming model is supported. Therefore, users do not have to adapt to a specific programming
style for writing automation code, but can rather use a familiar functional language. Proof-by-reflection could
perhaps be used to support the same kind of extensions to the conversion rule; still, this would require reflecting

71



a large part of the logic in itself, through a prohibitively complicated encoding. Both techniques are applicable
to our setting as well and could be used to provide benefits to large developments within our language.

The style advocated in Chlipala [2011] (and elsewhere) suggests that proper proof engineering entails
developing sophisticated automation tactics in a modular style, and extending their power by adding proved
lemmas as hints. We are largely inspired by this approach, and believe that our introduction of the extensible
conversion rule and static checking of tactics can significantly benefit it. We demonstrate similar ideas in
layering conversion tactics.

Traditional proof assistants. There are many parallels of our work with the LCF family of proof assistants,
like HOL4 [Slind and Norrish 2008] and HOL-Light [Harrison 1996], which have served as inspiration. First,
the foundational logic that we use is similar. Also, our use of a dedicated ML-like programming language to
program tactics and proof scripts is similar to the approach taken by HOL4 and HOL-Light. Last, the fact
that no proof objects need to be generated is shared. Still, checking a proof script in HOL requires evaluating
it fully. Using our approach, we can selectively evaluate parts of proof scripts; we focus on conversion-like
tactics, but we are not limited inherrently to those. This is only possible because our proof scripts carry proof
state information within their types. Similarly, proof scripts contained within LCF tactics cannot be evaluated
statically, so it is impossible to establish their validity upon tactic definition. It is possible to do a transformation
similar to ours manually (lifting proof scripts into auxiliary lemmas that are proved prior to the tactic), but the
lack of type information means that many more details need to be provided.

The Coq proof assistant [Barras et al. 2010] is another obvious point of reference for our work. We will
focus on the conversion rule that CIC, its accompanying logic, supports – the same problems with respect to
proof scripts and tactics that we described in the LCF case also apply for Coq. The conversion rule, which
identifies computationally equivalent propositions, coupled with the rich type universe available, opens up
many possibilities for constructing small and efficiently checkable proof objects. The implementation of the
conversion rule needs to be part of the trusted base of the proof assistant. Also, the fact that the conversion
check is built-in to the proof assistant makes the supported equivalence rigid and non-extensible by frequently
used decision procedures.

There is a large body of work that aims to extend the conversion rule to arbitrary confluent rewrite systems
(e.g. Blanqui et al. [1999]) and to include decision procedures [Strub 2010]. These approaches assume some
small or larger addition to the trusted base, and extend the already complex metatheory of Coq. Furthermore, the
NuPRL proof assistant [Constable et al. 1986] is based on extensional type theory which includes an extensional
conversion rule. This enables complex decision procedures to be part of conversion; but it results in a very large
trusted base. We show how, for a subset of these type theories, the conversion check can be recovered outside the
trusted base. It can be extended with arbitrarily complex new tactics, written in a familiar programming style,
without any metatheoretic additions and without hurting the soundness of the logic. The question of whether
these type theories can be supported in full remains as future work, but as far as we know, there is no inherrent
limitation to our approach.

Dependently-typed programming. The large body of work on dependently-typed languages has close parallels
to our work. Out of the multitude of proposals, we consider the Russell framework [Sozeau 2006] as the
current state-of-the-art, because of its high expressivity and automation in discharging proof obligations. In
our setting, we can view dependently-typed programming as a specific case of tactics producing complex
data types that include proof objects. Static proof scripts can be leveraged to support expressivity similar to
the Russell framework. Furthermore, our approach opens up a new intriguing possibility: dependently-typed
programs whose obligations are discharged statically and automatically, through code written within the same
language.

Last, we have been largely inspired by the work on languages like Beluga [Pientka and Dunfield 2008] and
Delphin [Poswolsky and Schürmann 2008], and build on our previous work on VeriML [Stampoulis and Shao

72



2010]. We investigate how to leverage type-safe tactics, as well as a number of new constructs we introduce,
so as to offer an extensible notion of proof checking. Also, we address the issue of statically checking the
proof scripts contained within tactics written in VeriML. As far as we know, our development is the first time
languages such as these have been demonstrated to provide a workflow similar to interactive proof assistants.

Acknowledgments

We thank anonymous referees for their suggestions and comments on an earlier version of this paper. This
research is based on work supported in part by DARPA CRASH grant FA8750-10-2-0254 and NSF grants
CCF-0811665, CNS-0910670, and CNS 1065451. Any opinions, findings, and conclusions contained in this
document are those of the authors and do not reflect the views of these agencies.

References
H.P. Barendregt and H. Geuvers. Proof-assistants using dependent type systems. In A. Robinson and A. Voronkov, editors,

Handbook of Automated Reasoning. Elsevier Sci. Pub. B.V., 1999.
B. Barras, S. Boutin, C. Cornes, J. Courant, Y. Coscoy, D. Delahaye, D. de Rauglaudre, J.C. Filliâtre, E. Giménez,

H. Herbelin, et al. The Coq proof assistant reference manual (version 8.3), 2010.
F. Blanqui, J.P. Jouannaud, and M. Okada. The calculus of algebraic constructions. In Rewriting Techniques and

Applications, pages 671–671. Springer, 1999.
F. Blanqui, J.P. Jouannaud, and P.Y. Strub. A calculus of congruent constructions. Unpublished draft, 2005.
S. Boutin. Using reflection to build efficient and certified decision procedures. Lecture Notes in Computer Science, 1281:

515–529, 1997.
A. Chlipala. Mostly-automated verification of low-level programs in computational separation logic. In Proceedings of

the 2011 ACM SIGPLAN conference on Programming Language Design and Implementation. ACM, 2011.
R.L. Constable, S.F. Allen, H.M. Bromley, W.R. Cleaveland, J.F. Cremer, R.W. Harper, D.J. Howe, T.B. Knoblock, N.P.

Mendler, P. Panangaden, et al. Implementing Mathematics with the Nuprl Proof Development System. Prentice-Hall,
NJ, 1986.

R. Davies and F. Pfenning. A modal analysis of staged computation. In Proceedings of the 23rd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 258–270. ACM, 1996.

G. Gonthier. Formal proof–the four-color theorem. Notices of the AMS, 55(11):1382–1393, 2008.
G. Gonthier, B. Ziliani, A. Nanevski, and D. Dreyer. How to make ad hoc proof automation less ad hoc. In Proceeding of

the 16th ACM SIGPLAN International Conference on Functional Programming, pages 163–175. ACM, 2011.
J. Harrison. HOL Light: A tutorial introduction. Lecture Notes in Computer Science, pages 265–269, 1996.
G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski,

M. Norrish, et al. seL4: Formal verification of an OS kernel. In Proceedings of the ACM SIGOPS 22nd Symposium on
Operating Systems Principles, pages 207–220. ACM, 2009.

X. Leroy. Formal verification of a realistic compiler. Communications of the ACM, 52(7):107–115, 2009.
T. Nipkow, L.C. Paulson, and M. Wenzel. Isabelle/HOL : A Proof Assistant for Higher-Order Logic, volume 2283 of

LNCS, 2002.
B. Pientka and J. Dunfield. Programming with proofs and explicit contexts. In Proceedings of the 10th international ACM

SIGPLAN conference on Principles and Practice of Declarative Programming, pages 163–173. ACM New York, NY,
USA, 2008.

A. Poswolsky and C. Schürmann. Practical programming with higher-order encodings and dependent types. Lecture Notes
in Computer Science, 4960:93, 2008.

V. Siles and H. Herbelin. Equality is typable in semi-full pure type systems. In 2010 25th Annual IEEE Symposium on
Logic in Computer Science, pages 21–30. IEEE, 2010.

K. Slind and M. Norrish. A brief overview of HOL4. Theorem Proving in Higher Order Logics, pages 28–32, 2008.
M. Sozeau. Subset coercions in coq. In Proceedings of the 2006 International Conference on Types for Proofs and

Programs, pages 237–252. Springer-Verlag, 2006.

73



A. Stampoulis and Z. Shao. VeriML: Typed computation of logical terms inside a language with effects. In Proceedings
of the 15th ACM SIGPLAN International Conference on Functional Programming, pages 333–344. ACM, 2010.

P.Y. Strub. Coq modulo theory. In Proceedings of the 24th International Conference on Computer Science Logic, pages
529–543. Springer-Verlag, 2010.

74



Appendices
A. The logic λHOLc

Definition A.1 (Syntax of the language) The syntax of the logic language is given below.

t ::= s | c | fi | bi | λ(t1).t2 | t1 t2 | Π(t1).t2 | t1 = t2 | conv t t | refl t | symm t | trans t1 t2 | congapp t1 t2
| congimpl t1 t2 | conglam t | congpi t | beta t1 t2

s ::= Prop | Type | Type′

Φ ::= • | Φ, t
σ ::= • | t
Σ ::= • | Σ, c : t

We use fi to denote the i-th free variable in the current environment and bi for the bound variable with
deBruijn index i. The benefit of this approach is that the representation of terms is unique both up to α-
equivalence and up to extensions of the current free variables context.

Definition A.2 (Context length and access) Getting the length of a context, and an element out of a context,
are defined as follows. In the case of element access, we assume that i < |Φ|.

|Φ|

| • | = 0
|Φ, t| = |Φ|+1

Φ.i

(Φ, t).|Φ| = t
(Φ, t).i = Φ.i

Definition A.3 (Substitution length) Getting the length of a substitution is defined as follows.

| • | = 0
|σ, t| = |σ|+1

Definition A.4 (Substitution access) The operation of accessing the i-th term out of a substitution is defined as
follows. We assume that i < |σ|.

(σ, t).|σ| = t
(σ, t).i = σ.i

Definition A.5 (Substitution application) The operation of applying a substitution is defined as follows.

75



t ·σ
s ·σ = s
c ·σ = c
fi ·σ = σ.i
bi ·σ = bi

(λ(t1).t2) ·σ = λ(t1 ·σ).(t2 ·σ)
(t1 t2) ·σ = (t1 ·σ) (t2 ·σ)
(Π(t1).t2) ·σ = Π(t1 ·σ).(t2 ·σ)
(t1 = t2) ·σ = (t1 ·σ) = (t2 ·σ)
(conv t1 t2) ·σ = conv (t1 ·σ) (t2 ·σ)
(refl t) ·σ = refl (t ·σ)
(symm t) ·σ = symm (t ·σ)
(trans t1 t2) ·σ = trans (t1 ·σ) (t2 ·σ)
(congapp t1 t2) ·σ = congapp (t1 ·σ) (t2 ·σ)
(congimpl t1 t2) ·σ = congimpl (t1 ·σ) (t2 ·σ)
(conglam t) ·σ = conglam (t ·σ)
(congpi t) ·σ = congpi (t ·σ)
(beta t1 t2) ·σ = beta (t1 ·σ) (t2 ·σ)

σ′ ·σ
• ·σ = •
(σ′, t) ·σ = (σ′ ·σ),(t ·σ)

Definition A.6 (Identity substitution) The identity substitution is defined as follows.

id• = •
idΦ, t = idΦ, f|Φ|

Definition A.7 Free and bound variable limits for terms are defined as follows.

t < f n

s < f n
c < f n
fi <

f n ⇐ n > i
bi <

f n
(λ(t1).t2)< f n ⇐ t1 < f n∧ t2 < f n
t1 t2 < f n ⇐ t1 < f n∧ t2 < f n

· · ·

t <b n

s <b n
c <b n
fi <

b n
bi <

b n ⇐ n > i
(λ(t1).t2)<b n ⇐ t1 <b n∧ t2 <b n+1
t1 t2 <b n ⇐ t1 <b n∧ t2 <b n

· · ·

76



Definition A.8 Free and bound variable limits for substitutions are defined as follows.

σ < f n

•< f n
(σ, t)< f n ⇐ σ < f n∧ t < f n

σ <b n

•<b n
(σ, t)<b n ⇐ σ <b n∧ t <b n

Definition A.9 (Freshening) Freshening a term is defined as follows. We assume that t < f m and t <b n+1.

dtenm

dse = s
dce = c
d fie = fi
dbnenm = fm
dbien = bi when i < n
d(λ(t1).t2)en = λ(dt1en).dt2en+1

dt1 t2e = dt1e dt2e
dΠ(t1).t2)en = Π(dt1en).(dt2en+1)
dt1 = t2e = dt1e= dt2e
dconv t1 t2e = conv dt1e dt2e
drefl te = refl dte
dsymm te = symm dte
dtrans t1 t2e = trans dt1e dt2e
dcongapp t1 t2e = congapp dt1e dt2e
dcongimpl t1 t2e = congimpl dt1e dt2e
dconglam te = conglam dte
dcongpi te = congpi dte
dbeta t1 t2e = beta dt1e dt2e

Definition A.10 (Binding) Binding a term is defined as follows. We assume that t < f m and t <b n.

77



btcnm

bsc = s
bcc = c
b fm−1cnm = bn
b ficnm = fi when i < m−1
bbic = bi

b(λ(t1).t2)c = λ(bt1cn).bt2cn+1

bt1 t2c = bt1cn bt2cn
bΠ(t1).t2)c = Π(bt1cn).bt2cn+1

bt1 = t2c = bt1c= bt2c
bconv t1 t2c = conv bt1c bt2c
brefl tc = refl btc
bsymm tc = symm btc
btrans t1 t2c = trans bt1c bt2c
bcongapp t1 t2c = congapp bt1c bt2c
bcongimpl t1 t2c = congimpl bt1c bt2c
bconglam tc = conglam btc
bcongpi tc = congpi btc
bbeta t1 t2c = beta bt1c bt2c

Definition A.11 (Typing) The typing rules are defined as follows.

` Σ wf

` • wf
` Σ wf • `Σ t : s (c : _) 6∈ Σ

` Σ, c : t wf

`Σ Φ wf

` • wf
`Φ wf Φ ` t : s

`Φ, t wf

Φ `Σ t : t ′

c : t ∈ Σ

Φ `Σ c : t

Φ.i = t

Φ ` fi : t

(s,s′) ∈A

Φ ` s : s′
Φ ` t1 : s Φ, t1 ` dt2e|Φ| : s′ (s,s′,s′′) ∈ R

Φ `Π(t1).t2 : s′′

Φ ` t1 : s Φ, t1 ` dt2e|Φ| : t ′ Φ `Π(t1).
⌊
t ′
⌋
|Φ|+1 : s′

Φ ` λ(t1).t2 : Π(t1).
⌊
t ′
⌋
|Φ|+1

Φ ` t1 : Π(t).t ′ Φ ` t2 : t

Φ ` t1 t2 :
⌈
t ′
⌉
|Φ| · (idΦ, t2)

Φ ` t1 : t Φ ` t2 : t Φ ` t : Type

Φ ` t1 = t2 : Prop

78



Φ ` t : t1 Φ ` t1 : Prop Φ ` t ′ : t1 = t2
Φ ` conv t t ′ : t2

Φ ` t1 : t Φ ` t1 = t1 : Prop

Φ ` refl t1 : t1 = t1

Φ ` ta : t1 = t2
Φ ` symm ta : t2 = t1

Φ ` ta : t1 = t2 Φ ` tb : t2 = t3
Φ ` trans ta tb : t1 = t3

Φ ` ta : M1 = M2 Φ `M1 : A→ B Φ ` tb : N1 = N2 Φ ` N1 : A

Φ ` congapp ta tb : M1 N1 = M2 N2

Φ ` ta : A1 = A2 Φ,A1 ` dtbe : B1 = B2 Φ ` A1 : Prop Φ,A1 ` dB1e : Prop

Φ ` congimpl ta (λ(A1).tb) : Π(A1).bB1c= Π(A2).bB2c

Φ, A ` dtbe : B = B′ Φ `Π(A).bBc= Π(A).
⌊
B′
⌋

: Prop

Φ ` congpi (λ(A).tb) : Π(A).bBc= Π(A).
⌊
B′
⌋

Φ, A ` dtbe : B1 = B2 Φ ` λ(A).bB1c= λ(A).bB2c : Prop

Φ ` conglam (λ(A).tb) : λ(A).bB1c= λ(A).bB2c

Φ ` λ(A).M : A→ B Φ ` N : A Φ ` A→ B : Type

Φ ` beta (λ(A).M) N : (λ(A).M) N = dMe · (idΦ,N)

Φ ` σ : Φ′

`Φ wf

Φ ` • : •
Φ ` σ : Φ

′
Φ ` t : t ′ ·σ

Φ ` σ, t : (Φ′, t ′)

Lemma A.12 If t < f m and |Φ|= m then t · idΦ = t.

Trivial by induction on t < f m. The interesting case is fi · idΦ = fi. This is simple to prove by induction on Φ.

Lemma A.13 If σ < f m then σ · idm = σ.

By induction on σ and use of lemma A.12.

Lemma A.14 If Φ ` t : t ′ then t < f |Φ| and t <b 0.

Trivial by induction on the typing derivation Φ ` t : t ′ (and use of implicit assumptions for dte).

Lemma A.15 If ` Φ wf then for any Φ′ and t1···n such that Φ′ = Φ, t1, t2, · · · , tn and ` Φ′ wf, we have that
Φ′ ` idΦ : Φ.

By induction on Φ.
In case Φ = •, trivial.
In case Φ = Φ′′, t ′, then by induction hypothesis we have for all proper extensions of Φ′′ Φ′′, t1, · · · , tn ` idΦ′′ :
Φ′′.

79



We now need to prove that for all proper extensions of Φ′′, t ′ we have Φ′′, t ′, t1, · · · , tn ` idΦ′′, t ′ : (Φ′′, t ′).
From the inductive hypothesis we get that Φ′′, t ′, t1, · · · , tn ` idΦ′′ : Φ′′. We also have that Φ′′ ` t ′ : s
by inversion of the well-formedness of Φ.
Thus by A.14, we get that t ′ < f |Φ′′|.
Furthermore by A.12 we get that t ′ · idΦ′′ = t ′.
Thus we have Φ′′, t ′, t1, · · · , tn ` f|Φ′′| : t ′ · idΦ′′ .
Thus by applying the appropriate substitution typing rule, we get that Φ′′, t ′, t1, · · · , tn ` (idΦ′′ , f|Φ′′|) :
(Φ′′, t ′), which is exactly the desired result.

Lemma A.16 If Φ ` σ : Φ′ then σ < f |Φ|, σ <b 0 and |σ|= |Φ′|.

Trivial by induction on the typing derivation for σ, and use of lemma A.14.

Lemma A.17 If `Φ wf and |Φ|= n then for all i < n, Φ.i < f i.

Trivial by induction on the well-formedness derivation for Φ and use of lemma A.14.

Lemma A.18 If t < f m, |σ|= m and t ·σ = t ′ then t · (σ, t1, t2, · · · , tn) = t ′.

Trivial by induction on t < f m.

Lemma A.19 If σ < f m, |σ′|= m and σ ·σ′ = σr then σ · (σ′, t1, t2, · · · , tn) = σr.

Trivial by induction on σ, and use of the lemma A.18.

Lemma A.20 If `Φ wf, Φ.i = t and Φ′ ` σ : Φ, then Φ′ ` σ.i : t ·σ.

Induction on the derivation of typing for σ.
In the case where σ= •, the (implicit) assumption that i< |Φ| obviously does not hold, so the case is impossible.
In the case where σ = σ′, t ′, we split cases on whether i = |Φ|−1 or not.
If it is, then the typing rule gives us the desired directly.
If it is not, the inductive hypothesis gives us the result Φ′ ` σ′.i : t ·σ′. Now from lemma A.17 we have that
Φ.i < f i. We can now apply lemma A.18 to get t ·σ′ = t · (σ′, t ′) = t ·σ, proving the desired.

Lemma A.21 If t < f m, t <b n+1, σ < f m′ and |σ|= m then dt ·σenm′ = dtenm · (σ, fm′).

By structural induction on t.
Cases t = s and t = c are trivial.
When t = fi, we have i < m thus both sides will be equal to σ.i.
When t = bi, we split cases on whether i = n or i < n.

If i = n, then the left-hand side becomes dbn ·σenm′ = dbnenm′ = fm′ .
The right-hand side becomes dbnenm · (σ, fm′) = fm · (σ, fm′) = fm′ .
When i < n it is trivial to see that both sides are equal to bi.

In the case where t = λ(t1).(t2), we prove the result trivially using the induction hypothesis.
The subtlety for t2 is that the inductive hypothesis is applied for n = n+1, which is possible because from the
definition of ·<b · we have that t2 <b (n+1)+1.

Lemma A.22 If t < f m+1, t <b n, σ < f m′ and |σ|= m then bt · (σ, fm′)cnm′+1 = btcnm+1 ·σ.

80



By structural induction on t. Cases t = s and t = c are trivial. When t = fi, we split cases on whether i = m
or i < m. If i = m, then the left hand side becomes: b fm · (σ, fm′)cnm′+1 = b fm′cnm′+1 = bn. The right hand side
becomes: b fmcnm+1 ·σ = bn ·σ = bn. In case i < m, both sides are trivially equal to σ.i. When t = bi, both sides
are trivially equal to bi. When t = λ(t1).t2, the result follows directly from the inductive hypothesis for t1 and t2,
and the definitions of · and b·c.

Lemma A.23 If t < f m, |σ|= m, σ < f m′ and |σ′|= m′ then (t ·σ) ·σ′ = t · (σ ·σ′).

Trivial induction, with the only interesting case where t = fi. The left hand side becomes ( fi ·σ) ·σ′ = (σ.i) ·σ′.
The right hand side becomes fi · (σ ·σ′) = (σ ·σ′).i = (σ.i) ·σ′.

Lemma A.24 If |σ|= m and |Φ|= m then idΦ ·σ = σ.

Trivial by induction on Φ.

Lemma A.25 If dtenm = dt ′enm then t = t ′.

By induction on the structure of t. In each case we perform induction on t ′ as well. The only interesting case
is when t = fi and t ′ = bn. We have that dt ′e = fm; so it could be that i = m. This is avoided from the implicit
assumption that t < f m (that is required to apply freshening).

The main substitution theorem that we are proving is the following.

Theorem A.26 (Substitution)
If Φ ` t : t ′ and Φ′ ` σ : Φ then Φ′ ` t ·σ : t ′ ·σ′.

By structural induction on the typing derivation for t.

Case
c : t ∈ Σ

Φ `Σ c : t
�

By applying the same typing rule we get that Φ′ ` c : t. By inversion of the well-formedness of Σ, we get that
• ` t : t ′. Thus from lemma A.14 we get that t < f 0 and from lemma A.18 we get that t ·σ = t. Considering also
that c ·σ = c, the derivation Φ′ ` c : t proves the desired.

Case
Φ.i = t

Φ ` fi : t
�

We have that fi ·σ = σ.i. Directly using lemma A.20 we get that Φ′ ` σ.i : t ·σ.

Case
(s,s′) ∈A

Φ ` s : s′
�

Trivial by application of the same rule and the definition of ·.

Case
Φ ` t1 : s Φ, t1 ` dt2e|Φ| : s′ (s,s′,s′′) ∈ R

Φ `Π(t1).t2 : s′′
�

By induction hypothesis for t1 we get: Φ′ ` t1 ·σ : s.
By induction hypothesis for Φ, t1 ` dt2e|Φ| : s′ and Φ′, t1 ·σ` (σ, f|Φ′|) : (Φ, t1) we get: Φ′, t1 ·σ` dt2e|Φ| ·(σ, f|Φ′|) :

81



s′ · (σ, f|Φ′|).
We have s′ = s′ · (σ, f|Φ′|) trivially.
Also by the lemma A.21, dt2e|Φ| · (σ, f|Φ′|) = dt2 ·σe|Φ′|.
Thus by application of the same typing rule we get Φ′ ` Π(t1 · σ).(t2 · σ) : s′′ which is the desired, since
(Π(t1).t2) ·σ = Π(t1 ·σ).(t2 ·σ).

Case
Φ ` t1 : s Φ, t1 ` dt2e|Φ| : t ′ Φ `Π(t1).

⌊
t ′
⌋
|Φ|+1 : s′

Φ ` λ(t1).t2 : Π(t1).
⌊
t ′
⌋
|Φ|+1

�

Similarly to the above, from the inductive hypothesis for t1 and t2 we get:
Φ′ ` t1 ·σ : s
Φ′, t1 ·σ ` dt2 ·σe|Φ′| : t ′ · (σ, f|Φ′|)
From the inductive hypothesis for Π(t1).bt ′c we get: Φ′ ` (Π(t1).bt ′c|Φ|+1) ·σ : s′.
By the definition of · we get: Φ′ `Π(t1 ·σ).(bt ′c|Φ+1| ·σ) : s′.
By the lemma A.22, we have that (bt ′c|Φ+1| ·σ) =

⌊
t ′ · (σ, f|Φ′|)

⌋
|Φ′|+1.

Thus we get Φ′ `Π(t1 ·σ).
⌊
t ′ · (σ, f|Φ′|)

⌋
|Φ′|+1 : s′.

We can now apply the same typing rule to get: Φ′ ` λ(t1 ·σ).(t2 ·σ) : Π(t1 ·σ).
⌊
t ′ · (σ, f|Φ′|)

⌋
|Φ′|+1.

We have Π(t1 ·σ).
⌊
t ′ · (σ, f|Φ′|)

⌋
|Φ′|+1 = Π(t1 ·σ).((bt ′c|Φ|+1) ·σ) = (Π(t1).bt ′c|Φ|+1) ·σ, thus this is the desired

result.

Case
Φ ` t1 : Π(t).t ′ Φ ` t2 : t

Φ ` t1 t2 :
⌈
t ′
⌉
|Φ| · (idΦ, t2)

�

By induction hypothesis for t1 we get Φ′ ` t1 ·σ : Π(t ·σ).(t ′ ·σ).
By induction hypothesis for t2 we get Φ′ ` t2 ·σ : t ·σ.
By application of the same typing rule we get Φ′ ` (t1 t2) ·σ : dt ′ ·σe|Φ′| · (idΦ′ , t2 ·σ).
We have that dt ′ ·σe|Φ′| · (idΦ′ , t2 ·σ) = (dt ′e|Φ| · (σ, f|Φ′|)) · (idΦ′ , t2 ·σ) due to lemma A.21
From lemma A.23 (t ·σ) ·σ′= t ·(σ ·σ′), we further have that the above is equal to dt ′e|Φ| ·((σ, f|Φ′|) ·(idΦ′ , t2 ·σ)).
We will now prove that ((σ, f|Φ′|) · (idΦ′ , t2 ·σ) = σ, (t2 ·σ).

By definition we have (σ, f|Φ′|) · (idΦ′ , t2 ·σ) = (σ · (idΦ′ , t2 ·σ)), ( f|Φ′| · (idΦ′ , t2 ·σ)) = (σ · (idΦ′ , t2 ·
σ)), t2 ·σ.
Due to lemma A.16, we have that σ < f |Φ′|. Thus from lemma A.19, we get that σ · (idΦ′ , t2) =
σ · idΦ′ .
Last from lemma A.13 we get that σ · idΦ′ = σ.

Thus we only need to show that dt ′e|Φ| · (σ, (t2 ·σ)) is equal to (dt ′e|Φ| · (idΦ, t2)) ·σ.
As above, per lemma A.23, this is equal to dt ′e|Φ| · ((idΦ, t2) ·σ).
From definition we have ((idΦ, t2) ·σ) = (idΦ ·σ),(t2 ·σ).
Furthermore, from lemma A.24 we get that (idΦ ·σ),(t2 ·σ) = σ,(t2 ·σ).
Thus we have the desired result.

Case (otherwise) �

Simple to prove based on the methods we have shown above.

Corollary A.27 If Φ′ ` σ : Φ and Φ′′ ` σ′ : Φ′ then Φ′′ ` σ ·σ′ : Φ.

Induction on the typing derivation for σ, with use of the substitution theorem A.26.

Lemma A.28 (Types are well-typed) If Φ ` t : t ′ then either t ′ = Type′ or Φ ` t ′ : s.

By structural induction on the typing derivation for t.

82



Case
c : t ∈ Σ

Φ `Σ c : t
� Trivial by inversion of the well-formedness of Σ.

Case
Φ.i = t

Φ ` fi : t
� Trivial by inversion of the well-formedness of Φ.

Case
(s,s′) ∈A

Φ ` s : s′
� By splitting cases for (s,s′) and application of the same typing rule.

Case
Φ ` t1 : s Φ, t1 ` dt2e|Φ| : s′ (s,s′,s′′) ∈ R

Φ `Π(t1).t2 : s′′
� By splitting cases for (s,s′,s′′) and use of sort

typing rule.

Case
Φ ` t1 : Π(t).t ′ Φ ` t2 : t

Φ ` t1 t2 :
⌈
t ′
⌉
|Φ| · (idΦ, t2)

�

By induction hypothesis we get that Φ `Π(t).t ′ : s. By inversion of this judgement, we get that Φ, t ` dt ′e : s′.
Furthermore we have by lemma A.15 that Φ ` id|Φ| : Φ, and using the typing for t2 and lemma A.12, we get that
Φ ` id|Φ|, t2 : (Φ, t).
Thus by application of the substitution lemma A.26 for dt ′e we get the desired result.

Case (otherwise) � Simple to prove based on the methods we have shown above.

Lemma A.29 (Weakening) If Φ ` t : t ′, then Φ, t1, t2, · · · , tn ` t : t ′.

Using lemma A.15 we have that Φ, t1, t2, · · · , tn ` idΦ : Φ.
Using the substitution lemma A.26 we get that Φ, t1, t2, · · · , tn ` t · idΦ : t ′ · idΦ.
From lemma A.18 and A.14, we get that t · idΦ = t.
From lemma A.28 we further get Φ ` t ′ : s and applying the same lemmas as for t we get t ′ · idΦ = t ′.

B. Extension with metavariables and polymorphic contexts

B.1 Extending with metavariables

First, we extend the previous definition of terms to account for metavariables.

Definition B.1 (Syntax of the language) The syntax of the logic language is extended below. We furthermore
add new syntactic classes for modal terms and environments of metavariables.

t ::= · · · | Xi/σ

T ::= [Φ] t
M ::= • |M, T

Now we gather all the places from the above section where something was defined through induction on
terms, and redefine/extend them here. Things that are identical are noted.

Definition B.2 (Context length and access) Identical to A.2. We furthermore define metavariables environment
length and access here.

83



|M|

| • | = 0
|M, T | = |M|+1

M.i

(M, T ).|M| = T
(M, T ).i = M.i

Definition B.3 (Substitution length) Identical to A.3.

Definition B.4 (Substitution access) Identical to A.4.

Definition B.5 (Substitution application) This is the extension of definition A.5. We lift it to modal terms.

t ·σ

(Xi/σ′) ·σ = Xi/(σ
′ ·σ)

T ·σ

([Φ] t) ·σ = t ·σ

Definition B.6 (Identity substitution) Identical to A.6.

Definition B.7 (Variable limits for terms and substitutions) This is the extension of definition A.7 and defini-
tion A.8 (who are now mutually dependent). The definition for substitutions is identical.

t < f n

Xi/σ < f n ⇐ σ < f n

t <b n

Xi/σ <b n ⇐ σ <b n

Definition B.8 (Freshening) This is the extension of definition A.9. Furthermore we need to lift the freshening
operation to substitutions.

dtenm

dXi/σenm = Xi/(dσn
me)

dσenm

d•enm = •
dσ, tenm = (dσenm), dtenm

Definition B.9 (Binding) This is the extension of definition A.10. As above, we need to lift binding to substitu-
tions.

84



btcnm
bXi/σcnm = Xi/(bσn

mc)

bσcnm
b•cnm = •
bσ, tcnm = (bσcnm), btcnm

Definition B.10 (Typing judgements) The typing judgements defined in A.11 are adjusted as follows.
First, the judgement Φ ` t : t ′ is replaced by the judgement M; Φ ` t : t ′ and the existing rules are adjusted as
needed. Also we include a new rule shown below.
Second, the judgement `Φ wf is replaced by the judgement M `Φ wf.
Third, the judgement M; Φ ` σ : Φ′ replaces the original judgement for substitutions.
The ` Σ wf judgement stays as is, with the adjustment shown below.
Last, we introduce a new judgement `M wf for meta-environments and a judgement M ` T : T ′ for modal
terms.

` Σ wf

` Σ wf

` Σ wf •;• `Σ t : s (c :) 6∈ Σ

` (Σ, c : t) wf

M; Φ ` t : t ′

M.i = T T = [Φ′] t ′ M; Φ ` σ : Φ
′

M; Φ ` Xi/σ : t ′ ·σ

`M wf

` • wf
`M wf M ` [Φ] t : [Φ]s

` (M, [Φ] t) wf

M ` T : T ′

M; Φ ` t : t ′

M ` [Φ] t : [Φ] t ′

We can now proceed to adjust the proofs from above in order to handle the additional cases of the extension.

Lemma B.11 (Extension of lemmas A.12 and A.13) 1. If t < f m and |Φ|= m then t · idΦ = t.

2. If σ < f m and |Φ|= m then σ · idΦ = σ.

The two lemmas become mutually dependent. For the first part, we proceed as previously by induction on t, and
the only additional case we need to take into account is for the extension1:
We have that (Xi/σ) · idm = Xi/(σ · idm). Using the second part, we have that Xi/(σ · idm) = Xi/σ. The second
part is proved as previously.
1 We will not note this any more below; all the proofs mimic the inductive structure of the base proofs

85



Lemma B.12 (Extension of lemmas A.14 and A.16) 1. If M; Φ ` t : t ′ then t < f |Φ| and t <b 0.

2. If M; Φ ` σ : Φ′ then σ < f |Φ|, σ <b 0 and |σ|= |Φ′|.

Again the two lemmas become mutually dependent when they weren’t before. For the first one, we have
that M; Φ ` Xi/σ : t ′; using the second part, we have that σ < f |Φ| and σ <b 0. By definition we thus have
Xi/σ < f |Φ| and Xi/σ <b 0. The second part is proved as previously.

Lemma B.13 (Extension of lemma A.15) If M `Φ wf then for any Φ′ and t1···n such that Φ′ = Φ, t1, t2, · · · , tn
and M `Φ′ wf, we have that M; Φ′ ` idΦ : Φ.

Identical as before.

Lemma B.14 (Extension of lemma A.17) If M `Φ wf and |Φ|= n then for all i < n, Φ.i < f i.

Identical as before.

Lemma B.15 (Extension of lemmas A.18 and A.19) 1. If t < f m, |σ|=m and t ·σ= t ′ then t ·(σ, t1, t2, · · · , tn)=
t ′.

2. If σ < f m, |σ′|= m and σ ·σ′ = σr then σ · (σ′, t1, t2, · · · , tn) = σr.

For the first part, taking t = Xi/σ′, we have that X/σ′ < f m and thus σ′ < f m.
Furthermore we have (Xi/σ′) ·σ = Xi/(σ

′ ·σ) = Xi/σr, assuming σr = σ′ ·σ.
Using the second lemma we have that σ′ · (σ, t1, t2, · · · , tn) = σr.
Thus we also have that (Xi/σ′) · (σ, t1, t2, · · · , tn) = Xi/(σ

′ · (σ, t1, t2, · · · , tn)) = Xi/σr.
For the second part, the proof proceeds as previously.

Lemma B.16 (Extension of lemma A.20) If M `Φ wf, Φ.i = t and M; Φ′ ` σ : Φ, then M; Φ′ ` σ.i : t ·σ.

Identical as before.

Lemma B.17 (Extension of lemma A.21 and new lemma for substitutions) 1. If t < f m, t <b n+1, σ < f m′

and |σ|= m then dt ·σenm′ = dtenm · (σ, fm′).

2. If σ′ < f m, σ′ <b n+1, σ < f m′ and |σ|= m then dσ′ ·σenm′ = dσ′enm · (σ, fm′).

The second part of this lemma is a new lemma; it corresponds to the lifting of the first part to substitutions.
For the first part, we have: d(Xi/σ′) ·σenm′ = dXi/(σ

′ ·σ)enm′ = Xi/dσ′ ·σenm′ .
Using the second part, we have that this is equal to Xi/(dσ′enm · (σ, fm′)).
Furthermore, this is equal to (Xi/dσ′enm) · (σ, fm′).
Last, this is equal to (dXi/σ′enm) · (σ, fm′), which is the desired.

For the second part, we proceed by induction on σ′.
If σ′ = •, the result is trivial.
If σ′ = σ′′, t then d(σ′′, t) ·σenm′ = d(σ′′ ·σ), t ·σenm′ = dσ′′ ·σenm′ , dt ·σenm′ .
Using the induction hypothesis and the first part, we have that this is equal to dσ′′enm · (σ, fm′), dtenm · (σ, fm′) =
dσ′′, tenm · (σ, fm′), which is the desired.

Lemma B.18 (Extension of lemma A.22 and new lemma for substitutions) 1. If t < f m+1, t <b n, σ < f m′

and |σ|= m then bt · (σ, fm′)cnm′+1 = btcnm+1 ·σ.

2. If σ′ < f m+1, σ′ <b n, σ < f m′ and |σ|= m then bσ′ · (σ, fm′)cnm′+1 = bσ′cnm+1 ·σ.

86



This proof is entirely similar to the above for both parts.

Lemma B.19 (Extension of lemma A.23 and new lemma for substitutions) 1. If t < f m, |σ| = m, σ < f m′

and |σ′|= m′ then (t ·σ) ·σ′ = t · (σ ·σ′).
2. If σ1 <

f m, |σ|= m, σ < f m′ and |σ′|= m′ then (σ1 ·σ) ·σ′ = σ1 · (σ ·σ′).

Entirely similar to the above.

Lemma B.20 (Extension of lemma A.24) If |σ|= m and |Φ|= m then idΦ ·σ = σ.

Identical as before.

Lemma B.21 (Extension of lemma A.25) 1. If dtenm = dt ′enm then t = t ′.

2. If dσenm = dσ′enm then σ = σ′.

Part 1 is identical as before, with the additional case t = Xi/σ and t ′ = Xi/σ′ handled using the second part. Part
2 is proved by induction on the structure of σ.

Theorem B.22 (Extension of main substitution theorem A.26 and corollary A.27) 1. If M; Φ ` t : t ′ and
M; Φ′ ` σ : Φ then M; Φ′ ` t ·σ : t ′ ·σ.

2. If M; Φ′ ` σ : Φ and M; Φ′′ ` σ′ : Φ′ then M; Φ′′ ` σ ·σ′ : Φ.

3. If M ` [Φ′] t : [Φ′] t ′ and M; Φ ` σ : Φ′ then M ` [Φ] t ·σ : [Φ] t ′ ·σ.

For the first part we have, when t = Xi/σ0:
From M; Φ ` Xi/σ0 : t ′ we get that M.i = [Φ0] t0, M; Φ ` σ0 : Φ0 and t ′ = t0 ·σ0.
Applying the second part of the lemma for σ = σ0 and σ′ = σ we get that M; Φ′ ` σ0 ·σ′ : Φ0.
Thus applying the same typing rule for t = Xi/(σ0 ·σ) we get that M; Φ′ ` Xi/(σ0 ·σ′) : t0 · (σ0 ·σ′).
Taking into account the definition of · and also lemma B.19, we have that this is the desired result.

For the second part, the proof is identical to the proof done earlier.
For the third part, by typing inversion for [Φ′] t we get that M; Φ′ ` t : t ′.
Using the first part we get that M; Φ ` t ·σ : t ′ ·σ.
Using the typing rule for modal terms we get M ` [Φ] t ·σ : [Φ] t ′ ·σ.

Lemma B.23 (Meta-variables context weakening) 1. If M;Φ ` t : t ′ then M,T1, · · · ,Tn; Φ ` t : t ′.

2. If M;Φ ` σ : Φ′ then M,T1, · · · ,Tn; Φ ` σ : Φ′.

3. If M `Φ wf then M,T1, · · · ,Tn `Φ wf.

4. If M ` T : T ′ then M,T1, · · · ,Tn ` T : T ′.

All are trivial by induction on the typing derivations.

Lemma B.24 (Extension of lemma A.28) If M; Φ ` t : t ′ then either t ′ = Type′ or M; Φ ` t ′ : s.

When t = Xi/σ, by inversion of typing we get M.i = [Φ′] t ′′, M; Φ ` σ : Φ′ and t ′ = t ′′ ·σ.
By inversion of well-formedness for M and lemma 4, we get that M `M.i : [Φ′]s.
Furthermore by inversion of that we get M; Φ′ ` t ′′ : s.
By application of the substitution lemma B.22 for t ′′ and σ we get M; Φ ` t ′′ ·σ : s, which is the desired result.

87



Lemma B.25 (Extension of the lemma A.29 and new lemma for substitutions) 1. If M; Φ ` t : t ′ then
M; Φ, t1, t2, · · · , tn ` t : t ′.

2. If M; Φ ` σ : Φ′ then M; Φ, t1, t2, · · · , tn ` σ : Φ′.

For the first part, proceed identically as before.
For the second part, the proof is entirely similar to the first part (construct and prove well-typedness of identity
substitution, and then allude to substitution theorem).

Now we know that everything that all the theorems we had proved for the non-extended version still hold.
We can now prove a new meta-substitution theorem. Before doing that we need some new definitions.

Definition B.26 (Substitutions of meta-variables) The syntax of substitutions of meta-variables is defined as
follows.

σM ::= • | σM, T

Definition B.27 (Meta-substitution length and access) We define the length of meta-substitutions and access-
ing the i-th element as follows.

|σM|

| • | = 0
|σM, T | = |σM|+1

σM.i

(σM, T ).|σM| = T
(σM, T ).i = σM.i

Definition B.28 (Meta-substitution application) The application of meta-substitutions is defined as follows.
We mark the interesting cases with a star.

t ·σM

s ·σM = s
c ·σM = c
fi ·σM = fi

bi ·σM = bi

(λ(t1).t2) ·σM = λ(t1 ·σM).(t2 ·σM)
(t1 t2) ·σM = (t1 ·σM) (t2 ·σM)
(Π(t1).t2) ·σM = Π(t1 ·σM).(t2 ·σM)

88



t ·σM (continued)

(t1 = t2) ·σM = (t1 ·σM) = (t2 ·σM)
(conv t1 t2) ·σM = conv (t1 ·σM) (t2 ·σM)
(refl t) ·σM = refl (t ·σM)
(symm t) ·σM = symm (t ·σM)
(trans t1 t2) ·σM = trans (t1 ·σM) (t2 ·σM)
(congapp t1 t2) ·σM = congapp (t1 ·σM) (t2 ·σM)
(congimpl t1 t2) ·σM = congimpl (t1 ·σM) (t2 ·σM)
(conglam t) ·σM = conglam (t ·σM)
(congpi t) ·σM = congpi (t ·σM)
(beta t1 t2) ·σM = beta (t1 ·σM) (t2 ·σM)

∗ (Xi/σ) ·σM = (σM.i) · (σ ·σM)

σ ·σM

• ·σM = •
(σ, t) ·σM = σ ·σM, t ·σM

Φ ·σM

• ·σM = •
(Φ, t) ·σM = Φ ·σM, t ·σM

T ·σM

∗ ([Φ] t) ·σM = [Φ ·σM] (t ·σM)

Definition B.29 (Meta-substitution typing) The typing judgement for meta-substitutions is as follows.

M ` σM : M′

M ` • : •
M ` σM : M′ M ` T : T ′ ·σM

M ` (σM, T ) : (M′, T ′)

We proceed to prove the meta-substitution theorem.

The lemmas that we need are the following:

Lemma B.30 (Limits for elements of metasubstitutions) If M ` σM : M′ and σM.i = [Φ] t then t < f |Φ| and
t <b 0.

By repeated inversion of typing for σM we get that M′ ` σM.i : T ′ for some M′ and T ′. By inversion we get that
M′; Φ ` t : t ′. By use of lemma 2 we get the desired.

Lemma B.31 (Freshen on closed term) If t <b n then dt ·σenm = t · dσenm.

Easy by induction on t.

89



Lemma B.32 (Interaction of freshen and metasubstitution application) 1. If M ` σM : M′ then dtenm ·σM =
dt ·σMenm

2. If M ` σM : M′ then dσenm ·σM = dσ ·σMenm

The first part is proved by induction on t. The interesting case is the metavariables case, where we have the
following.
dXi/σenm ·σM = (Xi/dσenm) ·σM = σM.i · (dσenm ·σM) = σM.i · dσ ·σMenm based on the second part.
Now σM.i = [Φ] t and the above is further equal to: t · dσ ·σMenm. The right-hand side is rewritten as follows:
dXi/σ ·σMenm = dσM.i · (σ ·σM)enm = dt · (σ ·σM)enm = t · dσ ·σMenm using lemma B.31 and also B.30.
The second part is proved trivially using induction.

Lemma B.33 (Bind on closed term) If t <b n then bt ·σcnm = t · bσcnm.

Easy by induction on t.

Lemma B.34 (Interaction of bind and metasubstitution application) 1. If M ` σM : M′ then btcnm · σM =
bt ·σMcnm

2. If M ` σM : M′ then bσcnm ·σM = bσ ·σMcnm

Similar to the equivalent lemma for freshen.

Lemma B.35 (Interaction of substitution application and metasubstitution application) 1. (t · σ) · σM =
(t ·σM) · (σ ·σM)

2. (σ ·σ′) ·σM = (σ ·σM) · (σ′ ·σM)

In the first part, we perform induction on t. The interesting case is the metavariables case. We have:
((Xi/σ′) ·σ) ·σM = (Xi/(σ

′ ·σ)) ·σM = σM.i · ((σ′ ·σ) ·σM).
From the second part, this is equal to: σM.i · ((σ′ ·σM) · (σ ·σM)).
There exists a t such that σM.i = [Φ] t and thus the above is further equal to:
t · ((σ′ ·σM) · (σ ·σM)) = (t · (σ′ ·σM)) · (σ ·σM) based on lemma B.19.
The right-hand side is written as: ((Xi/σ′) ·σM) · (σ ·σM) = (t · (σ′ ·σM)) · (σ ·σM). Thus the desired.
The second part is trivially proved by induction and use of the first part.

Lemma B.36 (Application of metasubstitution to identity substitution) idΦ ·σM = idΦ·σM

Trivial by induction on Φ.

Lemma B.37 (Redundant elements in metasubstitutions) 1. If M; Φ` t : t ′ and |σM|= |M| then t ·(σM,T1,T2, · · · ,Tn)=
t ·σM.

2. If M; Φ ` σ : Φ′ and |σM|= |M| then σ · (σM,T1,T2, · · · ,Tn) = σ ·σM.

3. If M `Φ wf and |σM|= |M| then Φ · (σM,T1,T2, · · · ,Tn) = Φ ·σM.

4. If M ` T : T ′ and |σM|= |M| then T · (σM,T1,T2, · · · ,Tn) = T ·σM.

By induction on the typing derivations.

Lemma B.38 (Type of i-th metasubstitution element) If `M wf and M ` σM : M′ then M ` σM.i : (M′.i) ·
σM.

90



By induction and use of lemma B.37; furthermore using inversion of the well-formedness relation for M. Similar
to lemma A.20.

Theorem B.39 (Substitution over metavariables) 1. If M; Φ` t : t ′ and M′ `σM :M then M′; Φ ·σM : t ·σM :
t ′ ·σM.

2. If M; Φ ` σ : Φ′ and M′ ` σM : M then M′; Φ ·σM ` σ ·σM : Φ′ ·σM.

3. If M `Φ wf and M′ ` σM : M then M′ `Φ ·σM wf.

4. If M ` T : T ′ and M′ ` σM : M then M′ ` T ·σM : T ′ ·σM.

Part 1 Proceed by structural induction on the typing of t.

Case
c : t ∈ Σ

M; Φ `Σ c : t
�

From inversion of the well-formedness of Σ we have that •;• ` t : s.
From lemma B.37 we have that t ·σM = t.
So the result follows from application of the same typing rule for Φ ·σM.

Case
Φ.i = t

M; Φ ` fi : t
�

We have t ·σM = (Φ ·σM).i, so using the same typing rule we get M′; Φ ·σM ` fi : t ·σM.

Case
(s,s′) ∈A

M; Φ ` s : s′
�

Trivial by application of the same rule and the definition of ·.

Case
M; Φ ` t1 : s M; Φ, t1 ` dt2e|Φ| : s′ (s,s′,s′′) ∈ R

M; Φ `Π(t1).t2 : s′′
�

By induction hypothesis for t1 we get: M′; Φ ·σM ` t1 ·σM : s.
By induction hypothesis for Φ, t1 ` dt2e|Φ| : s′ we get:
M′; Φ ·σM, t1 ·σM ` dt2e|Φ| ·σM : s′ ·σM.
We have s′ = s′ ·σM trivially.
Also by the lemma B.32, dt2e|Φ| ·σM = dt2 ·σMe|Φ|.
Thus by application of the same typing rule we get M′; Φ ·σM `Π(t1 ·σM).(t2 ·σM) : s′′ which is the desired.

Case
M; Φ ` t1 : s M; Φ, t1 ` dt2e|Φ| : t ′ M; Φ `Π(t1).

⌊
t ′
⌋
|Φ|+1 : s′

M; Φ ` λ(t1).t2 : Π(t1).
⌊
t ′
⌋
|Φ|+1

�

Similarly to the above, from the inductive hypothesis for t1 and t2 (and use of lemma B.32) we get:
σM; Φ ` t1 ·σM : s
σM; Φ ·σM, t1 ·σM ` dt2 ·σMe|Φ| : t ′ ·σM

From the inductive hypothesis for Π(t1).bt ′c we get: M′; Φ ·σM ` (Π(t1).bt ′c|Φ|+1) ·σM : s′.
By the definition of · we get: M′; Φ ·σM `Π(t1 ·σM).(bt ′c|Φ+1| ·σM) : s′.
By the lemma B.34, we have that (bt ′c|Φ+1| ·σM) = bt ′ ·σMc|Φ|+1.
Thus we get M; Φ ·σM `Π(t1 ·σM).bt ′ ·σMc|Φ|+1 : s′.
We can now apply the same typing rule to get: M; Φ ·σM ` λ(t1 ·σM).(t2 ·σM) : Π(t1 ·σM).bt ′ ·σMc|Φ|+1.
We have Π(t1 ·σM).bt ′ ·σMc|Φ|+1 =Π(t1 ·σM).((bt ′c|Φ|+1) ·σM)= (Π(t1).bt ′c|Φ|+1) ·σM, thus this is the desired
result.

91



Case
M; Φ ` t1 : Π(t).t ′ M; Φ ` t2 : t

M; Φ ` t1 t2 :
⌈
t ′
⌉
|Φ| · (idΦ, t2)

�

By induction hypothesis for t1 we get M′; Φ ·σM ` t1 ·σM : Π(t ·σM).(t ′ ·σM).
By induction hypothesis for t2 we get M′; Φ ·σM ` t2 ·σM : t ·σM.
By application of the same typing rule we get M′; Φ ·σM ` (t1 t2) ·σM : dt ′ ·σMe|Φ| · (idΦ, t2 ·σM).
We need to prove that (dt ′e|Φ| · (idΦ, t2)) ·σM = dt ′ ·σMe|Φ| · (idΦ·σM

, t2 ·σM).
From lemma B.35 we have that (dt ′e|Φ| · (idΦ, t2)) ·σM = (dt ′e|Φ| ·σM) · ((idΦ, t2) ·σM).
From lemma B.32 we get that this is further equal to: (dt ′ ·σMe|Φ|) · ((idΦ, t2) ·σM).
From definition of · we get that this is equal to (dt ′ ·σMe|Φ|) · (idΦ ·σM, t2 ·σM).
Last from B.36 we get the desired result.

Case
M.i = T T = [Φ′] t ′ M; Φ ` σ : Φ

′

M; Φ ` Xi/σ : t ′ ·σ �

Assuming that σM.i = [Φ′′] t, we need to show that M′; Φ ·σM ` t · (σ ·σM) : (t ′ ·σ) ·σM.
From lemma B.35, we have that (t ′ ·σ) ·σM = (t ′ ·σM) · (σ ·σM).
So equivalently we need to show M′; Φ ·σM ` t · (σ ·σM) : (t ′ ·σM) · (σ ·σM).

Using the second part of the lemma for σ we get: M′; Φ ·σM ` σ ·σM : Φ′ ·σM.
From lemma B.38 we get that M′ ` σM.i : M.i ·σM.
From hypothesis we have that M.i = [Φ′] t ′.
Thus the above typing judgement is rewritten as M′ ` σM.i : [Φ′ ·σM] t ·σM.
By inversion we get that σM.i = [Φ′ ·σM] t and that M′; Φ′ ·σM ` t : t ′ ·σM.
** Now we use the main substitution theorem B.22 for t and σ ·σM and get:
M′; Φ ·σM ` t · (σ ·σM) : (t ′ ·σM) · (σ ·σM).

Case (otherwise) �

Simple to prove based on the methods we have shown above.

Part 2 By induction on the typing derivation of σ.

Case
M `Φ wf

M; Φ ` • : • � Use of the same typing rule, for Φ ·σM which is well formed based on part 3.

Case
M; Φ ` σ : Φ

′ M; Φ ` t : t ′ ·σ
M; Φ ` σ, t : (Φ′, t ′)

� By induction hypothesis and use of part 1 we get:

M′; Φ ·σM ` σ ·σM : Φ′ ·σM

M′; Φ ·σM ` t ·σM : (t ′ ·σ) ·σM

By use of lemma B.35 in the typing for t ·σM we get that:
M′; Φ ·σM ` t ·σM : (t ′ ·σM) · (σ ·σM)
By use of the same typing rule we get: M′; Φ ·σM ` (σ ·σM, t ·σM) : (Φ′ ·σM, t ′ ·σM)

Part 3 By induction on the well-formedness derivation of Φ.

Case M ` • wf �

Trivial use of the same typing rule.

Case
M `Φ wf M; Φ ` t : s

M `Φ, t wf
�

Use of induction hypothesis, part 2, and the same typing rule.

92



Part 4 By induction on the typing derivation for T .

Case
M; Φ ` t : t ′

M ` [Φ] t : [Φ] t ′
�

Using part 1 we get M′; Φ ·σM ` t ·σM : t ′ ·σM. Thus using the same typing rule we get M′ ` [Φ ·σM] t ·σM :
[Φ ·σM] t ′ ·σM, which is the desired result.

B.2 Extension with metavariables and polymorphic contexts

In order to incorporate polymorphic contexts, we change the representation of free variables from a deBruijn
level to an index into a parametric context. We thus need to redefine the notions of length of a context, variable
limits etc. in order to be compatible with the new definition of free variables.

Definition B.40 (Syntax of the language) The syntax of the logic language is extended below. We use the
syntactic class T for modal terms and modal contexts, and the syntactic class K for their classifiers (modal
terms and context prefixes). Furthermore, we use a single context Ψ for both extensions.

Φ ::= · · · | Φ,Xi

σ ::= · · · | σ, id(Xi)

Ψ ::= • | Ψ, K
t ::= s | c | fI | bi | λ(t1).t2 | t1 t2 | Π(t1).t2 | t1 = t2 | conv t t | refl t | symm t | trans t1 t2 | congapp t1 t2
| congimpl t1 t2 | conglam t | congpi t | beta t1 t2 | Xi/σ

T ::= [Φ] t | [Φ]Φ′

K ::= [Φ] t | [Φ]ctx
I ::= • | I, · | I, |Xi|

Definition B.41 (Substitution length) Redefinition of B.3.

|σ|= I

| • | = •
|σ, t| = |σ|, ·
|σ, id(Xi)| = |σ|, |Xi|

Definition B.42 (Ordering of indexes) We define what it means for an index to be less than another index.

I < I′

I < I′, · when I = I′ or I < I′
I < I′, |Xi| when I = I′ or I < I′

I≤ I′

I ≤ I′ when I = I′ or I < I′

Definition B.43 (Substitution access) Redefinition of B.4. We assume I < |σ|.

93



σ.I

(σ, t).I = t when |σ|= I
(σ, t).I = σ.I otherwise
(σ, id(Xi)).I = t when |σ|= I
(σ, id(Xi)).I = σ.I otherwise

Definition B.44 (Context length and access) Redefinition of context length and context access, from definition
B.2. Furthermore we define length and element access for environments of contexts. Element access assumes
I < |Φ|.

|Φ|= I

| • | = •
|Φ, t| = |Φ|, ·
|Φ, Xi| = |Φ|, |Xi|

Φ.I

(Φ, t).I = t when |Φ|= I
(Φ, t).I = Φ.I otherwise
(Φ, Xi).I = Xi when |Φ|= I
(Φ, Xi).I = Φ.I otherwise

Definition B.45 (Extensions context length and access) New definition.

|Ψ|

| • | = 0
|Ψ, K| = |Ψ|+1

Ψ.i

(Ψ, K).|Ψ| = K
(Ψ, K).i = Ψ.i when i < |Ψ|

Definition B.46 (Substitution application) Extension of substitution application from definition B.5. The ap-
plication of a substitution to a term is entirely identical as before, with a slight adjustment for the new definitions
of variable indexes.

t ·σ

fI ·σ = σ.I

σ′ ·σ

(σ′, id(Xi)) ·σ = σ′ ·σ, id(Xi)

94



Definition B.47 (Identity substitution) Redefinition of identity substitution from B.6.

id• = •
idΦ, t = idΦ, f|Φ|
idΦ, Xi = idΦ, id(Xi)

Definition B.48 (Variable limits for terms and substitutions) Redefinition of the definition B.7.

t < f I

s < f I
c < f I
fI <

f I′ ⇐ I < I′
bi <

f I
(λ(t1).t2)< f I ⇐ t1 < f I∧ t2 < f I
t1 t2 < f I ⇐ t1 < f I∧ t2 < f I

· · ·

σ < f I

•< f I
σ, t < f I ⇐ σ < f I∧ t < f I
σ, id(Xi)<

f I ⇐ σ < f I∧∃I′ : (I′, |Xi|)≤ I

σ <b n

σ, id(φi)<
b n ⇐ σ <b n

Definition B.49 (Extension of freshening) This is an extension of definition B.8 and adjustment for indexes.
We assume t < f I and σ < f I. Also t <b n+1 and σ <b n+1.

dtenI

dbnenI = fI
dbienI = bi

dσenI

d•enI = •
dσ, tenI = dσenI , dtenI
dσ, id(Xi)enI = dσenI , id(Xi)

Definition B.50 (Extension of binding) This is an extension of definition B.9 and adjustment for indexes. We
assume t < f I and σ < f I. Also t <b n and σ <b n.

95



btcnI

b fI′cnI = bn when I = I′, ·
b fI′cnI = fI′ otherwise

bσcnI

b•cnI = •
bσ, tcnI = bσcnI , btcnI
bσ, id(Xi)cnI = bσcnI , id(Xi)

Definition B.51 (Environment subsumption) We define what it means for an environment to be a subenviron-
ment (be a prefix of; or be subsumed by) another one.

Φ⊆Φ′

Φ⊆Φ

Φ⊆Φ′, t ⇐ Φ⊆Φ′

Φ⊆Φ′, Xi ⇐ Φ⊆Φ′

Ψ⊆Ψ′

Ψ⊆Ψ

Ψ⊆Ψ′, K ⇐ Ψ⊆Ψ′

Definition B.52 (Substitution subsumption) We define what it means for an substitution to be a prefix of
another one.

σ⊆ σ′

σ⊆ σ

σ⊆ σ′, t ⇐ σ⊆ σ′

σ⊆ σ′, id(Xi) ⇐ σ⊆ σ′

Definition B.53 The typing judgements defined in B.10 and are redefined as follows.

1. ` Σ wf is adjusted as shown below.

2. `Σ Φ wf is redefined as Ψ `Σ Φ wf, and the rules below are added.

3. Φ ` t : t ′ is redefined as Ψ; Φ ` t : t ′, and adjusted as shown below.

4. Φ ` σ : Φ′ is redefined as Ψ; Φ ` σ : Φ′ and the rules below are added.

5. `Ψ wf is defined below.

6. Ψ ` T : K is defined below.

96



` Σ wf

` Σ wf •; • ` t : s (c :) 6∈ Σ

` (Σ, c : t) wf

Ψ `Σ Φ wf

Ψ ` • wf

Ψ `Φ wf Ψ; Φ ` t : s

Ψ ` (Φ, t) wf

Ψ `Φ wf Ψ.i = [Φ]ctx

Ψ ` (Φ, Xi) wf

Ψ; Φ ` t : t ′

c : t ∈ Σ

Ψ; Φ `Σ c : t

Φ.I = t

Ψ; Φ ` fI : t

Ψ; Φ ` t1 : s Ψ; Φ, t1 ` dt2e|Φ| : s′ (s,s′,s′′) ∈ R

Ψ; Φ `Π(t1).t2 : s′′

Ψ; Φ ` t1 : s Ψ; Φ, t1 ` dt2e|Φ| : t ′ Ψ; Φ `Π(t1).
⌊
t ′
⌋
|Φ|, · : s′

Ψ; Φ ` λ(t1).t2 : Π(t1).
⌊
t ′
⌋
|Φ|, ·

Ψ; Φ ` t1 : Π(t).t ′ Ψ; Φ ` t2 : t

Ψ; Φ ` t1 t2 :
⌈
t ′
⌉
|Φ| · (idΦ, t2)

Ψ.i = T T = [Φ′] t ′ Ψ; Φ ` σ : Φ
′

Ψ; Φ ` Xi/σ : t ′ ·σ

Ψ; Φ ` σ : Φ′

Ψ; Φ ` • : •
Ψ; Φ ` σ : Φ

′
Ψ; Φ ` t : t ′ ·σ

Ψ; Φ ` (σ, t) : (Φ′, t ′)

Ψ; Φ ` σ : Φ
′

Ψ.i = [Φ′]ctx Φ
′, Xi ⊆Φ

Ψ; Φ ` (σ, id(Xi)) : (Φ′, Xi)

`Ψ wf

`Ψ wf

`Ψ wf Ψ `Φ wf

` (Ψ, [Φ]ctx) wf

`Ψ wf Ψ ` [Φ] t : [Φ]s

` (Ψ, [Φ] t) wf

Ψ ` T : K

Ψ; Φ ` t : t ′

Ψ ` [Φ] t : [Φ] t ′
Ψ `Φ, Φ

′ wf

Ψ ` [Φ]Φ′ : [Φ]ctx

Lemma B.54 (Extension of lemma 2) 1. If t < f I and |Φ|= I then t · idΦ = t.

2. If σ < f I and |Φ|= I then σ · idΦ = σ.

Part 1 is proved by induction on t < f I. The interesting case is fI′ , with I′ < I. In this case we have to prove
idΦ.I′ = fI′ . This is done by induction on I′ < I.
When I = I′, · we have by inversion of |Φ| = I that Φ = Φ′, t and |Φ′| = I′. Thus idΦ = idΦ′, fI′ and thus the
desired result.
When I = I′, |Xi|, exactly as above.
When I = I∗, · and I′ < I∗, we have that Φ = Φ∗, t and |Φ∗| = I∗. By (inner) induction hypothesis we get that
idΦ∗ .I′ = fI′ . From this directly we get that idΦ.I′ = fI′ .
When I = I∗, |Xi| and I′ < I∗, entirely as the previous case.
Part 2 is trivial to prove by induction and use of part 1 in cases σ = • or σ = σ′, t. In the case σ = σ′, id(Xi) we
have: σ′ < f I thus by induction σ′ · idΦ = σ′, and furthermore (σ′, id(Xi)) · idΦ = σ.

97



Lemma B.55 (Length of subcontexts) If Φ⊆Φ′ then |Φ| ≤ |Φ′|.

Trivial by induction on Φ⊆Φ′.

Lemma B.56 (Variable limits can be increased) 1. If t < f I and I < I′ then t < f I′

2. If t <b n and n < n′ then t <b n′

3. If σ < f I and I < I′ then σ < f I′

4. If σ <b n and n < n′ then σ <b n′

Trivial by induction on t or σ.

Lemma B.57 (Extension of lemma 2) 1. If Ψ; Φ ` t : t ′ then t < f |Φ| and t <b 0.

2. If Ψ; Φ ` σ : Φ′ then σ < f |Φ|, σ <b 0 and |σ|= |Φ′|.

Part 1 is proved similarly as before.
Part 2 needs to account for the new case σ = σ∗, id(Xi).
By inversion of typing for σ we get that Φ′ = Φ∗, Xi with σ∗ : Φ∗. By induction we get that σ∗ < f |Φ∗|. Again
by inversion of typing for σ we get that Φ∗, Xi ⊆ Φ. Thus σ∗ < f |Φ| by use of lemma B.56. Furthermore from
Φ∗, Xi ⊆ Φ and lemma B.55 we get that |Φ∗|, |Xi| ≤ |Φ|. Thus for I′ = |Φ∗| we have I′, |Xi| < |Φ| thus we
overall get σ < f |Φ|.
Furthermore the other two parts of the theorem are trivial from induction hypothesis.

Lemma B.58 (Extension of lemma B.13) If Ψ ` Φ wf then for any Φ′ such that Φ ⊆ Φ′ and Ψ ` Φ′ wf, we
have that Ψ; Φ′ ` idΦ : Φ.

Similar to the original proof. The new case for Φ = Φ′, Xi works as follows. By induction hypothesis for Φ′ we
get that Ψ; Φ′, Xi ` idΦ′ : Φ′. Now for any environment Φ∗ such that Φ′, Xi ⊆ Φ∗, by using the typing rule for
id(Xi), we get the desired.

Lemma B.59 (Extension of lemma B.14) If Ψ ` Φ wf and |Φ| = I then for all I′ < I with Φ.I′ = t, we have
Φ.I′ < f I.

Identical as before.

Lemma B.60 (Extension of lemmas B.15 and B.15) 1. If t < f I, |σ|= I, t ·σ = t ′ and σ⊆ σ′ then t ·σ′ = t ′.

2. If σ < f I, |σ′|= I, σ ·σ′ = σr and σ⊆ σ′′ then σ ·σ′′ = σr.

Part 1 is identical as before. In part 2, in case σ = σ, id(Xi), proved trivially by definition of substitution
application.

Lemma B.61 (Extension of lemma B.16) If Ψ `Φ wf, Φ.I = t and Ψ; Φ′ ` σ : Φ, then Ψ; Φ′ ` σ.I : t ·σ.

The proof proceeds by structural induction on the typing derivation for σ as before. In case σ = σ∗, id(Xi), we
have that (Φ∗, Xi) ⊆ Φ′. We have that Φ∗.I = Φ.I = t (since I 6 =|Φ∗|, because (Φ∗, Xi).|Φ| 6 =t). Thus from
induction hypothesis for σ∗ we get that Ψ; Φ′ ` σ∗.I : t ·σ∗. Using lemma B.60 and also the fact that σ.I = σ∗.I,
we get that Ψ; Φ′ ` σ.I : t ·σ.

Lemma B.62 (Extension of lemma B.17) 1. If t < f I, t <b n+ 1, σ < f I′ and |σ| = I then dt ·σenI′ = dtenI ·
(σ, fI′).

98



2. If σ′ < f I, σ′ <b n+1, σ < f I′ and |σ|= I then dσ′ ·σenI′ = dσ′enI · (σ, fI′).

Part 1 is entirely similar as before, with slight adjustments to account for the new type of indices. Part 2 needs
to account for the new case of σ′ = σ′′, id(Xi), which is entirely trivial based on the definition.

Lemma B.63 (Extension of lemma B.18) 1. If t < f I, ·, t <b n, σ < f I′ and |σ| = I then bt · (σ, fI′)cnI′, · =
btcnI′, · ·σ.

2. If σ′ < f I, ·, σ′ <b n, σ < f I′ and |σ|= m then bσ′ · (σ, fI′)cnI′, · = bσ′cnI′, · ·σ.

Similarly to the above.

Lemma B.64 (Extension of lemma B.19) 1. If t < f I, |σ|= I, σ < f I′ and |σ′|= I′ then (t ·σ) ·σ′ = t · (σ ·σ′).
2. If σ1 <

f I, |σ|= I, σ < f I′ and |σ′|= I′ then (σ1 ·σ) ·σ′ = σ1 · (σ ·σ′).

Part 1 is identical as before. Part 2 needs to account for the case where σ1 = σ′1, id(Xi), which is entirely trivial.

Lemma B.65 (Extension of lemma B.20) If |σ|= I and |Φ|= I then idΦ ·σ = σ.

We need to account for the new case of Φ = Φ′, Xi. In that case, idΦ′, Xi = idΦ′ , id(Xi). By inversion of
|σ|= I = |Φ′|, |Xi| we get that σ = σ′, id(Xi). By induction hypothesis we get idΦ′ ·σ′ = σ′. By lemma B.60 we
get idΦ′ ·σ = σ′. Last it is trivial to see that (idΦ′ , id(Xi)) ·σ = σ′, id(Xi) = σ.

Lemma B.66 (Extension of lemma B.21) 1. If dtenI = dt ′enI then t = t ′.

2. If dσenI = dσ′enI then σ = σ′.

Part 1 is identical as before; part 2 holds trivially for the new case of σ.

Theorem B.67 (Extension of main substitution theorem B.22) 1. If Ψ; Φ ` t : t ′ and Ψ; Φ′ ` σ : Φ then
Ψ; Φ′ ` t ·σ : t ′ ·σ.

2. If Ψ; Φ′ ` σ : Φ and Ψ; Φ′′ ` σ′ : Φ′ then Ψ; Φ′′ ` σ ·σ′ : Φ.

3. If Ψ ` [Φ′] t : [Φ′] t ′ and Ψ; Φ ` σ : Φ′ then Ψ ` [Φ] t ·σ : [Φ] t ′ ·σ.

Part 1 is identical as before; all the needed theorems were adjusted above, so the new form of indexes does
not change the proof at all. The only case that needs adjustment is the metavariables case.

Case
Ψ.i = T T = [Φ′] t ′ Ψ; Φ ` σ : Φ

′

Ψ; Φ ` Xi/σ0 : t ′
�

From Ψ; Φ ` Xi/σ0 : t ′ we get that Ψ.i = [Φ0] t0, Ψ; Φ ` σ0 : Φ0 and t ′ = t0 ·σ0.
Applying the second part of the lemma for σ = σ0 and σ′ = σ we get that Ψ; Φ′ ` σ0 ·σ′ : Φ0.
Thus applying the same typing rule for t = Xi/(σ0 ·σ) we get that Ψ; Φ′ ` Xi/(σ0 ·σ′) : t0 · (σ0 ·σ′).
Taking into account the definition of · and also lemma B.64, we have that this is the desired result.

For the second part, we need to account for the new case of substitutions.

Case
Ψ; Φ

′ ` σ : Φ0 Ψ.i = [Φ0]ctx Φ0, Xi ⊆Φ
′

Ψ; Φ
′ ` (σ, id(Xi)) : (Φ0, Xi)

�

By induction hypothesis for σ, we get: Ψ; Φ′′ ` σ ·σ′ : Φ0.
We need to prove that (Φ0, Xi)⊆Φ′′.

99



We have that Ψ; Φ′′ ` σ′ : Φ′.
By induction on (Φ0, Xi)⊆Φ′ and repeated inversions of σ′ we arrive at a σ′′ ⊆ σ′ such that:
Ψ; Φ′′ ` σ′′ : Φ0, Xi

By inversion of this we get that (Φ0, Xi)⊆Φ′′.
Thus, using the same typing rule, we get Ψ; Φ′′ ` (σ ·σ′, id(Xi)) : (Φ0, Xi), which is the desired.

For the third part, the proof is identical as before.

Lemma B.68 (Extension of lemma B.24) If Ψ; Φ ` t : t ′ then either t ′ = Type′ or Ψ; Φ ` t ′ : s.

Identical as before.

Lemma B.69 (Extension of the lemma B.25) 1. If Ψ; Φ ` t : t ′ and Φ⊆Φ′ then Ψ; Φ′ ` t : t ′.

2. If Ψ; Φ ` σ : Φ′′ and Φ⊆Φ′ then Ψ; Φ′ ` σ : Φ′′.

Identical as before.

Lemma B.70 (Adaptation of lemma 4) 1. If Ψ;Φ ` t : t ′ and Ψ⊆Ψ′ then Ψ′; Φ ` t : t ′.

2. If Ψ;Φ ` σ : Φ′ and Ψ⊆Ψ′ then Ψ′; Φ ` σ : Φ′.

3. If Ψ `Φ wf and Ψ⊆Ψ′ then Ψ′ `Φ wf.

4. If Ψ ` T : K and Ψ⊆Ψ′ then Ψ′ ` T : K.

Parts 2 and 3 are trivial for the new cases; otherwise identical as before.

Now we have proved the fundamentals. We proceed to define substitutions for the extension variables (meta-
and context-variables), typing for such substitutions, and prove an extensions substitution theorem.

Definition B.71 (Substitutions of extension variables) The syntax of substitutions for meta- and context-
variables is given below.

σΨ ::= • | σΨ, T

Definition B.72 (Context, substitution, index concatenation) We define what it means to concatenate one
context (substitution, index) to another.

Φ, Φ′

Φ, (•) = Φ

Φ, (Φ′, t) = (Φ, Φ′), t
Φ, (Φ′, Xi) = (Φ, Φ′), Xi

σ, σ′

σ, (•) = σ

σ, (σ′, t) = (σ, σ′), t
σ, (σ′, id(Xi)) = (σ, σ′), id(Xi)

100



I, I′

I, (•) = I
I, (I′, ·) = (I, I′), ·
I, (I′, |Xi|) = (I, I′), |Xi|

Definition B.73 (Partial identity substitution) We define what partial identity substitutions (for a suffix of a
context) are.

id[Φ]Φ′

id[Φ]• = •
id[Φ]Φ′, t = id[Φ]Φ′ , f|Φ|+|Φ′|
id[Φ]Φ′, Xi = id[Φ]Φ′ , id(Xi)

Definition B.74 (Extensions substitution length and access) Defined below.

|σΨ|

| • | = 0
|σΨ, T | = 1+ |σΨ|

Definition B.75 (Extension substitution and context concatenation) We define concatenation of extension
substitutions and extensions contexts below.

Ψ, Ψ′

Ψ, (•) = Ψ

Ψ, (Ψ′, K) = (Ψ, Ψ′), K

σΨ, σ′
Ψ

σΨ, (•) = σΨ

σΨ, (σ
′
Ψ
, T ) = (σΨ, σ′

Ψ
), T

Definition B.76 (Extensions substitution subsumption) Defined below.

σΨ ⊆ σ′
Ψ

σΨ ⊆ σΨ

σΨ ⊆ σ′
Ψ
, T ⇐ σΨ ⊆ σ′

Ψ

Definition B.77 (Application of extensions substitution) This is an adaptation of definition B.28.

101



I ·σΨ

• ·σΨ = •
(I, ·) ·σΨ = (I ·σΨ), ·

∗ (I, |Xi|) ·σΨ = (I ·σΨ), |Φ′| when σΨ.i = [Φ]Φ′

t ·σΨ

fI ·σΨ = fI·σΨ

(Xi/σ) ·σΨ = t · (σ ·σΨ) when σΨ.i = [Φ] t

σ ·σΨ

• ·σΨ = •
(σ, t) ·σΨ = σ ·σΨ, t ·σΨ

∗ (σ, id(Xi)) ·σΨ = σ ·σΨ, idσΨ.i when σΨ.i = [Φ]Φ′

Φ ·σΨ

• ·σΨ = •
(Φ, t) ·σΨ = Φ ·σΨ, t ·σΨ

(Φ, Xi) ·σΨ = Φ ·σΨ, Φ′ when σΨ.i = [Φ]Φ′

T ·σΨ

([Φ] t) ·σΨ = [Φ ·σΨ] (t ·σΨ)
([Φ]Φ′) ·σΨ = [Φ ·σΨ](Φ

′ ·σΨ)

K ·σΨ

([Φ] t) ·σΨ = [Φ ·σΨ] (t ·σΨ)
([Φ]ctx) ·σΨ = [Φ ·σΨ]ctx

σΨ ·σ′Ψ

• ·σ′
Ψ

= •
(σΨ, T ) ·σ′

Ψ
= σΨ ·σ′Ψ, T ·σ′

Ψ

Definition B.78 (Application of extended substitution to open extended context) Assuming that Ψ′ does not
include variables bigger than X|Ψ|, we have:

Ψ′ ·σΨ

• ·σΨ = •
(Ψ′, K) ·σΨ = Ψ′ ·σΨ, K · (σΨ, X|Ψ|, · · · ,X|Ψ|+|Ψ′|)

Definition B.79 (Identity extension substitution) The identity substitution for extension contexts is defined
below.

102



idΨ

id• = •
idΨ, K = idΨ, X|Ψ|

Definition B.80 (Extensions substitution typing) The typing judgement for extensions substitutions is rede-
fined as Ψ ` σΨ : Ψ′. The rules are given below. We also define typing for open extension contexts.

Ψ ` σΨ : Ψ′

Ψ ` • : •
Ψ ` σΨ : Ψ

′
Ψ ` T : K ·σΨ

Ψ ` (σΨ, T ) : (Ψ′, K)

Ψ `Ψ′ wf

`Ψ, Ψ
′ wf

Ψ `Ψ
′ wf

Lemma B.81 (Interaction of extensions substitution and length) 1. |σ| ·σΨ = |σ ·σΨ|
2. |Φ| ·σΨ = |Φ ·σΨ|

By induction on σ and Φ.

Lemma B.82 (Interaction of environment subsumption and length) If Φ⊆Φ′ then |Φ| ≤ |Φ′|.

By induction on Φ⊆Φ′.

Lemma B.83 (Interaction of environment subsumption and extensions substitution) If Φ ⊆ Φ′ then Φ ·
σΨ ⊆Φ′ ·σΨ.

By induction on Φ⊆Φ′.

Lemma B.84 (Interaction of extensions substitution and element access) 1. (σ.I) ·σΨ = (σ ·σΨ).I ·σΨ

2. (Φ.I) ·σΨ = (Φ ·σΨ).I ·σΨ

By induction on I and taking into account the implicit assumption that I < |σ| or I < |Φ|.

Lemma B.85 (Extension of lemma B.30) If Ψ ` σΨ : Ψ′ and σΨ.i = [Φ] t then t < f |Φ| and t <b 0.

Identical as before.

Lemma B.86 (Extension of lemma B.31) If t <b n then dt ·σenm = t · dσenm.

Identical as before.

Lemma B.87 (Extension of lemma B.32) 1. If Ψ ` σΨ : Ψ′ then dtenI ·σΨ = dt ·σΨenI·σΨ

2. If Ψ ` σΨ : Ψ′ then dσenI ·σΨ = dσ ·σΨenI·σΨ

103



Part 1 is proved by induction on t.
In the case t = bn, we have that the left-hand side is equal to fI ·σΨ = fI·σΨ

. The right-hand side is equal to
dbnenI·σΨ

= fI·σΨ
.

In the case t = Xi/σ, this is proved entirely as before, with trivial changes to account for the new indexes.
Part 2 is proved by induction on σ, as previously. For the new case σ = σ′, id(Xi), the result is trivial.

Lemma B.88 (Extension of lemma B.33) If t <b n then bt ·σcnI = t · bσcnI .

Identical as before.

Lemma B.89 (Extension of lemma B.34) 1. If Ψ ` σΨ : Ψ′ then btcnI ·σΨ = bt ·σΨcnI·σΨ

2. If Ψ ` σΨ : Ψ′ then bσcnI ·σΨ = bσ ·σΨcnI·σΨ

Proved similarly to lemma B.87.
When t = fI, we have that the left-hand side is equal to bn, while the right-hand side is equal to b fI·σΨ

cnI·σΨ
= bn.

Lemma B.90 (Extension of lemma B.35) 1. (t ·σ) ·σΨ = (t ·σΨ) · (σ ·σΨ)

2. (σ ·σ′) ·σΨ = (σ ·σΨ) · (σ′ ·σΨ)

Part 1 is entirely similar as before, with the exception of case t = fI. This is proved using the lemma B.84. Part
2 is trivially proved for the new case of σ.

Lemma B.91 (Extension of lemma B.36) idΦ ·σΨ = idΦ·σΨ

By induction on Φ.
When Φ = •, trivial.
When Φ = Φ′, t, by induction we have idΦ′ · σΨ = idΦ′·σΨ

. Thus (idΦ′ , f|Φ′|) · σΨ = idΦ′·σΨ
, f|Φ′|·σΨ

=
idΦ′·σΨ

, f|Φ′·σΨ| = idΦ·σΨ
.

When Φ = Φ′, Xi, we have that idΦ′·σΨ
, idσΨ.i = idΦ′·σΨ, σΨ.i (by simple induction on Φ′′ = σΨ.i).

Lemma B.92 (Extension of lemma B.37) 1. If Ψ; Φ ` t : t ′, |σΨ|= |Ψ| and σΨ ⊆ σ′
Ψ

then t ·σ′
Ψ
= t ·σΨ.

2. If Ψ; Φ ` σ : Φ′, |σΨ|= |Ψ| and σΨ ⊆ σ′
Ψ

then σ ·σ′
Ψ
= σ ·σΨ.

3. If Ψ `Φ wf, |σΨ|= |Ψ| and σΨ ⊆ σ′
Ψ

then Φ ·σ′
Ψ
= Φ ·σΨ.

4. If Ψ ` T : K, |σΨ|= |Ψ| and σΨ ⊆ σ′
Ψ

then T ·σ′
Ψ
= T ·σΨ.

5. If K ·σΨ is well-defined, and σΨ ⊆ σ′
Ψ

, then K ·σΨ = K ·σ′
Ψ

.

6. If Ψ ·σΨ is well-defined, and σΨ ⊆ σ′
Ψ

, then Ψ ·σΨ = Ψ ·σ′
Ψ

.

Parts 2 and 3 are trivially extended for the new cases; others are identical or easily provable by induction.

Lemma B.93 (Extension of lemma B.38) If `Ψ wf and Ψ ` σΨ : Ψ′ then Ψ ` σΨ.i : Ψ′.i ·σΨ.

By induction on σΨ and then cases on i < |σΨ|.
If i = |σΨ|−1 then proceed by cases for σΨ.

If σΨ = •, then the case is impossible.
If σΨ = σ′

Ψ
, [Φ] t, we have by typing inversion for σΨ that Ψ ` [Φ] t : (Ψ′.i) ·σ′

Ψ
, which by lemma

B.92 is equal to the desired.
If σΨ = σ′

Ψ
, [Φ]Φ′, we get by typing inversion for σΨ that Ψ ` [Φ]Φ′ : [Ψ′.i ·σ′

Ψ
]ctx which again by

lemma B.92 is the desired.
If i < |σΨ|− 1 then by inversion of σΨ we have that either σΨ = σ′

Ψ
, [Φ] t or σΨ = σ′

Ψ
, [Φ]Φ′. In both cases

i < |σ′
Ψ
|−1 so by induction hypothesis get σ′

Ψ
.i : Ψ′.i ·σ′

Ψ
which, using B.92, is the desired.

104



Lemma B.94 (Interaction of two extension substitutions) 1. (I ·σΨ) ·σ′Ψ = I · (σΨ ·σ′Ψ)
2. (t ·σΨ) ·σ′Ψ = t · (σΨ ·σ′Ψ)
3. (Φ ·σΨ) ·σ′Ψ = Φ · (σΨ ·σ′Ψ)
4. (σ ·σΨ) ·σ′Ψ = σ · (σΨ ·σ′Ψ)
5. (T ·σΨ) ·σ′Ψ = T · (σΨ ·σ′Ψ)
6. (K ·σΨ) ·σ′Ψ = K · (σΨ ·σ′Ψ)
7. (Ψ ·σΨ) ·σ′Ψ = Ψ · (σΨ ·σ′Ψ)

Part 1 By induction on I. The interesting case is I = I′, Xi. In that case we have (I ·σΨ) ·σ′Ψ = (I′ ·σΨ) ·
σ′

Ψ
, σΨ.i ·σ′Ψ. Trivially σΨ.i ·σ′Ψ = (σΨ ·σ′Ψ).i, and also using induction hypothesis, we have that the above is

further equal to I′ · (σΨ ·σ′Ψ), (σΨ ·σ′Ψ).i, which is exactly the desired.

Part 2 By induction on t. The interesting case is t = Xi/σ. The left-hand-side is then equal to (σΨ.i · (σ ·σΨ)) ·
σ′

Ψ
, with σΨ.i = [Φ] t. This is further rewritten as (t · (σ ·σΨ)) ·σ′Ψ = (t ·σ′

Ψ
) · ((σ ·σΨ) ·σ′Ψ) through lemma

B.90. Furthermore through part 4 we get that this is equal to (t ·σ′
Ψ
) · (σ · (σΨ ·σ′Ψ)).

The right-hand-side is written as: (Xi/σ) · (σΨ ·σ′Ψ). We have that (σΨ ·σ′Ψ).i = (σΨ.i) ·σ′Ψ = [Φ ·σ′
Ψ
] (t ·σ′

Ψ
).

Thus (Xi/σ) · (σΨ ·σ′Ψ) = (t ·σ′
Ψ
) · (σ · (σΨ ·σ′Ψ)).

Part 3 By induction on Φ. When Φ = Φ, Xi, we have that the left-hand-side is equal to (Φ ·σΨ) ·σ′Ψ, Φ′ ·σ′
Ψ

with σΨ.i = [Φ]Φ′. By induction hypothesis this is further equal to Φ · (σΨ ·σ′Ψ), Φ′ ·σ′
Ψ

.
Also, we have that (σΨ ·σ′Ψ).i = [Φ ·σ′

Ψ
]Φ′ ·σ′

Ψ
. Thus the right-hand-side is equal to Φ · (σΨ ·σ′Ψ), Φ′ ·σ′

Ψ
,

which is exactly equal to the left-hand-side.

Rest Similarly as above.

Lemma B.95 (Interaction of identity substitution and extension substitution) If |σΨ|= |Ψ| then idΨ ·σΨ =
σΨ

By induction on Ψ. If Ψ = •, trivial. If Ψ = Ψ′, K then idΨ′, K ·σΨ = (idΨ′ , X|Ψ′|) ·σΨ. From |σΨ| = |Ψ| we
have that σΨ = σ′

Ψ
, T , and from induction hypothesis for σ′

Ψ
we get that the above is equal to σ′

Ψ
, X|Ψ′| ·σΨ =

σ′
Ψ
, T = σΨ.

Part 2

Lemma B.96 (Interaction of identity substitution and extension substitution) 1. t · idΨ = t

2. Φ · idΨ = Φ

3. σ · idΨ = σ

4. T · idΨ = T

5. K · idΨ = K

6. σΨ · idΨ = σΨ

All are trivially proved by induction. We will give only details for the σΨ case.
By induction on σΨ. If σΨ = •, trivial. If σΨ = σ′

Ψ
, T , then we have that (σ′

Ψ
,T ) · idΨ = σ′

Ψ
· idΨ, T · idΨ. The

first part is equal to σ′
Ψ

by induction hypothesis (and use of lemma B.92). For the second we split cases for T .
We have ([Φ] t) · idΨ = [Φ · idΨ] (t · idΨ) = [Φ] t, and similarly for ([Φ]Φ′) · idΨ = [Φ]Φ′, by use of the other parts.

Theorem B.97 (Extension of lemma B.39) 1. If Ψ; Φ ` t : t ′ and Ψ′ ` σΨ : Ψ then Ψ′; Φ ·σΨ ` t ·σΨ : t ′ ·σΨ.

105



2. If Ψ; Φ ` σ : Φ′ and Ψ′ ` σΨ : Ψ then Ψ′; Φ ·σΨ ` σ ·σΨ : Φ′ ·σΨ.

3. If Ψ `Φ wf and Ψ′ ` σΨ : Ψ then Ψ′ `Φ ·σΨ wf.

4. If Ψ ` T : K and Ψ′ ` σΨ : Ψ then Ψ′ ` T ·σΨ : K ·σΨ.

5. If Ψ′ ` σΨ : Ψ and Ψ′′ ` σ′
Ψ

: Ψ′ then Ψ′′ ` σΨ ·σ′Ψ : Ψ.

Part 1. Case
Φ.I = t

Ψ; Φ ` fI : t
�

We have (Φ ·σΨ).I ·σΨ = (Φ.I) ·σΨ from lemma B.84.

Case
Ψ.i = T T = [Φ′] t ′ Ψ; Φ ` σ : Φ

′

Ψ; Φ ` Xi/σ : t ′ ·σ �

From lemma B.93 get Ψ′ ` σΨ.i : (Ψ.i) ·σΨ.
Furthermore, this can be written as:
Ψ′ ` σΨ.i : [Φ′ ·σΨ] t ′ ·σΨ.
Thus by typing inversion, and assuming σΨ.i = [Φ′ ·σΨ] t get:
Ψ′; Φ′ ·σΨ ` t : t ′ ·σΨ. From part 2 for σ get Ψ′; Φ ·σΨ ` σ ·σΨ : Φ′ ·σΨ.
From lemma B.67 and the above we get Ψ′; Φ ·σΨ ` t · (σ ·σΨ) : (t ′ ·σΨ) · (σ ·σΨ).
Using the lemma B.90 we get that (t ′ ·σΨ) · (σ ·σΨ) = (t ′ ·σ) ·σΨ, thus the above is the desired.

Case (otherwise) �

The rest of the cases are trivial to adapt to account for indexes from lemma B.39.

Part 2. The cases for σ = • or σ = σ′, t are entirely similar as before.

Case
Ψ; Φ ` σ : Φ

′
Ψ.i = [Φ′]ctx Φ

′, Xi ⊆Φ

Ψ; Φ ` (σ, id(Xi)) : (Φ′, Xi)
�

In this case we need to prove that Ψ′; Φ ·σΨ ` (σ ·σΨ, idσΨ.i) : (Φ′ ·σΨ, σΨ.i).
By induction hypothesis for σ we get that Ψ′; Φ ·σΨ ` σ ·σΨ : Φ′ ·σΨ.
From lemma B.93 we also get: Ψ′ ` σΨ.i : Ψ.i ·σΨ.
We have that Ψ.i = [Φ′]ctx, so this can be rewritten as: Ψ′ ` σΨ.i : [Φ′ ·σΨ]ctx.
By typing inversion get σΨ.i = [Φ′ ·σΨ]Φ

′′ for some Φ′′ and:
Ψ′ ` [Φ′ ·σΨ]Φ

′′ : [Φ′ ·σΨ]ctx.
Now proceed by induction on Φ′′ to prove that Ψ′; Φ ·σΨ ` (σ ·σΨ, idσΨ.i) : (Φ′ ·σΨ, σΨ.i).

When Φ′′ = •, trivial.
When Φ′′ = Φ′′′, t, have Ψ′; Φ ·σΨ ` σ ·σΨ, id[Φ′·σΨ]Φ′′′ : (Φ

′ ·σΨ, Φ′′′) by induction hypothesis. We
can append f|Φ′·σΨ|,|Φ′′′| to this substitution and get the desired, because (|Φ′ ·σΨ|, |Φ′′′|) < |Φ ·σΨ|.
This is because (Φ′, Xi) ⊆ Φ thus (Φ′ ·σΨ, Φ′′′, t) ⊆ Φ and thus (|Φ′ ·σΨ|, |Φ′′′|, ·) ≤ |Φ|. When
Φ′′ = Φ′′′, X j, have Ψ′; Φ ·σΨ ` σ ·σΨ, id[Φ′·σΨ]Φ′′′ : (Φ′ ·σΨ, Φ′′′). Now we have that Φ′, Xi ⊆ Φ,
which also means that (Φ′ ·σΨ, Φ′′′, X j) ⊆ Φ ·σΨ. Thus we can apply the typing rule for id(X j) to
get that Ψ′; Φ ·σΨ ` σ ·σΨ, id[Φ′·σΨ]Φ′′′ , id(X j) : (Φ′ ·σΨ, Φ′′′, X j), which is the desired.

Part 3. Case
Ψ ` • wf

�

Trivial.

106



Case
Ψ `Φ wf Ψ; Φ ` t : s

Ψ ` (Φ, t) wf
�

By induction hypothesis we get Ψ′ `Φ ·Ψ wf.
By use of part 1 we get that Ψ′; Φ ·Ψ ` t ·Ψ : s.
Thus using the same typing rule we get the desired Ψ′ ` (Φ ·Ψ, t ·Ψ) wf.

Case
Ψ `Φ wf Ψ.i = [Φ]ctx

Ψ ` (Φ, Xi) wf
�

By induction hypothesis we get Ψ′ `Φ ·σΨ wf.
By use of lemma B.93 we get that Ψ′ ` σΨ.i : Ψ.i ·σΨ.
We have Ψ.i = [Φ]ctx thus the above can be rewritten as Ψ′ ` σΨ.i : [Φ ·σΨ]ctx.
By inversion of typing get that σΨ.i = [Φ ·σΨ]Φ

′ and that Ψ′ `Φ ·σΨ, Φ′ wf. This is exactly the desired result.

Part 4. Case
Ψ; Φ ` t : t ′

Ψ ` [Φ] t : [Φ] t ′
�

By use of part 1 we get that Ψ′; Φ ·σΨ ` t ·σΨ : t ′ ·σΨ.
Thus by application of the same typing rule we get exactly the desired.

Case
Ψ `Φ, Φ

′ wf

Ψ ` [Φ]Φ′ : [Φ]ctx
�

By use of part 3 we get Ψ′ `Φ ·σΨ, Φ′ ·σΨ wf.
Thus by the same typing rule we get exactly the desired.

Part 5. Case
Ψ
′ ` • : • �

Trivial.

Case
Ψ
′ ` σΨ : Ψ Ψ

′ ` T : K ·σΨ

Ψ
′ ` (σΨ, T ) : (Ψ, K)

�

By induction we get Ψ′′ ` σΨ ·σ′Ψ : Ψ.
By use of part 4 we get Ψ′′ ` T ·σ′

Ψ
: (K ·σΨ) ·σ′Ψ.

This is equal to K · (σΨ ·σ′Ψ) by use of lemma B.94. Thus we get the desired result by applying the same typing
rule.

Lemma B.98 If Ψ `Ψ′′ wf and Ψ′ ` σΨ : Ψ then Ψ′ `Ψ′′ ·σΨ wf.

By induction on the structure of Ψ′′.

Case Ψ
′′ = • � Trivial.

Case Ψ
′′ = Ψ

′′, [Φ] t �

By induction hypothesis we have that Ψ′ `Ψ′′ ·σΨ wf.
By inversion of well-formedness for Ψ′′, [Φ] t we get:
Ψ, Ψ′′ ` [Φ] t : [Φ]s.
We have for σ′

Ψ
= σΨ, X|Ψ′|, · · · , X|Ψ′|+|Ψ′′|, that Ψ′, Ψ′′ ·σΨ ` σ′

Ψ
: Ψ, Ψ′′.

Thus by application of lemma B.97, we get that:

107



Ψ′, Ψ′′ ·σΨ ` [Φ ·σ′Ψ] t ·σ′Ψ : [Φ ·σ′
Ψ
]s.

Thus `Ψ′, (Ψ′′, [Φ] t) ·σΨ wf, which is the desired.

Case Ψ
′′ = Ψ

′′, [Φ]ctx � Similarly as the previous case.

B.3 Final extension: bound extension variables

The metatheory presented in the previous subsection only has to do with meta and context variables that are free.
We now introduce bound extension variables, (which will be bound in the computational language), entirely
similarly to how we have bound and free variables for the logic. We will not re-prove everything here; all
theorems from above carry on exactly as they are. We will only prove two theorems that have to do with the
interaction of freshen/bind and extension substitutions.

Definition B.99 (Syntax of the language) The syntax of the logic language is extended below.

Φ ::= · · · | Φ,Bi

σ ::= · · · | σ, id(Bi)

t ::= · · · | Bi/σ

I ::= · · · | I, |Bi|

All the following definitions are extended trivially. Application of extension substitution leaves bound
extension variables as they are. Bound extension variables are untypable.

Definition B.100 (Freshening of extension variables) We define freshening similarly to normal variables. We
do not define extension variables limits: we will use the condition of well-definedness later. (So if dteMN,K is
well-defined, that means that it does not have extension variables larger than N +K).

dIeMN

d•e = •
dI, ·e = dIe , ·
dI,Xie = dIe , Xi⌈
I,BM+ j

⌉M
N,K = dIe , XN+K− j−1 when j < K

dI,BieMN,K = dIe , Bi when i < M

dteMN,K

d fIeMN,K = fdIeMN,K

dbieMN,K = bi

dλ(t1).t2eMN,K = λ(dt1eMN,K).dt2eMN,K
· · ·

dXi/σeMN,K = Xi/(dσeMN,K)⌈
BM+ j/σ

⌉M
N,K = XN+K− j−1/(dσeMN,K) when j < K

dBi/σeMN,K = Bi/(dσeMN,K) when i < M

108



dΦeMN,K

d•e = •
dΦ, te = dΦe , dte
dΦ,Xie = dΦe , Xi⌈
Φ,BM+ j

⌉M
N,K = dΦe , XN+K− j−1 when j < K

dΦ,BieMN,K = dΦe , Bi when i < M

dσeMN,K

d•e = •
dσ, te = dσe , dte
dσ, id(Xi)e = dσe , id(Xi)⌈
σ, id(BM+ j)

⌉M
N,K = dσe , id(XN+K− j−1) when j < K

dσ, id(Bi)eMN,K = dσe , id(Bi) when i < M

dTeMN,K

d[Φ] te = [dΦe] (dte)
d[Φ]Φ′e = [dΦe](dΦ′e)

dKeMN,K

d[Φ] te = [dΦe] (dte)
d[Φ]ctxe = [dΦe]ctx

dΨeMN,K

d•eMN,K = •
dΨ, KeMN,K = dΨeMN,K , dKeM+|Ψ|

N,K

Definition B.101 (Binding of extension variables) We define binding similarly to normal variables. Note that
this is a bit different (because binding many variables at once is permitted), so the N parameter is the length of
the resulting context (the number of free variables after binding has taken place), while N +K is the length of
the context where the bind argument is currently in.

bIcMN,K

b•c = •
bI, ·c = bIc , ·⌊
I,XN+ j

⌋M
N,K = bIc , BM+K− j−1 when j < K

bI,XicMN,K = bIc , Xi when i < N
bI,BicMN,K = bIc , Bi

109



btcMN,K

b fIcMN,K = fbIcMN,K

bbicMN,K = bi

bλ(t1).t2cMN,K = λ(bt1cMN,K).bt2cMN,K
· · ·⌊

XN+ j/σ
⌋M

N,K = BM+K− j−1/(bσcMN,K) when j < K
bXi/σcMN,K = Xi/(bσcMN,K) when i < N
bBi/σcMN,K = Bi/(bσcMN,K)

bΦcMN,K

b•c = •
bΦ, tc = bΦc , btc⌊
Φ,XN+ j

⌋M
N,K = bΦc , BM when j < K

bΦ,XicMN,K = bΦc , Xi when i < N
bΦ,BicMN,K = bΦc , Bi

bσcMN,K

b•c = •
bσ, tc = bσc , btc⌊
σ, id(XN+ j)

⌋M
N,K = bσc , id(BM+K− j−1) when j < K

bσ, id(Xi)cMN,K = bσc , id(Xi) when i < N
bσ, id(Bi)cMN,K = bσc , id(Bi)

bTcMN,K

b[Φ] tc = [bΦc] (btc)
b[Φ]Φ′c = [bΦc](bΦ′c)

bKcMN,K

b[Φ] tc = [bΦc] (btc)
b[Φ]ctxc = [bΦc]ctx

bΨcMN,K

b•cMN,K = •
bΨ, KcMN,K = bΨcMN,K , bKcM+|Ψ|

N,K

Definition B.102 Opening up and closing down an extension context works as follows:

110



�Ψ�N

�•�N = •
�Ψ, K�N = �Ψ�N , �K�0

N,|Ψ|

�Ψ�N

�•�N = •
�Ψ, K�N = �Ψ�N , �K�0

N,|Ψ|

Now we prove a couple of theorems.

Lemma B.103 (Freshening of extension variables and extension substitution) Assuming |σΨ| = N, d·eMN,K

and d·eMN′,K are well-defined, we have:

1. dI ·σΨeMN′,K = dIeMN,K · (σΨ, XN′ , · · · , XN′+K−1)

2. dt ·σΨeMN′,K = dteMN,K · (σΨ, XN′ , · · · , XN′+K−1)

3. dΦ ·σΨeMN′,K = dΦeMN,K · (σΨ, XN′ , · · · , XN′+K−1)

4. dσ ·σΨeMN′,K = dσeMN,K · (σΨ, XN′ , · · · , XN′+K−1)

5. dT ·σΨeMN′,K = dTeMN,K · (σΨ, XN′ , · · · , XN′+K−1)

6. dK ·σΨeMN′,K = dKeMN,K · (σΨ, XN′ , · · · , XN′+K−1)

7. dΨ ·σΨeMN′,K = dΨeMN,K · (σΨ, XN′ , · · · , XN′+K−1)

Part 2 By induction on t and use of the rest of the parts. The interesting case is t = BM+ j/sigma with
j < K. We have that the left-hand-side is equal to XN′+K− j−1/(dσ ·σΨeMN′,K), which by part 4 is equal to
XN′+K− j−1/(dσeMN,K ·(σΨ, XN′ , · · · , XN′+K−1). The right-hand-side is equal to (XN+K− j−1/dσeMN,K)·(σΨ, XN′ , · · · , XN′+K−1)=

XN′+K− j−1/(dσeMN,K · (σΨ, XN′ , · · · , XN′+K−1), which is exactly equal to the left-hand-side.

Part 7 By induction on Ψ. The interesting case occurs when Ψ = Ψ′, K.
In that case, we have that the left-hand-side is equal to:⌈
Ψ′ ·σΨ, K · (σΨ, XN′ , · · · , XN′+|Ψ′|)

⌉M
N′,K .

Since K does not contain variables bigger than X|σΨ| (since dKeMN,K is well-defined), we have that this is further
equal to:
dΨ′ ·σΨ, K ·σΨeMN′,K .
This is then equal to:
dΨ′ ·σΨeMN′,K , dK ·σΨeM+|Ψ′·σΨ|

N′,K . Setting σ′
Ψ
= σΨ, XN′ , · · · , XN′+K−1 we have by induction hypothesis and part

6 that this is equal to:
dΨ′eMN,K ·σ′Ψ, dKe

M+|Ψ′·σΨ|
N,K ·σ′

Ψ
.

The right-hand-side is equal to: dΨ′eMN,K ·σ′Ψ, dKe
M+|Ψ′|
N,K · (σ′

Ψ
, XN′+K−1, · · · , XN′+K−1+|Ψ′|

Since dKeM+|Ψ′|
N,K is well-defined, we have that it does not contain variables larger than XN+K−1, and thus we

have:
dKeM+|Ψ′|

N,K · (σ′
Ψ
, XN′+K−1, · · · , XN′+K−1+|Ψ′| = dKeM+|Ψ′|

N,K ·σ′
Ψ

.
Thus the two sides are equal.

111



Rest By direct application of the other parts.

Lemma B.104 (Binding of extension variables and extension substitution) Assuming |σΨ| = N, b·cMN,K and
b·cMN′,K are well-defined, we have:

1. bI · (σΨ, XN′ , · · · , XN′+K−1)cMN′,K = bIcMN,K ·σΨ

2. bt · (σΨ, XN′ , · · · , XN′+K−1)cMN′,K = btcMN,K ·σΨ

3. bΦ · (σΨ, XN′ , · · · , XN′+K−1)cMN′,K = bΦcMN,K ·σΨ

4. bσ · (σΨ, XN′ , · · · , XN′+K−1)cMN′,K = bσcMN,K ·σΨ

5. bT · (σΨ, XN′ , · · · , XN′+K−1)cMN′,K = bTcMN,K ·σΨ

6. bK · (σΨ, XN′ , · · · , XN′+K−1)cMN′,K = bKcMN,K ·σΨ

7. bΨ · (σΨ, XN′ , · · · , XN′+K−1)cMN′,K = bΨcMN,K ·σΨ

Part 2 The interesting case is when t = XN+ j/σ with j < K. In that case, the left-hand-side becomes:⌊
XN′+ j/(σ · (σΨ, XN′ , · · · , XN′+K−1))

⌋M
N′,K = BM+K− j−1/(bσ · (σΨ, XN′ , · · · , XN′+K−1)cMN′,K) = BM/(bσcMN,K ·

σΨ) by part 4.
The right-hand-side becomes (BM+K− j−1/(bσcMN,K)) ·σΨ = BM/(bσcMN,K ·σΨ).

Rest Again, simple by induction and use of other parts; similarly as above.

Lemma B.105 1.
⌈
bIcMN,K

⌉M

N,K
= I

2.
⌈
btcMN,K

⌉M

N,K
= t

3.
⌈
bΦcMN,K

⌉M

N,K
= Φ

4.
⌈
bσcMN,K

⌉M

N,K
= σ

5.
⌈
bTcMN,K

⌉M

N,K
= T

6.
⌈
bKcMN,K

⌉M

N,K
= K

7.
⌈
bΨcMN,K

⌉M

N,K
= Ψ

Trivial by structural induction.

Lemma B.106 If |σΨ|= |Ψ| and �·�|Ψ| and �·�|Ψ′| are well-defined, then �Ψ′′�|Ψ| ·σΨ =�Ψ′′ ·σΨ�|Ψ′|

By induction on Ψ′′.
When Ψ′′ = •, trivial.
When Ψ′′ = Ψ′′, K we have that:
�Ψ′′, K�|Ψ|=�Ψ′′�|Ψ|,dKe|Ψ|,|Ψ′′|.
Applying σΨ to this we get:
�Ψ′′�|Ψ| ·σΨ,dKe|Ψ|,|Ψ′′| · (σΨ, X|Ψ′|, · · · , X|Ψ′|+|Ψ′′|).
By induction hypothesis the first part is equal to:

112



�Ψ′′ ·σΨ�|Ψ′|.
Using lemma B.87 for the second part we get that it’s equal to:
dK ·σΨe|Ψ′|,|Ψ′′|
Furthermore, since K does not contain variables greater than X|Ψ|, we have that K ·σΨ =K ·(σΨ, X|Ψ′|, · · · , X|Ψ′|+|Ψ′′|.
Thus, the left hand side is equal to

⌈
Ψ′′ ·σΨ, K · (σΨ, X|Ψ′|, · · · , X|Ψ′|+|Ψ′′|

⌉
|Ψ′|,|Ψ′′|, which is equal to the right-

hand-side.

C. Definition and metatheory of computational language

Definition C.1 The syntax of the computational language is defined below.

k ::= ? | k→ k | Π(K).k
τ ::= Π(K).τ | Σ(K).τ | λ(K).τ | τ T
| unit | ⊥ | τ1→ τ2 | τ1× τ2 | τ1 + τ2 | µα : k.τ | ref τ | ∀α : k.τ | λα : k.τ | τ1 τ2 | α

e ::= Λ(K).e | e T | pack T return (.τ) with e | unpack e (.)x.(e′)
| () | error | λx : τ.e | e e′ | x | (e, e′) | proji e | inji e | case(e, x.e′, x.e′′) | fold e | unfold e | ref e
| e := e′ | !e | l | Λα : k.e | e τ | fix x : τ.e
| unify T return (.τ) with (Ψ.T ′ 7→ e′)

Γ ::= • | Γ, x : τ | Γ, α : k
Σ ::= • | Σ, l : τ

Definition C.2 Freshening and binding for computational kinds, types and terms are defined as follows.

dkeMN,K

d?eMN,K = ?

dΠ(K).keMN,K = Π(dKeMN,K).dkeM+1
N,K

dτeMN,K

dΠ(K).τeMN,K = Π(dKeMN,K).dτeM+1
N,K

dΣ(K).τeMN,K = Σ(dKeMN,K).dτeM+1
N,K

dλ(K).τeMN,K = λ(dKeMN,K).dτeM+1
N,K

dτ TeMN,K = dτeMN,K dTeMN,K
duniteMN,K = unit
d⊥eMN,K = ⊥
dτ1→ τ2eMN,K = dτ1eMN,K → dτ2eMN,K
dτ1× τ2eMN,K = dτ1eMN,K×dτ2eMN,K
dτ1 + τ2eMN,K = dτ1eMN,K + dτ2eMN,K
dµα : k.τeMN,K = µα : dkeMN,K .dτeMN,K
dref τeMN,K = ref dτeMN,K
d∀α : k.τeMN,K = ∀α : dkeMN,K .dτeMN,K
dλα : k.τeMN,K = λα : dkeMN,K .dτeMN,K
dτ1 τ2eMN,K = dτ1eMN,K dτ2eMN,K
dαeMN,K = α

113



deeMN,K

dΛ(K).eeMN,K = Λ(dKeMN,K).deeM+1
N,K

de TeMN,K = deeMN,K dTeMN,K

dpack T return (.τ) with eeMN,K = pack dTeMN,K return (.dτeM+1
N,K ) with deeMN,K

dunpack e (.)x.(e′)eMN,K = unpack deeMN,K (.)x.(de′eM+1
N,K )

d()eMN,K = ()

derroreMN,K = error
dλx : τ.eeMN,K = λx : dτeMN,K .deeMN,K
de1 e2eMN,K = de1eMN,K de2eMN,K
dxeMN,K = x
d(e, e′)eMN,K = (deeMN,K , de′eMN,K)

dproji eeMN,K = proji deeMN,K
dinji eeMN,K = inji deeMN,K

dcase(e, x.e′, x.e′′)eMN,K = case(deeMN,K , x.de′eMN,K , x.de′′eMN,K)

dfold eeMN,K = fold deeMN,K
dunfold eeMN,K = unfold deeMN,K
dref eeMN,K = ref deeMN,K
de1 := e2eMN,K = de1eMN,K := de2eMN,K
d!eeMN,K = !deeMN,K
dleMN,K = l
dΛα : k.eeMN,K = Λα : dkeMN,K .deeMN,K
de τeMN,K = deeMN,K dτeMN,K
dfix x : τ.eeMN,K = fix x : dτeMN,K .deeMN,K

dunify T return (.τ) with (Ψ.T ′ 7→ e′)e = unify dTeMN,K return (.dτeM+1
N,K ) with (dΨeMN,K .dT ′eM+|Ψ|

N,K 7→ de′eM+|Ψ|
N,K )

bkcMN,K

b?cMN,K = ?

bΠ(K).kcMN,K = Π(bKcMN,K).bkcM+1
N,K

bτcMN,K

bΠ(K).τcMN,K = Π(bKcMN,K).bτcM+1
N,K

bΣ(K).τcMN,K = Σ(bKcMN,K).bτcM+1
N,K

bλ(K).τcMN,K = λ(bKcMN,K).bτcM+1
N,K

bτ TcMN,K = bτcMN,K bTcMN,K
bunitcMN,K = unit

114



bτcMN,K (continued)

b⊥cMN,K = ⊥
bτ1→ τ2cMN,K = bτ1cMN,K → bτ2cMN,K
bτ1× τ2cMN,K = bτ1cMN,K×bτ2cMN,K
bτ1 + τ2cMN,K = bτ1cMN,K + bτ2cMN,K
bµα : k.τcMN,K = µα : bkcMN,K .bτcMN,K
bref τcMN,K = ref bτcMN,K
b∀α : k.τcMN,K = ∀α : bkcMN,K .bτcMN,K
bλα : k.τcMN,K = λα : bkcMN,K .bτcMN,K
bτ1 τ2cMN,K = bτ1cMN,K bτ2cMN,K
bαcMN,K = α

becMN,K

bΛ(K).ecMN,K = Λ(bKcMN,K).becM+1
N,K

be TcMN,K = becMN,K bTcMN,K

bpack T return (.τ) with ecMN,K = pack bTcMN,K return (.bτcM+1
N,K ) with becMN,K

bunpack e (.)x.(e′)cMN,K = unpack becMN,K (.)x.(be′cM+1
N,K )

b()cMN,K = ()

berrorcMN,K = error
bλx : τ.ecMN,K = λx : bτcMN,K .becMN,K
be1 e2cMN,K = be1cMN,K be2cMN,K
bxcMN,K = x
b(e, e′)cMN,K = (becMN,K , be′cMN,K)

bproji ecMN,K = proji becMN,K
binji ecMN,K = inji becMN,K

bcase(e, x.e′, x.e′′)cMN,K = case(becMN,K , x.be′cMN,K , x.be′′cMN,K)

bfold ecMN,K = fold becMN,K
bunfold ecMN,K = unfold becMN,K
bref ecMN,K = ref becMN,K
be1 := e2cMN,K = be1cMN,K := be2cMN,K
b!ecMN,K = !becMN,K
blcMN,K = l
bΛα : k.ecMN,K = Λα : bkcMN,K .becMN,K
be τcMN,K = becMN,K bτcMN,K
bfix x : τ.ecMN,K = fix x : bτcMN,K .becMN,K

bunify T return (.τ) with (Ψ.T ′ 7→ e′)c = unify bTcMN,K return (.bτcM+1
N,K ) with (bΨcMN,K .bT ′cM+|Ψ|

N,K 7→ be′cM+|Ψ|
N,K )

Definition C.3 Extension substitution application to computational-level kinds, types and terms.

k ·σΨ

? ·σΨ = ?
(k→ k) ·σΨ = k ·σΨ→ k ·σΨ

(Π(K).k) ·σΨ = Π(K ·σΨ).k ·σΨ

115



τ ·σΨ

(Π(K).τ) ·σΨ = Π(K ·σΨ).τ ·σΨ

(Σ(K).τ) ·σΨ = Σ(K ·σΨ).τ ·σΨ

(λ(K).τ) ·σΨ = λ(K ·σΨ).τ ·σΨ

(τ T ) ·σΨ = τ ·σΨ T ·σΨ

unit ·σΨ = unit
⊥·σΨ = ⊥
(τ1→ τ2) ·σΨ = τ1 ·σΨ→ τ2 ·σΨ

(τ1× τ2) ·σΨ = τ1 ·σΨ× τ2 ·σΨ

(τ1 + τ2) ·σΨ = τ1 ·σΨ + τ2 ·σΨ

(µα : k.τ) ·σΨ = µα : k ·σΨ.τ ·σΨ

(ref τ) ·σΨ = ref τ ·σΨ

(∀α : k.τ) ·σΨ = ∀α : k ·σΨ.τ ·σΨ

(λα : k.τ) ·σΨ = λα : k ·σΨ.τ ·σΨ

(τ1 τ2) ·σΨ = τ1 ·σΨ τ2 ·σΨ

α ·σΨ = α

e ·σΨ

(Λ(K).e) ·σΨ = Λ(K ·σΨ).e ·σΨ

(e T ) ·σΨ = e ·σΨ T ·σΨ

(pack T return (.τ) with e) ·σΨ = pack T ·σΨ return (.τ ·σΨ) with e ·σΨ

(unpack e (.)x.(e′)) ·σΨ = unpack e ·σΨ (.)x.(e′ ·σΨ)
() ·σΨ = ()
error ·σΨ = error
(λx : τ.e) ·σΨ = λx : τ ·σΨ.e ·σΨ

(e e′) ·σΨ = e ·σΨ e′ ·σΨ

x ·σΨ = x
(e, e′) ·σΨ = (e ·σΨ, e′ ·σΨ)
(proji e) ·σΨ = proji e ·σΨ

(inji e) ·σΨ = inji e ·σΨ

(case(e, x.e′, x.e′′)) ·σΨ = case(e ·σΨ, x.e′ ·σΨ, x.e′′ ·σΨ)
(fold e) ·σΨ = fold e ·σΨ

(unfold e) ·σΨ = unfold e ·σΨ

(ref e) ·σΨ = ref e ·σΨ

(e := e′) ·σΨ = e ·σΨ := e′ ·σΨ

(!e) ·σΨ = !e ·σΨ

l ·σΨ = l
(Λα : k.e) ·σΨ = Λα : k ·σΨ.e ·σΨ

(e τ) ·σΨ = e ·σΨ τ ·σΨ

(fix x : τ.e) ·σΨ = fix x : τ ·σΨ.e ·σΨ

(unify T return (.τ) with (Ψ.T ′ 7→ e′)) ·σΨ = unify T ·σΨ return (.τ ·σΨ) with (Ψ ·σΨ.T ′ ·σΨ 7→ e′ ·σΨ)

Γ ·σΨ

• ·σΨ = •
(Γ, x : τ) ·σΨ = Γ ·σΨ, x : τ ·σΨ

(Γ, α : k) ·σΨ = Γ ·σΨ, α : k ·σΨ

116



Definition C.4 The typing judgements for the computational language are given below.

Ψ ` k wf

`Ψ wf

Ψ ` ? wf

Ψ ` k wf Ψ ` k′ wf

Ψ ` k→ k′ wf

`Ψ, K wf Ψ, K ` dke|Ψ|,1 wf

Ψ `Π(K).k wf

Ψ; Γ ` τ : k

Ψ, K; Γ ` dτe|Ψ|,1 : ?

Ψ; Γ `Π(K).τ : ?

Ψ, K; Γ ` dτe|Ψ|,1 : ?

Ψ; Γ ` Σ(K).τ : ?

Ψ, K; Γ ` dτe|Ψ|,1 : k

Ψ; Γ ` λ(K).τ : Π(K).bkc|Ψ|,1

Ψ; Γ ` τ : Π(K).k Ψ ` T : K

Ψ; Γ ` τ T : dke|Ψ|,1 · (idΨ, T ) Ψ; Γ ` unit : ? Ψ; Γ ` ⊥ : ?

Ψ; Γ ` τ1 : ? Ψ; Γ ` τ2 : ?

Ψ; Γ ` τ1→ τ2 : ?

Ψ; Γ ` τ1 : ? Ψ; Γ ` τ2 : ?

Ψ; Γ ` τ1× τ2 : ?

Ψ; Γ ` τ1 : ? Ψ; Γ ` τ2 : ?

Ψ; Γ ` τ1 + τ2 : ?

Ψ ` k wf Ψ; Γ, α : k ` τ : k

Ψ; Γ ` µα : k.τ : k

Ψ; Γ ` τ : ?

Ψ; Γ ` ref τ : ?

Ψ ` k wf Ψ; Γ, α : k ` τ : ?

Ψ; Γ ` ∀α : k.τ : ?

Ψ ` k wf Ψ; Γ, α : k ` τ : k′

Ψ; Γ ` λα : k.τ : k→ k′

Ψ; Γ ` τ1 : k→ k′ Ψ; Γ ` τ2 : k

Ψ; Γ ` τ1 τ2 : k′
(α : k) ∈ Γ

Ψ; Γ ` α : k

Ψ; Σ; Γ ` e : τ

Ψ, K; Σ; Γ ` dee|Ψ|,1 : τ

Ψ; Σ; Γ ` Λ(K).e : Π(K).bτc|Ψ|,1
Ψ; Σ; Γ ` e : Π(K).τ Ψ ` T : K

Ψ; Σ; Γ ` e T : dτe|Ψ|,1 · (idΨ, T )

Ψ ` T : K Ψ, K; Γ ` dτe|Ψ|,1 : ? Ψ; Σ; Γ ` e : dτe|Ψ|,1 · (idΨ, T )

Ψ; Σ; Γ ` pack T return (.τ) with e : Σ(K).τ

Ψ; Σ; Γ ` e : Σ(K).τ Ψ, K, Σ; Γ, x : dτe|Ψ|,1 `
⌈
e′
⌉
|Ψ|,1 : τ

′
Ψ; Γ ` τ

′ : ?

Ψ; Σ; Γ ` unpack e (.)x.(e′) : τ
′

Ψ; Σ; Γ ` () : unit

Ψ; Σ; Γ ` error : τ

Ψ; Σ; Γ, x : τ ` e : τ
′

Ψ; Σ; Γ ` λx : τ.e : τ→ τ
′

117



Ψ; Σ; Γ ` e : τ→ τ
′

Ψ; Σ; Γ ` e′ : τ

Ψ; Σ; Γ ` e e′ : τ
′

(x : τ) ∈ Γ

Ψ; Σ; Γ ` x : τ

Ψ; Σ; Γ ` e1 : τ1 Ψ; Σ; Γ ` e2 : τ2

Ψ; Σ; Γ ` (e1, e2) : τ1× τ2

Ψ; Σ; Γ ` e : τ1× τ2 i = 1 or 2

Ψ; Σ; Γ ` proji e : τi

Ψ; Σ; Γ ` e : τi i = 1 or 2

Ψ; Σ; Γ ` inji e : τ1 + τ2

Ψ; Σ; Γ ` e : τ1 + τ2 Ψ; Σ; Γ, x : τ1 ` e1 : τ Ψ; Σ; Γ, x : τ2 ` e2 : τ

Ψ; Σ; Γ ` case(e, x.e1, x.e2) : τ

Ψ; Γ ` µα : k.τ : k Ψ; Σ; Γ ` e : τ[µα : k.τ/α] τ1 τ2 · · · τn

Ψ; Σ; Γ ` fold e : (µα : k.τ) τ1 τ2 · · · τn

Ψ; Γ ` µα : k.τ : k Ψ; Σ; Γ ` e : (µα : k.τ) τ1 τ2 · · · τn

Ψ; Σ; Γ ` unfold e : τ[µα : k.τ/α] τ1 τ2 · · · τn

Ψ; Σ; Γ ` e : τ

Ψ; Σ; Γ ` ref e : ref τ

Ψ; Σ; Γ ` e : ref τ Ψ; Σ; Γ ` e′ : τ

Ψ; Σ; Γ ` e := e′ : unit

Ψ; Σ; Γ ` e : ref τ

Ψ; Σ; Γ `!e : τ

(l : τ) ∈ Σ

Ψ; Σ; Γ ` l : ref τ

Ψ; Σ; Γ, α : k ` e : τ

Ψ; Σ; Γ ` Λα : k.e : Πα : k.τ

Ψ; Σ; Γ ` e : Πα : k.τ′ Ψ; Γ ` τ : k

Ψ; Σ; Γ ` e τ : τ
′[τ/α]

Ψ; Σ; Γ, x : τ ` e : τ

Ψ; Σ; Γ ` fix x : τ.e : τ

Ψ ` T : K Ψ, K; Γ ` dτe|Ψ|,1 : ? Ψ `
⌈
Ψ
′⌉
|Ψ| wf

Ψ,
⌈
Ψ
′⌉
|Ψ| `

⌈
T ′
⌉
|Ψ|,|Ψ′| : K Ψ,

⌈
Ψ
′⌉
|Ψ| ; Σ; Γ `

⌈
e′
⌉
|Ψ|,|Ψ′| : dτe|Ψ|,1 · (idΨ,

⌈
T ′
⌉
|Ψ|,|Ψ′|)

Ψ; Σ; Γ ` unify T return (.τ) with (Ψ′.T ′ 7→ e′) : (dτe|Ψ|,1 · (idΨ, T ))+unit

Ψ ` Γ wf

Ψ ` • wf

Ψ ` Γ wf Ψ; Γ ` k wf

Ψ ` (Γ, α : k) wf

Ψ ` Γ wf Ψ; Γ ` τ : ?

Ψ ` (Γ, x : τ) wf

` Σ wf

` • wf

` Σ wf •; • ` τ : ?

` (Σ, l : τ)

Definition C.5 β-equivalence for types τ is the symmetric, reflexive, transitive congruence closure of the
following relation. Types of the language are viewed implicitly up to β-equivalence. This means that the lemmas
that we prove about types need to agree on β-equivalent types.

(λα : K.τ) τ′ = τ[τ′/α]

Definition C.6 Small-step operational semantics for the language are defined below.

v ::= Λ(K).e | pack T return (.τ) with v | () | λx : τ.e | (v, v′) | inji v | fold v | l | Λα : k.e
E ::= • | E T | pack T return (.τ) with E | unpack E (.)x.(e′) | E e′ | v E | (E, e) | (v, E) | proji E | inji E
| case(E, x.e1, x.e2) | fold E | unfold E | ref E | E := e′ | v := E | !E | E τ

µ ::= • | µ, l 7→ v

118



( µ , e )−→ (( µ , e′ )|error)

( µ , e )−→ ( µ′ , e′ )

( µ , E[e] )−→ ( µ′ , E[e′] )
( µ , E[error] )−→ error ( µ , (Λ(K).e) T )−→ ( µ , dee0,1 ·T )

( µ , unpack 〈T, τ〉v (.)x.(e′) )−→ ( µ , (
⌈
e′
⌉

0,1 ·T )[v/x] ) ( µ , (λx : τ.e) v )−→ ( µ , e[v/x] )

( µ , proji(v1, v2) )−→ ( µ , vi ) ( µ , case(inji v, x.e1, x.e2) )−→ ( µ , ei[v/x] )

( µ , unfold (fold v) )−→ ( µ , v )
¬(l 7→ _ ∈ µ)

( µ , ref v )−→ ( (µ, l 7→ v) , l )

l 7→ _ ∈ µ

( µ , l := v )−→ ( µ[l 7→ v] , () )

l 7→ v ∈ µ

( µ , !l )−→ ( µ , v )
( µ , (Λα : k.e) τ )−→ ( µ , e[τ/α] ) ( µ , fix x : τ.e )−→ ( µ , e[fix x : τ.e/x] )

∃σΨ.(• ` σΨ : dΨe0 ∧
⌈
T ′
⌉

0,|Ψ| ·σΨ = T )

( µ , unify T return (.τ) with (Ψ.T ′ 7→ e′) )−→ ( µ , inj1 (
⌈
e′
⌉

0,|Ψ| ·σΨ) )

6 ∃σΨ.(• ` σΨ : dΨe0 ∧
⌈
T ′
⌉

0,|Ψ| ·σΨ = T )

( µ , unify T return (.τ) with (Ψ.T ′ 7→ e′) )−→ ( µ , inj2 () )

(l 7→ v) ∈ µ

(l 7→ v) ∈ (µ, l 7→ v)
(l 7→ v) ∈ (µ, l′ 7→ v′)⇐ (l 7→ v) ∈ µ

(l : τ) ∈ Σ

(l : τ) ∈ (Σ, l : τ)
(l : τ) ∈ (Σ, l′ : τ′)⇐ (l : τ) ∈ Σ

µ∼ Σ

(l 7→ v) ∈ µ ⇒ ∃τ.(l : τ) ∈ Σ∧•; Σ; • ` v : τ

(l : τ) ∈ Σ ⇒ ∃v.(l 7→ v) ∈ µ∧•; Σ; • ` v : τ

Σ⊆ Σ′

(l : τ) ∈ Σ ⇒ (l : τ) ∈ Σ′

µ[l := v]

(µ, l′ 7→ v′)[l := v] = µ[l := v], l′ 7→ v′

(µ, l 7→ v′)[l := v] = µ, l 7→ v

Lemma C.7 (Computational substitution commutes with logic operations) 1. dτ[τ′/α]eMN,K = dτeMN,K [dτ′eMN,K /α]

119



2. bτ[τ′/α]cMN,K = bτcMN,K [bτ′cMN,K /α]

3. (τ[τ′/α]) ·σΨ = τ ·σΨ[τ
′ ·σΨ/α]

4. de[τ/α]eMN,K = deeMN,K [dτeMN,K /α]

5. be[τ/α]cMN,K = becMN,K [bτcMN,K /α]

6. (e[τ/α]) ·σΨ = e ·σΨ[τ ·σΨ/α]

7. de[e′/x]eMN,K = deeMN,K [de′eMN,K /x]

8. be[e′/x]cMN,K = becMN,K [be′cMN,K /x]

9. (e[e′/x]) ·σΨ = e ·σΨ[e′ ·σΨ/x]

Simple by induction.

Lemma C.8 (Compatibility of β conversion with logic operations) If τ =β τ′ then:

1. dτeMN,K =β dτ′eMN,K

2. bτcMN,K =β dτ′eMN,K

3. τ ·σΨ =β τ′ ·σΨ

In all cases it’s trivially provable by expansion for τ = (λα : k.τ1)τ2 and τ′ = τ1[τ2/α] and use of lemma C.7.
The congruence cases for other τ, τ′ are provable by induction hypothesis.

Lemma C.9 Assuming |σΨ|= N, d·eMN,K and d·eMN′,K are well-defined for their respective arguments, we have:

1. dk ·σΨeMN′,K = dkeMN,K · (σΨ, XN′ , · · · , XN′+K−1)

2. dτ ·σΨeMN′,K = dτeMN,K · (σΨ, XN′ , · · · , XN′+K−1)

3. de ·σΨeMN′,K = deeMN,K · (σΨ, XN′ , · · · , XN′+K−1)

By structural induction. We prove only the interesting cases.

Part 1 When k = Π(K).k′, we have that the left-hand-side is equal to:
dΠ(K ·σΨ).(k′ ·σΨ)eMN′,K = Π(dK ·σΨeMN′,K).dk′ ·σΨeM+1

N′,K

We have by lemma B.103 that dK ·σΨeMN′,K = dKeMN,K · (σΨ, XN′ , · · · , XN′+K−1).
By induction hypothesis we have that dk′ ·σΨeM+1

N′,K = dk′eM+1
N,K · (σΨ, XN′ , · · · , XN′+K−1).

After expansion of freshening for the right-hand-side, we see that it is equal to the above.

Part 3 The most interesting case occurs when e = unify T return (.τ) with (Ψ.T ′ 7→ e′). We have that the left-
hand-side is equal to:
dunify T ·σΨ return (.τ ·σΨ) with (Ψ ·σΨ.T ′ ·σΨ 7→ e′ ·σΨ)eMN′,K
By expansion of the definition of freshening we get that this is equal to:
unify dT ·σΨeMN′,K return (.dτ ·σΨeM+1

N′,K ) with (dΨ ·σΨeMN′,K .dT ′eM+|Ψ·σΨ|
N,K 7→ de′eM+|Ψ·σΨ|

N′,K )
The right-hand-side is equal to:
(assuming σ′

Ψ
= σΨ, XN′ , · · · , XN′+K−1)

unify dTeMN,K ·σ′Ψ return (.dτeM+1
N,K ·σ′Ψ) with (dΨeMN,K ·σ′Ψ.dT ′e

M+|Ψ|
N,K ·σ′

Ψ
7→ de′eM+|Ψ|

N,K ·σ′
Ψ
)

In all cases, the respective terms match, by use of induction hypothesis, lemma B.103, and also the fact that
|Ψ|= |Ψ ·σΨ|.

120



Lemma C.10 Assuming |σΨ|= N, b·cMN,K and b·cMN′,K are well-defined for their respective arguments, we have:

1. bk · (σΨ, XN′ , · · · , XN′+K−1)cMN′,K = bkcMN,K ·σΨ

2. bτ · (σΨ, XN′ , · · · , XN′+K−1)cMN′,K = bτcMN,K ·σΨ

3. be · (σΨ, XN′ , · · · , XN′+K−1)cMN′,K = becMN,K ·σΨ

Similarly as above, and use of lemma B.104.

Lemma C.11 1. (k ·σΨ) ·σ′Ψ = k · (σΨ ·σ′Ψ)
2. (τ ·σΨ) ·σ′Ψ = τ · (σΨ ·σ′Ψ)
3. (e ·σΨ) ·σ′Ψ = e · (σΨ ·σ′Ψ)

By induction, and use of lemma B.94.

Lemma C.12 If σΨ ⊆ σ′
Ψ

then:

1. If k ·σΨ is defined, then k ·σΨ = k ·σ′
Ψ

2. If τ ·σΨ is defined, then τ ·σΨ = τ ·σ′
Ψ

3. If e ·σΨ is defined, then e ·σΨ = e ·σ′
Ψ

4. If Γ ·σΨ is defined, then Γ ·σΨ = Γ ·σ′
Ψ

Most are trivial based on induction and use of lemma B.92

Lemma C.13 1. If Ψ ` k wf and Ψ′ ` σΨ : Ψ then Ψ′ ` k ·σΨ wf.

2. If Ψ; Γ ` τ : k and Ψ′ ` σΨ : Ψ then Ψ′; Γ ·σΨ ` τ ·σΨ : k ·σΨ.

3. If Ψ; Σ; Γ ` e : τ and Ψ′ ` σΨ : Ψ then Ψ′; Σ; Γ ·σΨ ` e ·σΨ : τ ·σΨ.

We only prove the interesting cases.

Part 1 Case
`Ψ, K wf Ψ, K ` dke|Ψ|,1 wf

Ψ `Π(K).k wf
�

We use the induction hypothesis for Ψ′, K ·σΨ ` (σΨ, X|Ψ′|) : Ψ, K and dke to get:
Ψ′, K ·σΨ ` dke|Ψ|,1 · (σΨ, X|Ψ′|) wf.
From lemma C.9 we have that dke|Ψ|,1 · (σΨ, X|Ψ′|) = dk ·σΨe|Ψ′|,1.
Therefore by use of the same typing rule we have the desired result.

Part 2 Case
Ψ, K; Γ ` dτe|Ψ|,1 : k

Ψ; Γ ` λ(K).τ : Π(K).bkc|Ψ|,1
�

We use the induction hypothesis for Ψ′, K ` (σΨ, X|Ψ′|) : Ψ, K and dτe to get, together with lemma C.9:
Ψ′, K ·σΨ; Γ · (σΨ, X|Ψ′|) ` dτ ·σΨe|Ψ′|,1
By C.12 and the fact that Ψ ` Γ wf, we have that Γ · (σΨ, X|Ψ′|) = Γ ·σΨ, so:
Ψ′, K ·σΨ; Γ ·σΨ ` dτ ·σΨe|Ψ′|,1 : k · (σΨ, X|Ψ′| ·σΨ)
By use of the same typing rule we get:
Ψ′; Γ ·σΨ ` λ(K ·σΨ).(τ ·σΨ) : Π(K ·σΨ).(

⌊
k · (σΨ, X|Ψ′|)

⌋
|Ψ′|,1).

We have that
⌊
k · (σΨ, X|Ψ′|)

⌋
|Ψ′|,1 = bkc|Ψ|,1 ·σΨ by lemma C.10, so this is the desired result.

121



Case
Ψ; Γ ` τ : Π(K).k Ψ ` T : K

Ψ; Γ ` τ T : dke|Ψ|,1 · (idΨ, T )
�

By induction hypothesis we have:
Ψ′; Γ ·σΨ ` τ ·σΨ : Π(K ·σΨ).(k ·σΨ)
By use of B.97 for T we have:
Ψ′ ` T ·σΨ : K ·σΨ

By use of the same typing rule we get:
Ψ′; Γ ·σΨ ` (τ ·σΨ) (T ·σΨ) : dk ·σΨe|Ψ′|,1 · (idΨ′ , T ·σΨ)

Now we need to prove that dk ·σΨe|Ψ′|,1 · (idΨ′ , T ·σΨ) = (dke|Ψ|,1 · (idΨ, T )) ·σΨ.
From lemma C.9, we get that the left-hand side is equal to:
(dke|Ψ|,1 · (σΨ, X|Ψ′|)) · (idΨ′ , T ·σΨ).
By application of lemma C.11 we get that it is further equal to:
(dke|Ψ|,1) · ((σΨ, X|Ψ′|) · (idΨ′ , T ·σΨ)).
By application of the same lemma to the right-hand side we have that it is equal to: (dke|Ψ|,1) ·
((id|Ψ|, T ) ·σΨ).
Thus we only need to prove that (σΨ, X|Ψ′|) · (idΨ′ , T ·σΨ) = (id|Ψ|, T ) ·σΨ.
We have that the left-hand side is equal to:
σΨ · (idΨ′ , T ·σΨ), T ·σΨ = σΨ · idΨ′ , T ·σΨ by lemma B.92.
Furthermore by lemma B.96 we have that σΨ · idΨ′ = σΨ.
The right-hand side is equal to:
id|Ψ| ·σΨ, T ·σΨ = σΨ, T ·σΨ due to lemma B.95.

Part 3 Most cases are proved as above, using the above lemmas. The most difficult case is the pattern matching
construct.

Case

Ψ ` T : K Ψ, K; Γ ` dτe|Ψ|,1 : ? Ψ `
⌈
Ψ
′′⌉
|Ψ| wf

Ψ,
⌈
Ψ
′′⌉
|Ψ| `

⌈
T ′
⌉
|Ψ|,|Ψ′′| : K Ψ,

⌈
Ψ
′′⌉
|Ψ| ; Σ; Γ `

⌈
e′
⌉
|Ψ|,|Ψ′′| : dτe|Ψ|,1 · (idΨ,

⌈
T ′
⌉
|Ψ|,|Ψ′′|)

Ψ; Σ; Γ ` unify T return (.τ) with (Ψ′′.T ′ 7→ e′) : (dτe|Ψ|,1 · (idΨ, T ))+unit
�

From Ψ ` T : K and lemma B.97 we have:
Ψ′ ` T ·σΨ : K ·σΨ

From Ψ, K; Γ ` dτe|Ψ|,1 : ?, Ψ ` Γ wf, part 2 and lemma C.9 we have:
Ψ′, K ·σΨ; Γ ·σΨ ` dτ ·σΨe|Ψ′|,1 : ?
From Ψ ` dΨ′′e|Ψ| wf and lemmas B.98 and B.106 we have:
Ψ′ ` dΨ′′ ·σΨe|Ψ′| wf
From Ψ, dΨ′′e|Ψ| ; Σ; Γ` de′e|Ψ|,|Ψ′′| : dτe|Ψ|,1 ·(idΨ, T ′), σ′

Ψ
=σΨ, X|Ψ′|, · · · , X|Ψ′|+|Ψ′′·σΨ|−1 and Ψ′, dΨ′′ ·σΨe|Ψ′| `

σ′
Ψ

: (Ψ, dΨ′′e|Ψ|), lemma B.97, lemma B.103, and lemma B.92 we have:
Ψ′, dΨ′′ ·σΨe|Ψ′| ` dT ′ ·σΨe|Ψ′|,|Ψ′′·σΨ| : K ·σΨ

Similarly for the same σ′
Ψ

, and from Ψ, dΨ′′e|Ψ| ; Σ; Γ ` de′e|Ψ|,|Ψ′′| : dτe|Ψ|,1 · (idΨ, dT ′e|Ψ|,|Ψ′′|), lemma C.9
and induction hypothesis, we get:
Ψ′, dΨ′′ ·σΨe|Ψ′| ; Σ; Γ ·σΨ ` de′ ·σΨe|Ψ′|,|Ψ′′·σΨ| : (dτe|Ψ|,1 · (idΨ, dT ′e|Ψ|,|Ψ′′|)) ·σ′Ψ.
Thus we only need to prove that (dτe|Ψ|,1 · (idΨ, dT ′e|Ψ|,|Ψ′′|)) ·σ′Ψ = dτ ·σΨe|Ψ′|,1 · (idΨ′ , dT ′ ·σΨe|Ψ′|,|Ψ′′·σΨ|).
In that case we will use the same typing rule to get the desired result, using a similar proof as this last step, to
go from dτ ·σΨe|Ψ′|,1 · (idΨ′ , T ·σΨ) to (dτe|Ψ|,1 · (idΨ, T )) ·σΨ.

122



So we now prove (dτe|Ψ|,1 · (idΨ, dT ′e|Ψ|,|Ψ′′|)) ·σ′Ψ = dτ ·σΨe|Ψ′|,1 · (idΨ′ , dT ′ ·σΨe|Ψ′|,|Ψ′′·σΨ|):
By lemma C.9 and lemma B.103, we have that the right-hand side is equal to:
(dτe|Ψ|,1 · (σΨ, X|Ψ′|)) · (idΨ′ , dT ′e|Ψ|,|Ψ′′| ·σ′Ψ).
By application of lemma C.11 we see that both sides are equal if (σΨ, X|Ψ′|)·(idΨ′ , dT ′e|Ψ|,|Ψ′′| ·σ′Ψ)=
(idΨ, dT ′e|Ψ|,|Ψ′′|) ·σ′Ψ.
The left-hand side of this is equal to σΨ · (idΨ′ , dT ′e|Ψ|,|Ψ′′| ·σ′Ψ), dT ′e|Ψ|,|Ψ′′| ·σ′Ψ.
By lemma B.92 and B.96 we get that this is further equal to σΨ, dT ′e|Ψ|,|Ψ′′| ·σ′Ψ.
The right-hand side is equal to idΨ ·σ′Ψ, dT ′e|Ψ|,|Ψ′′| ·σ′Ψ, which is equal to the above using lemmas
B.92 and B.95.

Lemma C.14 1.
⌈
bkcMN,K

⌉M

N,K
= k

2.
⌈
bτcMN,K

⌉M

N,K
= τ

3.
⌈
becMN,K

⌉M

N,K
= e

Trivial by induction and use of lemma B.105.

Lemma C.15 (Substitution) 1. If Ψ, Ψ′; Γ, α′ : k′, Γ′ ` τ : k and Ψ; Γ ` τ′ : k′ then Ψ, Ψ′; Γ, Γ′[τ′/α′] `
τ[τ′/α′] : k.

2. If Ψ, Ψ′; Σ Γ, α′ : k′, Γ′ ` e : τ and Ψ; Γ ` τ′ : k′ then Ψ, Ψ′; Σ; Γ, Γ′[τ′/α′] ` e[τ′/α′] : τ[τ′/α′].

3. If Ψ, Ψ′; Σ Γ, x′ : τ′, Γ′ ` e : τ and Ψ; Σ; Γ ` e′ : τ′ then Ψ, Ψ′; Σ; Γ, Γ′ ` e[e′/x′] : τ.

Easily proved by structural induction on the typing derivations.

Let us now proceed to prove the main preservation theorem.

Theorem C.16 (Preservation) If •; Σ; • ` e : τ, µ ∼ Σ, ( µ , e ) −→ ( µ′ , e′ ) then there exists Σ′ such that
Σ⊆ Σ′, µ′ ∼ Σ′ and •; Σ′; • ` e′ : τ.

Proceed by induction on the derivation of ( µ , e )−→ ( µ′ , e ). When we don’t specify a different µ′, we have
that µ′ = µ, with the desired properties obviously holding.

Case
( µ , e )−→ ( µ′ , e′ )

( µ , E[e] )−→ ( µ′ , E[e′] )
�

By induction hypothesis for ( µ , e )−→ ( µ′ , e′ ) we get a Σ′ such that Σ⊆ Σ′, µ′ ∼ Σ′ and •; Σ; • ` e′ : τ. By
inversion of typing for E[e] and re-application of the same typing rule for E[e′] we get that •; Σ′; • ` E[e′] : τ.

Case ( µ , (Λ(K).e) T )−→ ( µ , dee0,1 ·T ) �

By inversion of typing we get:
•; Σ; • ` Λ(K).e : Π(K).τ′

• ` T : K
τ = dτ′e0,1 ·T
By further typing inversion for Λ(K).e we get:
•, K; Σ; • ` dee0,1 : τ′′

τ′ = bτ′′c0,1
For σΨ = •, T we have • ` (•, T ) : (•, K) trivially from the above.
By lemma C.13 for σΨ we get that:

123



•; Σ; • ` dee0,1 ·T : τ′′ ·T .

Now it remains to show that τ′′ ·T =
⌈
bτ′′c0,1

⌉
0,1
·T , which is proved by C.14.

Case ( µ , unpack 〈T, τ〉v (.)x.(e′) )−→ ( µ , (
⌈
e′
⌉

0,1 ·T )[v/x] ) �

By inversion of typing we get:
•; Σ; • ` 〈T, τ′′〉v : Σ(K).τ′

•, K; Σ; x : dτ′e0,1 ` de′e0,1 : τ

•; • ` τ : ?
By further typing inversion for 〈T, τ′′〉v we get:
τ′′ = τ′

• ` T : K
•, K; • ` dτ′e0,1 : ?
•; Σ; • ` v : dτ′e0,1 · (T )
First by lemma C.13 for e′, σΨ = T we get:
•; Σ; x : dτ′e0,1 ·T ` de′e0,1 ·T : τ ·T .
Second by lemma C.12 for τ we get that τ ·T = τ.
Thus •; Σ; x : dτ′e0,1 ·T ` de′e0,1 ·T : τ.
Furthermore by lemma C.15 for [v/x] we get that •; Σ; • ` (de′e0,1 ·T )[v/x] : τ, which is the desired.

Case ( µ , (λx : τ.e) v )−→ ( µ , e[v/x] ) �

By inversion of typing we get:
•; Σ; • ` λx : τ.e : τ′→ τ

•; Σ; • ` v : τ′

By further typing inversion for λx : τ.e we get:
•; Σ; x : τ ` e : τ

By lemma C.15 for [v/x] we get:
•; Σ; • ` e[v/x] : τ, which is the desired.

Case ( µ , proji(v1, v2) )−→ ( µ , vi ) �

By typing inversion we get:
•; Σ; • ` (v1, v2) : τ1× τ2
τ = τi

By further inversion for (v1, v2) we have:
•; Σ; • ` vi : τi, which is the desired.

Case ( µ , case(inji v, x.e1, x.e2) )−→ ( µ , ei[v/x] ) �

By typing inversion we get:
•; Σ; • ` v : τi

•; Σ; x : τi ` ei : τ

Using the lemma C.15 for [v/x] we get:
•; Σ; • ` ei[v/x] : τ

Case ( µ , unfold (fold v) )−→ ( µ , v ) �

By inversion we get: •; • ` µα : k.τ′ : k
•; Σ; • ` fold v : (µα : k.τ′) τ1 τ2 · · · τn

τ = τ′[µα : k.τ′] τ1 τ2 · · · τn

By further typing inversion for fold v:

124



•; Σ; • ` v : τ′[µα : k.τ/α] τ1 τ2 · · · τn

Which is the desired.

Case
l 7→ _ 6∈ µ

( µ , ref v )−→ ( (µ, l 7→ v) , l )
�

By typing inversion we get: •; Σ; • ` v : τ

For Σ′ = Σ, l : τ and µ′ = µ, l 7→ v we have that µ′ ∼ Σ′ and •; Σ′;• ` l : ref τ.

Case
l 7→ _ ∈ µ

( µ , l := v )−→ ( µ[l 7→ v] , () )
�

By typing inversion get:
•; Σ; • ` l : ref τ

•; Σ; • ` v : τ

Thus for µ′ = µ[l 7→ v] we have that µ′ ∼ Σ and •; Σ;• ` () : unit.

Case
l 7→ v ∈ µ

( µ , !l )−→ ( µ , v )
�

By typing inversion get: •; Σ; • ` l : ref τ

By inversion of µ∼ Σ get:
•; Σ; • ` v : τ, which is the desired.

Case ( µ , (Λα : k.e) τ
′′ )−→ ( µ , e[τ′′/α] ) �

By typing inversion we get:
•; Σ; • ` Λα : k.e : Πα : k.τ′

•; • ` τ′′ : k
τ = τ′[τ′′/α]
By further typing inversion for Λα : k.e we get:
•; Σ; α : k ` e : τ′

Using the lemma C.15 for [τ′′/α] we get:
•; Σ; • ` e[τ′′/α] : τ′[τ′′/α], which is the desired.

Case ( µ , fix x : τ.e )−→ ( µ , e[fix x : τ.e/x] ) �

By typing inversion get:
•; Σ; x : τ ` e : τ

By application of the lemma C.15 for [fix x : τ.e/x] we get:
•; Σ; • ` e[fix x : τ.e/x] : τ

Case
∃σΨ.(• ` σΨ :

⌈
Ψ
′⌉

0 ∧
⌈
T ′
⌉

0,|Ψ′| ·σΨ = T )

( µ , unify T return (.τ′) with (Ψ′.T ′ 7→ e′) )−→ ( µ , inj1 (
⌈
e′
⌉

0,|Ψ′| ·σΨ) )
�

By inversion of typing we get:
• ` T : K
•, K; Σ; • ` dτ′e0,1 : ?
• ` dΨ′e|Ψ| wf
dΨ′e0 ` dT ′e0,|Ψ′| : K
dΨ′e0 ; Σ; • ` de′e0,|Ψ′| : dτ′e0,1 · (T ′)
τ = (dτ′e0,1 ·T )+unit
By application of lemma C.15 for σΨ and de′e0,|Ψ′| we get:

125



•; Σ; • ` de′e0,|Ψ′| ·σΨ : (dτ′e0,1 ·T ′) ·σΨ.
All we now need to prove is that dτ′e0,1 ·T = (dτ′e0,1 ·T ′) ·σΨ.
Using the lemma C.11 we get that:
(dτ′e0,1 ·T ′) ·σΨ = dτ′e0,1 · (T ′ ·σΨ) = dτ′e0,1 ·T
It is now easy to complete the desired result using the typing rule for inj1.

Case
6 ∃σΨ.(• ` σΨ : dΨe0 ∧

⌈
T ′
⌉

0,|Ψ| ·σΨ = T )

( µ , unify T return (.τ) with (Ψ.T ′ 7→ e′) )−→ ( µ , inj2 () )
�

Trivial by application of the typing rule for inj2.

Lemma C.17 (Canonical forms) If •; Σ;• ` v : τ then

1. If τ = Π(K).τ′, then ∃e such that v = Λ(K).e.

2. If τ = Σ(K).τ′, then ∃T,v′ such that v = pack T return (.τ′′) with v′ with τ′ =β τ′′.

3. If τ = unit, then v = ().

4. If τ = τ1→ τ2, then ∃e such that v = λx : τ1.e.

5. If τ = τ1× τ2, then ∃v1,v2 such that v = (v1, v2).

6. If τ = τ1 + τ2, then ∃v′ such that either v = inj1 v′ or v = inj2 v′.

7. If τ = (µα : k.τ′) τ1 τ2 · · · τn, then ∃v′ such that v = fold v′.

8. If τ = ref τ′, then ∃l such that v = l.

9. If τ = Λα : k.τ′, then ∃e such that v = Λα : k.e.

Directly by typing inversion.

Theorem C.18 (Progress) If •; Σ; • ` e : τ and µ∼ Σ, then either µ, e−→ error, or e is a value v, or there exist
µ′ and e′ such that µ, e−→ µ′, e′.

We proceed by induction on the typing derivation for e. We do not consider cases where e= v (since the theorem
is trivial in that case), or where e = E[e′] with e 6=v. In that case, by typing inversion we can get that e′ is well-
typed under the empty context, so by induction hypothesis we can either prove that µ, e−→ error, or there exist
µ′, e′′ such that µ, E[e] −→ µ′, E[e′′] by the environment closure small-step rule. Thus we only consider cases
where e = E[v], or where e cannot be further decomposed into E[e′] with E 6=•. Last, when we don’t mention a
specific µ′, we have that µ′ = µ with the desired properties obviously holding.

Case
•; Σ; • ` v : Π(K).τ • ` T : K

•; Σ; • ` v T : dτe0,1 · (T )
�

By use of the canonical forms lemma C.17, we get that v = Λ(K).e.
By typing inversion we get that K; Σ; • ` dee0,1 : τ′.
So applying the appropriate operational semantics rule we get an e′ = dee0,1 ·T such that ( µ , e )−→ ( µ , e′ ).

Case
•; Σ; • ` v : Σ(K).τ •, K, Σ; •, x : dτe0,1 `

⌈
e′
⌉

0,1 : τ
′ •; • ` τ

′ : ?

•; Σ; • ` unpack v (.)x.(e′) : τ
′ �

By use of the canonical forms lemma C.17, we get that v = pack T return (.τ′′) with v′.
Furthermore we have that de′e0,1 is well-defined, so such will be de′e0,1 ·T too.
Thus the relevant operational semantics rule applies.

126



Case
•; Σ; • ` v : τ→ τ

′ •; Σ; • ` e′ : τ

•; Σ; • ` v e′ : τ
′ �

From canonical forms, we have that v = λx : τ′′.e′′, so the relevant step rule applies.

Case
•; Σ; • ` e : τ1× τ2 i = 1 or 2

•; Σ; • ` proji e : τi
�

From canonical forms, we have that v = (v1, v2), so using the relevant step rule for proji we get that
( µ , proji e )−→ ( µ , vi ).

Case
•; Σ; • ` v : τ1 + τ2 •; Σ; •, x : τ1 ` e1 : τ •; Σ; •, x : τ2 ` e2 : τ

•; Σ; • ` case(v, x.e1, x.e2) : τ
�

From canonical forms, we have that either v = inj1 v′ or v = inj2 v′; in each case a step rule applies to give an
appropriate e′.

Case
•; • ` µα : k.τ : k •; Σ; • ` v : (µα : k.τ) τ1 τ2 · · · τn

•; Σ; • ` unfold v : τ[µα : k.τ/α] τ1 τ2 · · · τn
�

From canonical forms, we get that v = fold v′, so the relevant step rule trivially applies.

Case
•; Σ; • ` v : τ

•; Σ; • ` ref v : ref τ
�

Assuming an infinite heap, we can find a l such that l 6∈ µ, and construct µ′ = µ, l 7→ v. Thus the relevant step
rule applies giving e′ = l.

Case
•; Σ; • ` v : ref τ

•; Σ; • `!v : τ
�

From canonical forms, we get that v = l. By typing inversion, we get that (l : τ) ∈ Σ.
From µ∼ Σ, we get that there exists v′ such that (l 7→ v′) ∈ µ.
Thus the relevant step rule applies and gives e′ = v′.

Case
•; Σ; • ` v : Πα : k.τ′ •; • ` τ : k

•; Σ; • ` v τ : τ
′[τ/α]

�

From canonical forms, we get that v = Λα : k.e. The relevant step rule trivially applies to give e′ = e[τ/α].

Case
•; Σ; •, x : τ ` e : τ

•; Σ; • ` fix x : τ.e : τ
�

Trivially we have that the relevant step rule applies giving e′ = e[fix x : τ.e/x].

Case

• ` T : K •, K; • ` dτe0,1 : ?
• `
⌈
Ψ
′⌉

0 wf •,
⌈
Ψ
′⌉

0 `
⌈
T ′
⌉

0,|Ψ′| : K •,
⌈
Ψ
′⌉

0 ; Σ; • `
⌈
e′
⌉

0,|Ψ′| : dτe0,1 · (
⌈
T ′
⌉

0,|Ψ′|)

•; Σ; • ` unify T return (.τ) with (Ψ′.T ′ 7→ e′) : (dτe0,1 · (T ))+unit
�

We have non-determinism here in the semantics, which we will fix in the next section, giving more precise
semantics to the patterns and unification procedure. In either case, we split cases on whether an σΨ with the
desired properties exists or not, and use the appropriate step rule to get an e′ in each case.

127



D. Typing and unification for patterns

D.1 Adjusting computational language typing

First, we will define two new notions: one is a stricter typing for patterns, allowing only certain forms to be
used; the second is relevant typing for patterns, making sure that all declared unification variables are actually
used somewhere inside the pattern. Together they are supposed to make sure that unification is possible using a
decidable deterministic algorithm; so there is only one unifying substitution, or there is none.

We change the pattern matching typing rule for the computational language as follows:

Ψ ` T : K Ψ, K; Γ ` dτe|Ψ|,1 : ? Ψ `p
⌈
Ψ
′⌉
|Ψ| wf

Ψ,
⌈
Ψ
′⌉
|Ψ| `p

⌈
T ′
⌉
|Ψ|,|Ψ′| : K relevant

(
Ψ,
⌈
Ψ
′⌉
|Ψ| `p

⌈
T ′
⌉
|Ψ|,|Ψ′| : K

)
= Ψ̂,

⌈
Ψ
′⌉
|Ψ|

Ψ,
⌈
Ψ
′⌉
|Ψ| ; Σ; Γ `

⌈
e′
⌉
|Ψ|,|Ψ′| : dτe|Ψ|,1 · (idΨ,

⌈
T ′
⌉
|Ψ|,|Ψ′|)

Ψ; Σ; Γ ` unify T return (.τ) with (Ψ′.T ′ 7→ e′) : (dτe|Ψ|,1 · (idΨ, T ))+unit

Then we define the stricter typing for patterns `p. This will be entirely identical to normal typing, but will
disallow forms that would lead to non-determinism (e.g. context unification variables allowed anywhere inside
a pattern).

Then we define the notion of relevancy for extension variables. For a judgement Ψ;J, relevant(Ψ;J) = Ψ̂,
where Ψ̂ is a partial context, containing only the extension variables that actually get used. We will show that
functions used during typing and evaluation commute with this function.

Then, we prove that either a unique unification exists for a pair of a pattern and a term, yielding a partial
substitution for the relevant variables, or that no such unification exists. From this proof we derive an algorithm
for unification.

D.2 Strict typing for patterns

Definition D.1 (Pattern typing) We will adapt the typing rules for extended terms T , to show which of those
terms are accepted as valid patterns. We assume that the Ψ is split into two parts, Ψ, Ψu, where Ψu contains
only newly-introduced unification variables just for the purpose of type-checking the current pattern and branch.

Ψ `p Ψu wf

Ψ `p • wf

Ψ `p Ψu wf Ψ, Ψu `p [Φ] t : [Φ]s

Ψ `p (Ψu, [Φ] t) wf

Ψ `p Ψu wf Ψ, Ψu `p Φ wf

Ψ `p (Ψu, [Φ]ctx) wf

Ψ, Ψu `p T : K

Ψ, Ψu; Φ `p t : t ′ Ψ, Ψu; Φ ` t ′ : s

Ψ, Ψu `p [Φ] t : [Φ] t ′
Ψ, Ψu `p Φ, Φ

′ wf

Ψ, Ψu `p [Φ]Φ′ : [Φ]ctx

Ψ, Ψu `p Φ wf

Ψ, Ψu `p • wf

Ψ, Ψu `p Φ wf Ψ, Ψu; Φ `p t : s

Ψ, Ψu `p (Φ, t) wf

Ψ, Ψu `p Φ wf (Ψ, Ψu).i = [Φ]ctx i < |Ψ|
Ψ, Ψu `p (Φ, Xi) wf

Ψ `p Φ wf (Ψ, Ψu).i = [Φ]ctx i≥ |Ψ|
Ψ, Ψu `p Φ, Xi wf

128



Ψ, Ψu; Φ `p σ : Φ′

Ψ, Ψu; Φ `p • : •
Ψ, Ψu; Φ `p σ : Φ

′
Ψ, Ψu; Φ `p t : t ′ ·σ

Ψ, Ψu; Φ `p (σ, t) : (Φ′, t ′)

Ψ, Ψu; Φ `p σ : Φ
′ (Ψ, Ψu).i = [Φ′]ctx Φ

′, Xi ⊆Φ

Ψ, Ψu; Φ `p (σ, id(Xi)) : (Φ′, Xi)

129



Ψ, Ψu; Φ `p t : t ′

c : t ∈ Σ

Ψ, Ψu; Φ `p c : t

Φ.I = t

Ψ, Ψu; Φ `p fI : t

(s,s′) ∈A

Ψ, Ψu; Φ `p s : s′

Ψ, Ψu; Φ `p t1 : s Ψ, Ψu; Φ, t1 `p dt2e|Φ| : s′ (s,s′,s′′) ∈ R

Ψ, Ψu; Φ `p Π(t1).t2 : s′′

Ψ, Ψu; Φ `p t1 : s Ψ, Ψu; Φ, t1 `p dt2e|Φ| : t ′ Ψ, Ψu; Φ `p Π(t1).
⌊
t ′
⌋
|Φ|, · : s′

Ψ, Ψu; Φ `p λ(t1).t2 : Π(t1).
⌊
t ′
⌋
|Φ|, ·

Ψ, Ψu; Φ `p t1 : Π(t).t ′ Ψ, Ψu; Φ `p t2 : t

Ψ, Ψu; Φ `p t1 t2 :
⌈
t ′
⌉
|Φ| · (idΦ, t2)

Ψ, Ψu; Φ `p t1 : t Ψ, Ψu; Φ `p t2 : t Ψ, Ψu; Φ `p t : Type

Ψ, Ψu; Φ `p t1 = t2 : Prop

(Ψ, Ψu).i = T T = [Φ′] t ′ i < |Ψ| Ψ, Ψu; Φ `p σ : Φ
′

Ψ, Ψu; Φ `p Xi/σ : t ′ ·σ

(Ψ, Ψu).i = T T = [Φ′] t ′ i≥ |Ψ| Ψ, Ψu; Φ `p σ : Φ
′

Φ
′ ⊆Φ σ = idΦ′

Ψ, Ψu; Φ `p Xi/σ : t ′ ·σ

Ψ, Ψu; Φ `p t : t1 Ψ, Ψu; Φ `p t1 : Prop Ψ, Ψu; Φ `p t ′ : t1 = t2
Ψ, Ψu; Φ `p conv t t ′ : t2

Ψ, Ψu; Φ `p t1 : t Ψ, Ψu; Φ `p t1 = t1 : Prop

Ψ, Ψu; Φ `p refl t1 : t1 = t1

Ψ, Ψu; Φ `p ta : t1 = t2
Ψ, Ψu; Φ `p symm ta : t2 = t1

Ψ, Ψu; Φ `p ta : t1 = t2 Ψ, Ψu; Φ `p tb : t2 = t3
Ψ, Ψu; Φ `p trans ta tb : t1 = t3

Ψ, Ψu; Φ `p ta : M1 = M2
Ψ, Ψu; Φ `p M1 : A→ B Ψ, Ψu; Φ `p tb : N1 = N2 Ψ, Ψu; Φ `p N1 : A

Ψ, Ψu; Φ `p congapp ta tb : M1 N1 = M2 N2

Ψ, Ψu; Φ `p ta : A1 = A2
Ψ, Ψu; Φ,A1 `p dtbe : B1 = B2 Ψ, Ψu; Φ `p A1 : Prop Ψ, Ψu; Φ,A1 `p dB1e : Prop

Ψ, Ψu; Φ `p congimpl ta (λ(A1).tb) : Π(A1).bB1c= Π(A2).bB2c

Ψ, Ψu; Φ, A `p dtbe : B = B′ Ψ, Ψu; Φ `p Π(A).bBc= Π(A).
⌊
B′
⌋

: Prop

Ψ, Ψu; Φ `p congpi (λ(A).tb) : Π(A).bBc= Π(A).
⌊
B′
⌋

Ψ, Ψu; Φ, A `p dtbe : B1 = B2 Ψ, Ψu; Φ `p λ(A).bB1c= λ(A).bB2c : Prop

Ψ, Ψu; Φ `p conglam (λ(A).tb) : λ(A).bB1c= λ(A).bB2c

Ψ, Ψu; Φ `p λ(A).M : A→ B Ψ, Ψu; Φ `p N : A Ψ, Ψu; Φ `p A→ B : Type

Ψ, Ψu; Φ `p beta (λ(A).M) N : (λ(A).M) N = dMe · (idΦ,N)130



Now we need to prove that all theorems that had to do with these typing judgements still hold. In most cases,
this holds entirely trivially, since the `p judgements are exactly the same as the ` judgements, with some extra
restrictions as side-conditions. The only theorems that we need to reprove are the ones that require special care
in exactly those rules that now have side-conditions. As these rules all have to do just with the use of extension
variables, we understand that the theorems that we need to adapt are the extension substitution lemmas. Their
statements need to be adjusted to account for part of the substitution corresponding to the Ψ part, and part of
it corresponding to the Ψu part (both in the source and target extension contexts of the substitution). Though
we do not provide the details here, the main argument why these continue to hold is the following: we never
substitute variables from Ψu with anything other than the same variable in a context that includes the same Ψu.
Thus the side-conditions will continue to hold.

Theorem D.2 (Extension of lemma B.97) If Ψ′, Ψu ·σΨ ` (σΨ,X|Ψ′|, · · · ,X|Ψ′|+|Ψu|) : (Ψ, Ψu) then:

1. If Ψ, Ψu; Φ `p t : t ′ then Ψ′, Ψu ·σΨ; Φ ·σΨ `p t ·σΨ : t ′ ·σΨ.

2. If Ψ, Ψu; Φ `p σ : Φ′ then Ψ′, Ψu ·σΨ; Φ ·σΨ `p σ ·σΨ : Φ′ ·σΨ.

3. If Ψ, Ψu `p Φ wf then Ψ′, Ψu ·σΨ `p Φ ·σΨ wf.

4. If Ψ, Ψu `p T : K then Ψ′, Ψu ·σΨ `p T ·σΨ : K ·σΨ.

In all cases proceed entirely similarly as before. The only special cases that need to be accounted for are the
ones that have to do with restrictions on variables coming out of Ψu.

Case
Ψ `p Φ wf (Ψ, Ψu).i = [Φ]ctx i≥ |Ψ|

Ψ, Ψu `p Φ, Xi wf
�

We need to prove that Ψ′, Ψ′u `p Φ · σ′
Ψ
, Xi · σ′Ψ wf, where σ′

Ψ
= σΨ, X|Ψ′|, · · · , X|Ψ′|+|Ψu|. By induction

hypothesis for Ψu = • we get that Ψ `p Φ ·σΨ wf, and because of lemma B.92 we get that also Ψ `p Φ ·σ′
Ψ

wf.
Also, we have that Xi ·σ′Ψ = Xi−|Ψ|+|Ψ′|.
We have that (Ψ′, Ψ′u).i−|Ψ|+ |Ψ′|= [Φ ·σ′

Ψ
]ctx.

Last, since i≥ |Ψ|, we also have that i−|Ψ|+ |Ψ′| ≥ |Ψ′|.
Thus by the use of the same typing rule, we arrive at the desired.

Case
(Ψ, Ψu).i = T T = [Φ′] t ′ i≥ |Ψ| Ψ, Ψu; Φ `p σ : Φ

′
σ = idΦ′

Ψ, Ψu; Φ `p Xi/σ : t ′ ·σ �

Similarly as above. Furthermore, we need to show that idΦ′ ·σ′Ψ = idΦ′·σ′
Ψ

, which is simple to prove by induction
on Φ′.

Lemma D.3 (Extension of lemma B.98) If Ψ `p Ψu wf then Ψ `p Ψu ·σΨ wf.

Similarly to lemma B.98 and use of the above lemma.

D.3 Relevant typing

We will proceed to define a notion of partial contexts: these are extension contexts where certain elements
are unspecified. It is presumed that in the judgements that they appear, only specified elements are relevant; the
judgements do not depend on the other elements at all (save for them being well-formed). We will use this notion
in order to make sure that all unification variables introduced during pattern matching are relevant. Otherwise,
the irrelevant variables could be substituted by arbitrary terms, resulting in the existence of an infinite number
of valid unification substitutions.

Definition D.4 The syntax for partial contexts is defined as follows.

131



Ψ̂ ::= • | Ψ̂, K | Ψ̂, ?

Definition D.5 Well-formedness for partial contexts is defined as follows.

` Ψ̂ wf

` • wf

` Ψ̂ wf Ψ̂ ` [Φ] t : [Φ]s

` (Ψ̂, [Φ] t) wf

` Ψ̂ wf Ψ̂ `Φ wf

` (Ψ̂, [Φ]ctx) wf

` Ψ̂ wf

` (Ψ̂, ?) wf

Other than the above change in the well-formedness definition, partial contexts are used with entirely the
same definitions as before. This means that if a typing judgement like Ψ̂; Φ ` t : t ′ tries to access the i-th
metavariable, this metavariable should be specified in Ψ̂ rather than being the unspecified element ? – because
the side-condition Ψ̂.i = K would otherwise be violated.

We proceed to define a judgement that extracts the relevant extension variables out of typing judgements that
use a concrete context Ψ, yielding a partial context Ψ̂. We first need a couple of definitions.

Definition D.6 The fully-unspecified partial context is defined as follows.

unspecΨ

unspec• = •
unspecΨ, K = unspecΨ, ?

Definition D.7 The partial context specified solely at i is defined as follows.

Ψ@̂i

(Ψ, K)@̂i = unspecΨ, K when |Ψ|= i
(Ψ, K)@̂i = (Ψ@̂i), ? when |Ψ|> i

Definition D.8 Joining two partial contexts is defined as follows.

Ψ̂◦ Ψ̂′

•◦• = •
(Ψ̂, K)◦ (Ψ̂′, K) = (Ψ̂◦ Ψ̂′), K
(Ψ̂, ?)◦ (Ψ̂′, K) = (Ψ̂◦ Ψ̂′), K
(Ψ̂, K)◦ (Ψ̂′, ?) = (Ψ̂◦ Ψ̂′), K
(Ψ̂, ?)◦ (Ψ̂′, ?) = (Ψ̂◦ Ψ̂′), ?

Definition D.9 The notion of one partial context being a less precise version of another one is defined as follows.

Ψ̂v Ψ̂′

• v •
(Ψ̂, K)v (Ψ̂′, K) ⇐ Ψ̂v Ψ̂′

(Ψ̂, ?)v (Ψ̂′, K) ⇐ Ψ̂v Ψ̂′

(Ψ̂, ?)v (Ψ̂′, ?) ⇐ Ψ̂v Ψ̂′

132



Definition D.10 We define a judgement to extract the relevant extension variables out of a context.

relevant(Ψ ` T : K) = Ψ̂

relevant

(
Ψ; Φ ` t : t ′ Ψ; Φ ` t ′ : s

Ψ ` [Φ] t : [Φ] t ′

)
= relevant

(
Ψ; Φ ` t : t ′

)

relevant

(
Ψ `Φ, Φ

′ wf

Ψ ` [Φ]Φ′ : [Φ]ctx

)
= relevant

(
Ψ `Φ, Φ

′ wf
)

relevant(Ψ `Φ wf) = Ψ̂

relevant

(
Ψ ` • wf

)
= unspecΨ relevant

(
Ψ `Φ wf Ψ; Φ ` t : s

Ψ ` (Φ, t) wf

)
= relevant(Ψ; Φ ` t : s)

relevant

(
Ψ `Φ wf (Ψ).i = [Φ]ctx

Ψ ` (Φ, Xi) wf

)
= relevant(Ψ `Φ wf)◦ (Ψ@̂i)

133



relevant(Ψ; Φ ` t : t ′) = Ψ̂

relevant

(
c : t ∈ Σ

Ψ; Φ ` c : t

)
= relevant(Ψ `Φ wf) relevant

(
Φ.I = t

Ψ; Φ ` fI : t

)
= relevant(Ψ `Φ wf)

relevant

(
(s,s′) ∈A

Ψ; Φ ` s : s′

)
= relevant(Ψ `Φ wf)

relevant

(
Ψ; Φ ` t1 : s Ψ; Φ, t1 ` dt2e|Φ| : s′ (s,s′,s′′) ∈ R

Ψ; Φ `Π(t1).t2 : s′′

)
= relevant

(
Ψ; Φ, t1 ` dt2e|Φ| : s′

)

relevant

(
Ψ; Φ ` t1 : s Ψ; Φ, t1 ` dt2e|Φ| : t ′ Ψ; Φ `Π(t1).

⌊
t ′
⌋
|Φ|, · : s′

Ψ; Φ ` λ(t1).t2 : Π(t1).
⌊
t ′
⌋
|Φ|, ·

)
=

relevant
(

Ψ; Φ, t1 ` dt2e|Φ| : t ′
)

relevant

(
Ψ; Φ ` t1 : Π(t).t ′ Ψ; Φ ` t2 : t

Ψ; Φ ` t1 t2 :
⌈
t ′
⌉
|Φ| · (idΦ, t2)

)
= relevant

(
Ψ; Φ ` t1 : Π(t).t ′

)
◦ relevant(Ψ; Φ ` t2 : t)

relevant

(
Ψ; Φ ` t1 : t Ψ; Φ ` t2 : t Ψ; Φ ` t : Type

Ψ; Φ ` t1 = t2 : Prop

)
=

relevant(Ψ; Φ ` t1 : t)◦ relevant(Ψ; Φ ` t2 : t) relevant

(
(Ψ).i = T T = [Φ′] t ′ Ψ; Φ ` σ : Φ

′

Ψ; Φ ` Xi/σ : t ′ ·σ

)
=

(relevant
(
Ψ�i` [Φ′] t ′ : [Φ′]s

)
,

|Ψ|−i times︷ ︸︸ ︷
?,?, · · · ,?)◦ relevant

(
Ψ; Φ ` σ : Φ

′)◦ (Ψ@̂i)

relevant

(
Ψ; Φ ` t : t1 Ψ; Φ ` t1 : Prop Ψ; Φ ` t ′ : t1 = t2

Ψ; Φ ` conv t t ′ : t2

)
=

relevant(Ψ; Φ ` t : t1)◦ relevant
(
Ψ; Φ ` t ′ : t1 = t2

)
relevant

(
Ψ; Φ ` t1 : t Ψ; Φ ` t1 = t1 : Prop

Ψ; Φ ` refl t1 : t1 = t1

)
= relevant(Ψ; Φ ` t1 : t)

relevant

(
Ψ; Φ ` ta : t1 = t2

Ψ; Φ ` symm ta : t2 = t1

)
= relevant(Ψ; Φ ` ta : t1 = t2)

relevant

(
Ψ; Φ ` ta : t1 = t2 Ψ; Φ ` tb : t2 = t3

Ψ; Φ ` trans ta tb : t1 = t3

)
=

relevant(Ψ; Φ ` ta : t1 = t2)◦ relevant(Ψ; Φ ` tb : t2 = t3)

relevant

(
Ψ; Φ ` ta : M1 = M2 Ψ; Φ `M1 : A→ B Ψ; Φ ` tb : N1 = N2 Ψ; Φ ` N1 : A

Ψ; Φ ` congapp ta tb : M1 N1 = M2 N2

)
=

relevant(Ψ; Φ ` ta : M1 = M2)◦ relevant(Ψ; Φ ` tb : N1 = N2)

134



relevant

(
Ψ; Φ ` ta : A1 = A2 Ψ; Φ,A1 ` dtbe : B1 = B2 Ψ; Φ ` A1 : Prop Ψ; Φ,A1 ` dB1e : Prop

Ψ; Φ ` congimpl ta (λ(A1).tb) : Π(A1).bB1c= Π(A2).bB2c

)
=

relevant(Ψ; Φ ` ta : A1 = A2)◦ relevant(Ψ; Φ,A1 ` dtbe : B1 = B2)

relevant

(
Ψ; Φ, A ` dtbe : B = B′ Ψ; Φ `Π(A).bBc= Π(A).

⌊
B′
⌋

: Prop

Ψ; Φ ` congpi (λ(A).tb) : Π(A).bBc= Π(A).
⌊
B′
⌋ )

=

relevant
(
Ψ; Φ, A ` dtbe : B = B′

)
relevant

(
Ψ; Φ, A ` dtbe : B1 = B2 Ψ; Φ ` λ(A).bB1c= λ(A).bB2c : Prop

Ψ; Φ ` conglam (λ(A).tb) : λ(A).bB1c= λ(A).bB2c

)
=

relevant(Ψ; Φ, A ` dtbe : B1 = B2)

relevant

(
Ψ; Φ ` λ(A).M : A→ B Ψ; Φ ` N : A Ψ; Φ ` A→ B : Type

Ψ; Φ ` beta (λ(A).M) N : (λ(A).M) N = dMe · (idΦ,N)

)
=

relevant(Ψ; Φ ` λ(A).M : A→ B)◦ relevant(Ψ; Φ ` N : A)

Ψ; Φ ` σ : Φ′

relevant

(
Ψ; Φ ` • : •

)
= relevant(Ψ `Φ wf)

relevant

(
Ψ; Φ ` σ : Φ

′
Ψ; Φ ` t : t ′ ·σ

Ψ; Φ ` (σ, t) : (Φ′, t ′)

)
= relevant

(
Ψ; Φ ` σ : Φ

′)◦ relevant
(
Ψ; Φ ` t : t ′ ·σ

)

relevant

(
Ψ; Φ ` σ : Φ

′ (Ψ).i = [Φ′]ctx Φ
′, Xi ⊆Φ

Ψ; Φ ` (σ, id(Xi)) : (Φ′, Xi)

)
= relevant

(
Ψ; Φ ` σ : Φ

′)
Lemma D.11 (More-informed contexts preserve judgements) Assuming Ψ̂v Ψ̂′:

1. If Ψ̂ ` T : K then Ψ̂′ ` T : K.

2. If Ψ̂ `Φ wf then Ψ̂′ `Φ wf.

3. If Ψ̂; Φ ` t : t ′ then Ψ̂′; Φ ` t : t ′.

4. If Ψ̂; Φ ` σ : Φ′ then Ψ̂′; Φ ` σ : Φ′.

Simple by structural induction on the judgements. The interesting cases are the ones mentioning extension
variables, as for example when Φ = Φ′, Xi, or t = Xi/σ. In both such cases, the typing rule has a side condition
requiring that Ψ̂.i = T . Since Ψ̂v Ψ̂′, we have that Ψ̂′.i = T .

Lemma D.12 (Relevancy is decidable) 1. If Ψ`T : K, then there exists a unique Ψ̂ such that relevant(Ψ ` T : K)=

Ψ̂.

2. If Ψ `Φ wf, then there exists a unique Ψ̂ such that relevant(Ψ `Φ wf) = Ψ̂.

3. If Ψ; Φ ` t : t ′, then there exists a unique Ψ̂ such that relevant(Ψ; Φ ` t : t ′) = Ψ̂.

135



4. If Ψ; Φ ` σ : Φ′, then there exists a unique Ψ̂ such that relevant(Ψ; Φ ` σ : Φ′) = Ψ̂.

The relevancy judgements are defined by structural induction on the corresponding typing derivations. It is
crucial to take into account the fact that `Ψ wf and Ψ `Φ wf are implicitly present along any typing derivation
that mentions such contexts; thus these derivations themselves, as well as their sub-derivations, are structurally
included in derivations like Ψ; Φ ` t : t ′. Furthermore, it is easy to see that all the joins used are defined, since
in most cases two results of the relevancy procedure on a judgement using the same context Ψ are joined, which
is always well-defined. The only case where this does not hold (use of extension variables in terms), the joins
are still defined because of the adaptation of the resulting Ψ̂ by affixing the unspecified elements.

Lemma D.13 (Properties of context join) 1. Ψ̂1 ◦ Ψ̂2 v Ψ̂1

2. Ψ̂1 ◦ Ψ̂2 v Ψ̂2

3. Ψ̂1 ◦ Ψ̂2 = Ψ̂2 ◦ Ψ̂1

4. (Ψ̂1 ◦ Ψ̂2)◦ Ψ̂3 = Ψ̂1 ◦ (Ψ̂2 ◦ Ψ̂3)

5. If Ψ̂1 v Ψ̂2 then Ψ̂1 ◦ Ψ̂2 = Ψ̂2

6. If Ψ̂1 v Ψ̂′1 then Ψ̂1 ◦ Ψ̂2 v Ψ̂′1 ◦ Ψ̂2

All are simple to prove by induction.

Lemma D.14 (Relevancy when weakening the extensions context) 1. If Ψ`T : K, then relevant(Ψ, Ψ′ ` T : K)=

relevant(Ψ ` T : K) ,

|Ψ′|︷ ︸︸ ︷
?, · · · ,?.

2. If Ψ `Φ wf, then relevant(Ψ, Ψ′ `Φ wf) = relevant(Ψ `Φ wf) ,

|Ψ′|︷ ︸︸ ︷
?, · · · ,?.

3. If Ψ; Φ ` t : t ′, then relevant(Ψ, Ψ′; Φ ` t : t ′) = relevant(Ψ; Φ ` t : t ′) ,

|Ψ′|︷ ︸︸ ︷
?, · · · ,?.

4. If Ψ; Φ ` σ : Φ′, then relevant(Ψ, Ψ′; Φ ` σ : Φ′) = relevant(Ψ; Φ ` σ : Φ′) ,

|Ψ′|︷ ︸︸ ︷
?, · · · ,?.

Simple to prove by induction.

Lemma D.15 (Relevancy of sub-judgements is implied) 1.(a) relevant(Ψ `Φ wf)v relevant(Ψ `Φ, Φ′ wf)

(b) relevant(Ψ `Φ wf)v relevant(Ψ; Φ ` t : t ′)

(c) relevant(Ψ `Φ wf)v relevant(Ψ; Φ ` σ : Φ′).

2.(a) If Ψ; Φ ` t : t ′ then relevant(Ψ; Φ, Φ′ ` t : t ′) = relevant(Ψ; Φ ` t : t ′)◦ relevant(Ψ `Φ, Φ′ wf).

(b) If Ψ; Φ ` σ : Φ′ then relevant(Ψ; Φ, Φ′′ ` σ : Φ′) = relevant(Ψ; Φ ` σ : Φ′)◦ relevant(Ψ `Φ, Φ′′ wf).

3.(a) If Ψ; Φ ` t : t ′ and Ψ; Φ ` t ′ : s then relevant(Ψ; Φ ` t ′ : s)v relevant(Ψ; Φ ` t : t ′).

(b) If Ψ; Φ′ ` σ : Φ then relevant(Ψ `Φ wf)v relevant(Ψ; Φ′ ` σ : Φ).

4.(a) If Ψ; Φ ` t : t ′ and Ψ; Φ′ ` σ : Φ, then relevant(Ψ; Φ′ ` t ·σ : t ′ ·σ) v relevant(Ψ; Φ ` t : t ′) ◦
relevant(Ψ; Φ′ ` σ : Φ).

(b) If Ψ; Φ′ ` σ : Φ and Ψ; Φ′′ ` σ′ : Φ′, then relevant(Ψ; Φ′′ ` σ ·σ′ : Φ) v relevant(Ψ; Φ′ ` σ : Φ) ◦
relevant(Ψ; Φ′′ ` σ′ : Φ′).

Part 1(a) Trivial by induction the derivation of relevancy.

136



Part 1(b) By inversion of the derivation of relevant(Ψ `Φ wf) = Ψ̂. In the base cases, this is directly proved
by the relevancy judgement; in the case where we have relevant(Ψ; Φ ` t : t ′) = relevant(Ψ, Φ, t1 ` t2 : t3),
by induction hypothesis get that relevant(Ψ `Φ, t1 wf), which by inversion gives us the desired; in the
metavariables case trivially follows from repeated inversions of relevant(Ψ; Φ ` σ : Φ′).

Part 1(c) Trivial by induction and use of part 1(b).

Part 2 By induction on the typing derivations of t and t ′ all cases follow trivially.

Part 3(a) By induction on the derivation of Ψ; Φ ` t : t ′.

Case t = c � Simply using the above parts and the fact that Ψ; • ` t ′ : s, we have that relevant(Ψ; Φ ` t ′ : s) =
unspecΨ ◦ relevant(Ψ `Φ wf) = relevant(Ψ `Φ wf)v relevant(Ψ; Φ ` t : t ′).

Case t = s � Similarly as the above case.

Case t = vI � We have that Ψ; Φ�I`Φ.I : s, by inversion of the well-formedness derivation for Φ. Therefore
relevant(Ψ; Φ ` t ′ : s) = relevant(Ψ; Φ�I` t ′ : s) ◦ relevant(Ψ `Φ wf). By repeated inversion of Ψ ` Φ wf
we get that relevant(Ψ ` (Φ�I, Φ.I) wf) v relevant(Ψ `Φ wf). Thus we have that relevant(Ψ; Φ ` t ′ : s) v
relevant(Ψ `Φ wf), which proves the desired.

Case t = Π(t1).t2 � Trivially from the fact that relevant(Ψ; Φ ` s′′ : s′′′) = relevant(Ψ `Φ wf)v
relevant(Ψ; Φ, t1 ` dt2e)

Case t = λ(t1).t2 � We have that relevant(Ψ; Φ `Π(t1).bt ′c : s′) = relevant(Ψ; Φ, t1 ` dbt ′ce : s) =
relevant(Ψ; Φ, t1 ` t ′ : s). So by induction hypothesis, since Ψ; Φ, t1 ` t ′ : s is a sub-derivation in Ψ; Φ, t1 `
dt2e : t ′, we have that relevant(Ψ; Φ, t1 ` t ′ : s)v relevant(Ψ; Φ, t1 ` t2 : t ′), which is the desired.

Case t = t1 t2 � By induction hypothesis get that relevant(Ψ; Φ `Π(t).t ′ : s)v relevant(Ψ; Φ ` t1 : Π(t).t ′).
(Here we assume unique typing for Π types). Furthermore, we have that relevant(Ψ; Φ `Π(t).t ′ : s) =
relevant(Ψ; Φ, t ` dt ′e : s). Otherwise, it is simple to prove that relevant(Ψ; Φ ` (idΦ, t2) : (Φ, dt ′e)) =
relevant(Ψ; Φ ` t2 : dt ′e), thus the desired follows trivially following part 4.

Case t = Xi/σ � We have that relevant(Ψ; Φ′ ` t ′ : s) = relevant(Ψ�i; Φ′ ` t ′ : s) ,

|Ψ|−i times︷ ︸︸ ︷
?, · · · ,? from inversion

of well-formedness for Ψ. Furthermore, we have that Ψ; Φ ` σ : Φ′ from typing inversion. Thus, using part

4, we get that relevant(Ψ; Φ ` t ′ ·σ : s)v (relevant(Ψ�i; Φ′ ` t ′ : s) ,

|Ψ|−i times︷ ︸︸ ︷
?, · · · ,? )◦ relevant(Ψ; Φ ` σ : Φ′). Thus

the result follows directly, taking the properties of join into account.

Case t = (t1 = t2) � Trivial.

Case t = conv t t ′ � By induction hypothesis we get that relevant(Ψ; Φ ` t1 = t2 : Prop)v relevant(Ψ; Φ ` t ′ : t1 = t2).
By inversion of relevancy for t1 = t2 we get that it is equal to relevant(Ψ; Φ ` t1 : Prop)◦relevant(Ψ; Φ ` t2 : Prop)v
relevant(Ψ; Φ ` t2 : Prop). Thus the desired follows trivially using the properties of joining contexts.

Case (rest) � Following the techniques used above.

Part 3(b) By induction on the derivation of Ψ; Φ′ ` σ : Φ.

137



Case σ = • � Trivial.

Case σ = σ
′, t ′ � By induction hypothesis for σ′, use of part 3(a) for t ′, and definition of relevancy for Φ.

Case σ = σ
′, id(Xi) � By induction hypothesis for σ′, and also using the side condition for Xi being

part of Φ′: by inversion of well-formedness for Φ′, we get that Ψ@̂i v relevant(Ψ `Φ′ wf) and thus also
Ψ@̂iv relevant(Ψ; Φ′ ` σ : Φ), proving the desired.

Part 4(a) By induction on the typing derivation for t.

Case t = c � We have that relevant(Ψ; Φ ` c : t ′) = relevant(Ψ `Φ wf), and relevant(Ψ; Φ′ ` c ·σ : t ′ ·σ) =
relevant(Ψ `Φ′ wf). We need to show that relevant(Ψ `Φ wf)v relevant(Ψ `Φ′ wf)◦relevant(Ψ; Φ′ ` σ : Φ).
We have that relevant(Ψ `Φ′ wf) v relevant(Ψ; Φ′ ` σ : Φ), so the join in the above equality is well-defined;
from the properties of join it is evident that it is enough to show relevant(Ψ `Φ wf)v relevant(Ψ; Φ′ ` σ : Φ).
This is trivially proved by part 3(b).

Case t = s � Similarly.

Case t = fI � We have that relevant(Ψ; Φ′ ` fI ·σ : t ′ ·σ) = relevant(Ψ; Φ′ ` σ.i : t ′ ·σ). By inversion for σ,
we have that relevant(Ψ; Φ′ ` σ.i : Φ.i ·σ)v relevant(Ψ; Φ′ ` σ : Φ). Thus the desired directly follows.

Case t = Π(t1).t2 � By induction hypothesis for dt2e and σ = σ, f|Φ|, we get that:
relevant

(
Ψ; Φ′, t1 ·σ ` dt2e · (σ, f|Φ|) : s′′

)
v relevant(Ψ; Φ′, t1 ·σ ` dt2e : s′′)◦relevant

(
Ψ; Φ′, t1 ·σ ` (σ, f|Φ|) : (Φ, t1)

)
.

Also we have that relevant(Ψ; Φ′ ` σ : Φ) v relevant(Ψ; Φ′, t1 ·σ ` σ : Φ). Using the known properties of
freshening and substitutions, we know that relevant(Ψ; Φ′ ` t ·σ : s′′)= relevant

(
Ψ; Φ′, t1 ·σ ` dt2e · (σ, f|Φ|) : s′′

)
,

thus this is the desired.

Case t = λ(t1).t2 � Similar to the above.

Case t = t1 t2 � By induction hypothesis we get that:
relevant(Ψ; Φ′ ` t1 ·σ : Π(t ·σ).(t ′ ·σ))v relevant(Ψ; Φ ` t1 : Π(t).t ′)◦ relevant(Ψ; Φ′ ` σ : Φ), and that
relevant(Ψ; Φ′ ` t2 ·σ : t ·σ) v relevant(Ψ; Φ ` t2 : t) ◦ relevant(Ψ; Φ′ ` σ : Φ). Furthermore, we have that
relevant(Ψ; Φ′ ` t1 ·σ t2 ·σ : dt ′ ·σe · (idΦ′ , t2 ·σ))
= relevant(Ψ; Φ′ ` t1 ·σ : Π(t ·σ).(t ′ ·σ)) ◦ relevant(Ψ; Φ′ ` t2 ·σ : t ·σ). The desired follows trivially, using
the properties of join.

Case t = Xi/σ
′ � Trivial, using part 4(b).

Case (rest) � Using similar techniques as above.

Part 4(b) By induction and use of part 4(a).

Lemma D.16 (Relevancy soundness) 1. If Ψ ` T : K and relevant(Ψ ` T : K) = Ψ̂ then Ψ̂ ` T : K.

2. If Ψ `Φ wf and relevant(Ψ `Φ wf) = Ψ̂ then Ψ̂ `Φ wf.

3. If Ψ; Φ ` t : t ′ and relevant(Ψ; Φ ` t : t ′) = Ψ̂ then Ψ̂; Φ ` t : t ′.

4. If Ψ; Φ ` σ : Φ′ and relevant(Ψ; Φ ` σ : Φ′) = Ψ̂ then Ψ̂; Φ ` σ : Φ′.

Part 1 By induction on the derivation of Ψ ` T : K.

138



Case T = [Φ] t � By part 3 we have that if relevant(Ψ; Φ ` t : t ′) = Ψ̂, then Ψ̂; Φ ` t : t ′. From this we also
get that Ψ̂; Φ ` t ′ : s, and thus it is trivial to construct a derivation of Ψ̂ ` [Φ] t : [Φ] t ′.

Case T = [Φ]Φ′ � From part 2 we get that if relevant(Ψ `Φ, Φ′ wf) = Ψ̂, then Ψ̂`Φ, Φ′ wf, thus the desired
follows trivially.

Part 2 By induction on the derivation of Ψ `Φ wf.

Case Φ = • � Trivially we have that unspecΨ ` • wf.

Case Φ = Φ, t � We have that if relevant(Ψ; Φ ` t : s) = Ψ̂, then Ψ̂; Φ ` t : s by part 3, and furthermore using
the implicit requirement that Φ is well-formed, we also get that Ψ̂ ` Φ wf. Thus using the appropriate typing
rule we get Ψ̂ ` (Φ, t) wf.

Case Φ = Φ, Xi � By induction we get that if relevant(Ψ `Φ wf) = Ψ̂, then Ψ̂ ` Φ wf, and thus also
Ψ̂ ◦ (Ψ@̂i) ` Φ wf. Furthermore, (Ψ̂ ◦ (Ψ@̂i)).i = Ψ.i. Thus using the appropriate well-formedness rule for
Φ we get that Ψ̂ ` (Φ, Xi) wf.

Part 3 By induction on the derivation of Ψ; Φ ` t : t ′.

Case t = c � Trivially we have that Ψ̂; Φ ` c : t for any Ψ̂, Φ such that Ψ̂ ` Φ wf, which holds for the
corresponding Ψ̂ based on part 2.

Case t = s � Similarly as above.

Case t = fI � Again, as above.

Case t = Π(t1).t2 � Simple by induction hypothesis for dt2e, and also from the fact that relevant(Ψ; Φ ` t1 : s)v
relevant(Ψ ` (Φ, t1) wf)v relevant(Ψ; Φ, t1 ` dt2e : s′).

Case t = λ(t1).t2 � By induction hypothesis for dt2e, if relevant(Ψ; Φ, t1 ` dt2e : s′) = Ψ̂, we get that
Ψ̂; Φ, t1 ` dt2e : s′. Thus we also have that Ψ̂; Φ ` t1 : s, and also that either t ′ = Type′ (which is an impossible
case), or Ψ̂; Φ, t1 ` t ′ : s′′. By inversion of typing for Ψ; Φ `Π(t1).bt ′c : s′ we get that in fact s′′ = s′, and thus
it is easy to derive Ψ̂; Φ, t1 ` t ′ : s′ and Ψ̂; Φ ` Π(t1).bt ′c : s′. From these we get the desired derivation for
Ψ̂; Φ ` λ(t1).t2 : Π(t1).bt ′c.

Case t = t1 t2 � Trivial by induction hypothesis for t1 and t2.

Case t = (t1 = t2) � Again, trivial by induction hypothesis for t1 and t2, and also from the fact that Ψ̂1; Φ` t1 : t
implies Ψ̂1; Φ ` t : Type.

Case t = Xi/σ � From the first part (relevancy of T under the prefix context), we get that ` Ψ̂ wf. Furthermore,
using part 4 we get that Ψ̂; Φ ` σ : Φ′. Last, it is trivial to derive Ψ̂; Φ ` Xi/σ : t ′ ·σ using the same typing rule,
since Ψ̂.i = Ψ.i.

Part 4 By induction on the derivation of Ψ; Φ ` σ : Φ′.

139



Case σ = • � Trivial.

Case σ = σ
′, t � Trivial by induction hypothesis and use of part 3.

Case σ = σ
′, id(Xi) � By induction hypothesis get Ψ̂; Φ ` σ : Φ′. Furthermore, from Ψ̂ ` Φ wf and the fact

that Φ′, Xi ⊆Φ, we have by repeated typing inversions that Ψ@̂iv Ψ̂. Thus Ψ̂.i = Ψ.i, and we can construct a
derivation for Ψ̂; Φ ` (σ, id(Xi)) : (Φ′, Xi).

Definition D.17 Applying an extension substitution to a partial context is defined as follows, assuming that the
partial context does not contain extension variables bigger than X|Ψ|−1.

Ψ̂ ·σΨ

• ·σΨ = •
(Ψ̂, K) ·σΨ = Ψ̂ ·σΨ, K · (σΨ, X|Ψ|, · · · , X|Ψ|+|Ψ̂|)

(Ψ̂, ?) ·σΨ = Ψ̂ ·σΨ, ?

Lemma D.18 (Relevancy and extension substitution) 1. If unspecΨ,Ψ̂u v relevant(Ψ, Ψu ` T : K), Ψ′ `
σΨ : Ψ, and σ′

Ψ
= σΨ, X|Ψ′|, · · · , X|Ψ′|+|Ψu|, then unspecΨ′ ,Ψ̂u ·σΨv relevant(Ψ′, Ψu ·σΨ ` T ·σ′

Ψ
: K ·σ′

Ψ
).

2. If unspecΨ,Ψ̂uv relevant(Ψ, Ψu `Φ wf), Ψ′ `σΨ : Ψ, and σ′
Ψ
=σΨ, X|Ψ′|, · · · , X|Ψ′|+|Ψu|, then unspecΨ′ ,Ψ̂u ·

σΨ v relevant(Ψ′, Ψu ·σΨ `Φ ·σ′
Ψ

wf).

3. If unspecΨ,Ψ̂u v relevant(Ψ, Ψu; Φ ` t : t ′), Ψ′ ` σΨ : Ψ, and σ′
Ψ

= σΨ, X|Ψ′|, · · · , X|Ψ′|+|Ψu|, then
unspecΨ′ ,Ψ̂u ·σΨ v relevant(Ψ′, Ψu ·σΨ; Φ ·σ′

Ψ
` t ·σ′

Ψ
: t ′ ·σ′

Ψ
).

4. If unspecΨ,Ψ̂u v relevant(Ψ, Ψu; Φ ` σ : Φ′), Ψ′ ` σΨ : Ψ, and σ′
Ψ
= σΨ, X|Ψ′|, · · · , X|Ψ′|+|Ψu|, then

unspecΨ′ ,Ψ̂u ·σΨ v relevant(Ψ′, Ψu ·σΨ; Φ ·σ′
Ψ
` σ ·σ′

Ψ
: Φ′ ·σ′

Ψ
).

Part 1 By induction on the typing derivation of T , and use of parts 2 and 3.

Part 2 By induction on the well-formedness derivation of Φ.

Case Φ = • � Trivial.

Case Φ = Φ
′, t � Using part 3 we get the desired result.

Case Φ = Φ
′, Xi �

We have that unspecΨ, Ψ̂u v relevant(Ψ, Ψu `Φ′ wf)◦ ((Ψ, Ψu)@̂i).
We split cases based on whether i < |Ψ| or not.
In the first case:

We trivially have unspecΨ, Ψ̂u v relevant(Ψ, Ψu `Φ′ wf), thus directly by use of the induction
hypothesis and the same rule for relevancy we get the desired.

140



In the second case:
Assume without loss of generality Ψ̂′u such that unspecΨ, Ψ̂′u v relevant(Ψ, Ψu `Φ′ wf), and
(unspecΨ, Ψ̂u) = (unspecΨ, Ψ̂′u)◦ ((Ψ, Ψu)@̂i).
Then by induction hypothesis get that unspecΨ′ , Ψ̂′u ·σΨ v relevant(Ψ′, Ψu ·σΨ `Φ′ ·σ′

Ψ
wf).

Now we have that (Φ′, Xi) ·σ′Ψ = Φ′ ·σ′
Ψ
, Xi−|Ψ|+|Ψ′|.

Thus relevant(Ψ′, Ψu ·σΨ ` (Φ′, Xi) ·σ′Ψ wf) = relevant
(
Ψ′, Ψu ·σΨ ` (Φ′ ·σ′Ψ, Xi−|Ψ|+|Ψ′|) wf

)
=

relevant(Ψ′, Ψu ·σΨ `Φ′ ·σ′
Ψ

wf)◦ ((Ψ′, Ψu ·σΨ)@̂i−|Ψ|+ |Ψ′|).
Thus we have that (unspecΨ′ , Ψ̂′u · σΨ) ◦ ((Ψ′, Ψu · σΨ)@̂i−|Ψ|+ |Ψ′|) v
relevant(Ψ′, Ψu ·σΨ ` (Φ′, Xi) ·σ′Ψ wf).
But (unspecΨ′ , Ψ̂′u ·σΨ)◦ ((Ψ′, Ψu ·σΨ)@̂i−|Ψ|+ |Ψ′|) = unspecΨ′ , Ψ̂u ·σΨ.
This is because (unspecΨ, Ψ̂u) = (unspecΨ, Ψ̂′u)◦ ((Ψ, Ψu)@̂i), so the i-th element is the only one
where unspecΨ,Ψ̂

′
u might differ from unspecΨ,Ψ̂u; this will be the i− |Ψ|+ |Ψ′|-th element after

σ′
Ψ

is applied; and that element is definitely equal after the join.

Part 3 By induction on the typing derivation for t.

Case t = c,s, or vI � Trivial using part 2.

Case t = Π(t1).t2 � By induction hypothesis for dt2e.

Case t = λ(t1).t2 � By induction hypothesis for dt2e.

Case t = t1 t2 � Assume Ψ̂1 and Ψ̂2 such that Ψ̂ = Ψ̂1 ◦ Ψ̂2. Then use induction hypothesis for t1 and t2. Last
combine the results using join to get the desired, noticing that both Ψ̂1 ·σΨ and Ψ̂2 ·σΨ are v Ψ̂ ·σΨ (so join is
defined between them), and also that (Ψ̂1 ◦ Ψ̂2) ·σΨ = Ψ̂1 ·σΨ ◦ Ψ̂2 ◦σΨ.

Case t = Xi/σ �

We split cases based on whether i < |Ψ| or not. In case it is, the proof is trivial using part 4. We thus focus on
the case where i≥ |Ψ|.
We have that unspecΨ, Ψ̂v relevant((Ψ,Ψu)�i` [Φ′] t : [Φ′]s)◦ relevant(Ψ, Ψu; Φ ` σ : Φ′)◦ ((Ψ, Ψu)@̂i).

Assume Ψ̂1
u,Ψ̂

′
u,Ψ̂

2
u such that (Ψ̂1

u = Ψ̂′u,

|Ψ|+|Ψu|−i times︷ ︸︸ ︷
?, · · · ,? ), unspecΨ, Ψ̂′u v relevant((Ψ,Ψu)�i` [Φ′] t : [Φ′]s),

unspecΨ, Ψ̂2
u v relevant(Ψ, Ψu; Φ ` σ : Φ′) and last that Ψ̂ = Ψ̂1

u ◦ Ψ̂2
u ◦ ((Ψ, Ψu@̂i)).

By induction hypothesis for [Φ′] t we get that:
unspecΨ′ , Ψ̂′u ·σΨ v relevant((Ψ′,Ψu ·σΨ)�i` [Φ′ ·σ′Ψ] t ·σ′Ψ : [Φ′ ·σ′

Ψ
]s ·σ′

Ψ
).

By induction hypothesis for σ we get that:
unspecΨ′ , Ψ̂2

u ·σΨ v relevant(Ψ′, Ψu ·σΨ; Φ ·σ′
Ψ
` σ ·σ′

Ψ
: Φ′ ·σ′

Ψ
)

We combine the above to get the desired, using the properties of join at @̂ as we did earlier.

Case (rest) � Similar to the above cases.

Part 4 Similar as above.

D.4 Unification

Here, we are matching a term with some unification variables against a closed term. Therefore we will use
typing judgements like Ψ `p T : K instead of Ψ′, Ψu `p T : K, as we did above. The single Ψ that we use
actually corresponds to Ψu; the normal context Ψ′ is empty.

141



First, we need to define the notion of partial substitutions, corresponding to substitutions for partial contexts
as defined above.

Definition D.19 (Partial substitutions) The syntax for partial substitutions follows.

σ̂Ψ ::= • | σ̂Ψ, T | σ̂Ψ, ?

Definition D.20 Joining two partial substitutions is defined below.

σ̂Ψ ◦ σ̂Ψ

′

•◦• = •
(σ̂Ψ, T )◦ (σ̂Ψ

′
, T ) = (σ̂Ψ ◦ σ̂Ψ

′
), T

(σ̂Ψ, ?)◦ (σ̂Ψ

′
, T ) = (σ̂Ψ ◦ σ̂Ψ

′
), T

(σ̂Ψ, T )◦ (σ̂Ψ

′
, ?) = (σ̂Ψ ◦ σ̂Ψ

′
), T

(σ̂Ψ, ?)◦ (σ̂Ψ

′
, ?) = (σ̂Ψ ◦ σ̂Ψ

′
), ?

Definition D.21 Comparing two partial substitutions is defined below.

σ̂Ψ v σ̂Ψ

′

• v •
(σ̂Ψ, T )v (σ̂Ψ

′
, T ) ⇐ σ̂Ψ v σ̂Ψ

′

(σ̂Ψ, ?)v (σ̂Ψ

′
, T ) ⇐ σ̂Ψ v σ̂Ψ

′

(σ̂Ψ, ?)v (σ̂Ψ

′
, ?) ⇐ σ̂Ψ v σ̂Ψ

′

Definition D.22 The fully unspecified substitution for a specific partial context is defined as:

unspec
Ψ̂
= σ̂Ψ

unspec• = ?
unspec

Ψ̂, ? = unspec
Ψ̂
, ?

unspec
Ψ̂, K = unspec

Ψ̂
, ?

Definition D.23 Applying a partial extension substitution to a term, a context, or a substitution is entirely
identical to normal substitution. It fails when a metavariable that is left unspecified in the extension substitution
gets used, something that already happens from the existing definition B.77.

Definition D.24 Replacing an unspecified element of a partial substitution with another works as follows.

σ̂Ψ[i 7→ T ] = σ̂Ψ

′

(σ̂Ψ, ?)[i 7→ T ] = σ̂Ψ, T when i = |σ̂Ψ|
(σ̂Ψ, T ′)[i 7→ T ] = σ̂Ψ[i 7→ T ], T ′ when i < |σ̂Ψ|
(σ̂Ψ, ?)[i 7→ T ] = σ̂Ψ[i 7→ T ], ? when i < |σ̂Ψ|

142



Definition D.25 Limiting a partial substitution to a specific partial context works as follows; we assume
|σ̂Ψ|= |Ψ̂|.

σ̂Ψ|Ψ̂

(•)|• = •
(σ̂Ψ, T )|

Ψ̂, ? = σ̂Ψ|Ψ̂, ?
(σ̂Ψ, T )|

Ψ̂, K = σ̂Ψ|Ψ̂, T
(σ̂Ψ, ?)|

Ψ̂, ? = σ̂Ψ|Ψ̂, ?

Definition D.26 Typing for partial substitutions is defined below.

• ` σ̂Ψ : Ψ̂

• ` • : •
• ` σ̂Ψ : Ψ̂ • ` T : K · σ̂Ψ

• `p (σ̂Ψ, T ) : (Ψ̂, K)

• `p σ̂Ψ : Ψ̂

• `p (σ̂Ψ, ?) : (Ψ̂, ?)

Lemma D.27 If • ` σ̂Ψ1 : Ψ̂1 and • ` σ̂Ψ2 : Ψ̂2, with Ψ̂1◦Ψ̂2 and σ̂Ψ1◦σ̂Ψ2 defined, then • ` σ̂Ψ1◦σ̂Ψ2 : Ψ̂1◦Ψ̂2.

By induction on the derivation of σ̂Ψ1 ◦ σ̂Ψ2 = σ̂Ψ

′.

Case •◦• � Trivial, since Ψ̂1 = Ψ̂2 = • by typing inversion.

Case (σ̂Ψ

′
1, T )◦ (σ̂Ψ

′
2, T ) � By typing inversion get Ψ̂1 = Ψ̂′1, K with T : K, and Ψ̂2 = Ψ̂′2, K with T : K.

Thus Ψ̂1 ◦Ψ̂2 = Ψ̂′1 ◦Ψ̂′2, K, and by induction hypothesis for σ̂Ψ

′
1, σ̂Ψ

′
2 and typing it is easy to prove the desired.

Case
(σ̂Ψ

′
1, ?)◦ (σ̂Ψ

′
2, T )

B
� y typing inversion get Ψ̂1 = Ψ̂′1, ?, and Ψ̂2 = Ψ̂′2, K with T : K. Thus Ψ̂1 ◦ Ψ̂2 =

Ψ̂′1 ◦ Ψ̂′2, K, and by induction hypothesis for σ̂Ψ

′
1, σ̂Ψ

′
2 and typing it is easy to prove the desired.

Case
(σ̂Ψ

′
1, T )◦ (σ̂Ψ

′
2, ?)

S
� imilar to the above.

Case
(σ̂Ψ

′
1, ?)◦ (σ̂Ψ

′
2, ?)

A
� gain by induction hypothesis and the fact that Ψ̂1 = Ψ̂′1,? and Ψ̂2 = Ψ̂′2,? by typing

inversion.

Lemma D.28 If • ` σ̂Ψ : Ψ̂, • ` Ψ̂′ wf and Ψ̂′ v Ψ̂, then σ̂Ψ|Ψ̂′ v σ̂Ψ and • ` σ̂Ψ|Ψ̂′ : Ψ̂′.

Trivial by induction on the derivation of σ̂Ψ|Ψ̂′ .
Now we are ready to proceed to a proof about the fact that either a unique unification partial substitution

exists for patterns and terms that are typed under the restrictive typing, or that no such substitution exists. The
constructive content of this proof will be our unification procedure.

143



To prove the following theorem we assume that if Ψ; Φ`p t : t ′, with t ′ 6= Type′, the derivation Ψ; Φ`p t ′ : s
for a suitable s is a sub-derivation of the derivation Ψ; Φ `p t : t ′. The way we have written our rules this
is actually not true, but an adaptation where the t ′ : s derivation becomes part of the t : t ′ derivation is
possible, thanks to the theorem B.68.

Theorem D.29 (Decidability and determinism of unification) 1. If Ψ`p Φ wf, • `p Φ′ wf, relevant(Ψ `p Φ wf)=
Ψ̂, then there either exists a unique substitution σ̂Ψ such that • ` σ̂Ψ : Ψ̂ and Φ · σ̂Ψ = Φ′, or no such substi-
tution exists.

2. If Ψ; Φ `p t : tT , •; Φ′ `p t ′ : t ′T and relevant(Ψ; Φ ` t : t ′T ) = Ψ̂′, then:
assuming that Ψ; Φ `p tT : s, •; Φ `p t ′T : s, relevant(Ψ; Φ `p tT : s) = Ψ̂ (or, if tT = Type′, that Ψ `p Φ wf,
• `p Φ wf, relevant(Ψ `p Φ wf) = Ψ̂) and there exists a unique substitution σ̂Ψ such that • ` σ̂Ψ : Ψ̂,
Φ · σ̂Ψ = Φ′ and tT · σ̂Ψ = t ′T ,
then there either exists a unique substitution σ̂Ψ

′ such that • ` σ̂Ψ

′ : Ψ̂′, Φ · σ̂Ψ

′
= Φ′, tT · σ̂Ψ

′
= t ′T and

t · σ̂Ψ

′
= t ′, or no such substitution exists.

3. If Ψ `p T : K, • `p T ′ : K and relevant(Ψ; Φ ` T : K) = Ψ, then either there exists a unique substitution σΨ

such that • ` σΨ : Ψ and T ·σΨ = T ′, or no such substitution exists.

Part 2 By induction on the typing derivation for t.

Case
c : t ∈ Σ

Ψ; Φ `p c : tT
�

We have t · σ̂Ψ

′
= c · σ̂Ψ

′
= c. So for any substitution to satisfy the desired properties we need to have that t ′ = c

also; if this isn’t so, no σ̂Ψ

′ possibly exists. If we have that t = t ′ = c, then the desired is proved directly by
assumption, considering that relevant(Ψ; Φ `p c : t) = relevant(Ψ; Φ `p tT : s) = relevant(Ψ `p Φ wf) (since
tT comes from the definitions context and can therefore not contain extension variables).

Case
Φ.I = t

Ψ; Φ `p fI : tT
�

Similarly as above. First, we need t ′ = fI′ , otherwise no suitable σ̂Ψ

′ exists. From assumption we have a unique
σ̂Ψ for relevant(Ψ; Φ `p tT : s). If I · σ̂Ψ = I′, then σ̂Ψ has all the desired properties for σ̂Ψ

′, considering the
fact that relevant(Ψ; Φ `p fI : tT ) = relevant(Ψ `p Φ wf) and relevant(Ψ; Φ `p tT : s) = relevant(Ψ `p Φ wf)
(since tT = Φ.i). It is also unique, because an alternate σ̂Ψ

′ would violate the assumed uniqueness of σ̂Ψ. If
I · σ̂Ψ 6= σ̂Ψ

′, no suitable substitution exists, because of the same reason.

Case
(s,s′) ∈A

Ψ; Φ `p s : s′
�

Entirely similar to the case for c.

Case
Ψ; Φ `p t1 : s Ψ; Φ, t1 `p dt2e|Φ| : s′ (s,s′,s′′) ∈ R

Ψ; Φ `p Π(t1).t2 : s′′
�

First, we have either that t ′ = Π(t ′1).t
′
2, or no suitable σ̂Ψ

′ exists. Thus by inversion for t ′ we get:
•; Φ′ `p t ′1 : s∗, •; Φ′, t ′1 `p dt ′2e|Φ′| : s′∗, (s∗,s

′
∗,s
′′) ∈ R.

Now, we need s = s∗, otherwise no suitable σ̂Ψ

′ possibly exists. To see why this is so, assume that a σ̂Ψ

′ satis-
fying the necessary conditions exists, and s 6= s∗; then we have that t1 · σ̂Ψ

′
= t ′1, which means that their types

should also match, a contradiction.
We use the induction hypothesis for t1 and t ′1. We are allowed to do so because relevant(Ψ; Φ `p s′′ : s′′′) =
relevant(Ψ; Φ `p s : s′′′′), and the other properties for σ̂Ψ also hold trivially.

144



From that we either get a σ̂Ψ

′ such that: • ` σ̂Ψ

′ : Ψ̂′, where Ψ̂′ = relevant(Ψ; Φ `p t1 : s) and t1 · σ̂Ψ

′
= t ′1,

Φ · σ̂Ψ

′
= Φ′. Since a partial substitution unifying t with t ′ will also include a substitution that only has to

do with Ψ̂′, we see that if no σ̂Ψ

′ is returned by the induction hypothesis, no suitable substitution for t and t ′

actually exists.
We can now use the induction hypothesis for t2 and σ̂Ψ

′, since relevant(Ψ; Φ t1 `p s′ : s′′′′′)= relevant(Ψ; Φ `p t1 : s),
and the other requirements trivially hold. Especially for s′ and s′∗ being equal, this is trivial since both need to
be equal to s′′ (because of the form of our rule set R).
From that we either get a σ̂Ψ

′′ such that, • ` σ̂Ψ

′′ : Ψ̂′′, dt2e|Φ| · σ̂Ψ

′′
= dt ′2e|Φ′|, Φ · σ̂Ψ

′′
= Φ and t1 · σ̂Ψ

′′
= t ′1, or

that such σ̂Ψ

′′ does not exist. In the second case we proceed as above, so we focus in the first case.
By use of properties of freshening (like injectivity) we are led to the fact that (Π(t1).t2) · σ̂Ψ

′′
= Π(t ′1).(t

′
2),

so the returned σ̂Ψ

′′ has the desired properties, if we consider the fact that relevant(Ψ; Φ `p Π(t1).t2 : s′′) =

relevant
(

Ψ; Φ, t1 `p dt2e|Φ| : s′
)

.

Case
Ψ; Φ `p t1 : s Ψ; Φ, t1 `p dt2e|Φ| : t3 Ψ; Φ `p Π(t1).bt3c|Φ|, · : s′

Ψ; Φ `p λ(t1).t2 : Π(t1).bt3c|Φ|, ·
�

We have that either t ′ = λ(t ′1).t
′
2, or no suitable σ̂Ψ

′ exists. Thus by typing inversion for t ′ we get:
•; Φ′ `p t ′1 : s∗, •; Φ′, t ′1 `p dt ′2e|Φ′| : t ′3, •; Φ′ `p Π(t ′1).bt3c|Φ′|, · : s′∗.

By assumption we have that there exists a unique σ̂Ψ such that relevant
(

Ψ; Φ `p Π(t1).bt3c|Φ|, · : s
)
= Ψ̂,

• ` σ̂Ψ : Ψ̂, Φ · σ̂Ψ = Φ′, (Π(t1).bt3c) · σ̂Ψ = Π(t ′1).bt ′3c, if relevant
(

Ψ; Φ `p Π(t1).bt3c|Φ,·|
)
= Ψ̂. From that

we also get that s′ = s′∗.
From the fact that (Π(t1).bt3c) · σ̂Ψ = Π(t ′1).bt ′3c, we get first of all that t1 · σ̂Ψ = t ′1, and also that t3 · σ̂Ψ = t ′3.
Furthermore, We have that relevant(Ψ; Φ `p Π(t1).bt3c : s′) = relevant(Ψ; Φ, t1 `p t3 : s′).
From that we understand that σ̂Ψ is a suitable substitution to use for the induction hypothesis for dt2e.
Thus from induction hypothesis we either get a unique σ̂Ψ

′ with the properties: • ` σ̂Ψ

′ : Ψ̂′, dt2e · σ̂Ψ

′
= dt ′2e,

(Φ, t1) · σ̂Ψ = Φ′, t ′1, t3 · σ̂Ψ = t ′3, if relevant
(

Ψ; Φ, t1 `p dt2e|Φ| : t3
)
= Ψ̂, or that no such substitution exists.

We focus on the first case; in the second case no unifying substitution for t and t ′ exists, otherwise the lack of
existence of a suitable σ̂Ψ

′ would lead to a contradiction.
This substitution σ̂Ψ

′ has the desired properties with respect to unification of t against t ′ (again using the
properties of freshening, like injectivity), and it is unique, because the existence of an alternate substitution
with the same properties would violate the uniqueness assumption of the substitution returned by induction
hypothesis.

Case
Ψ; Φ `p t1 : Π(ta).tb Ψ; Φ `p t2 : ta

Ψ; Φ `p t1 t2 : dtbe|Φ| · (idΦ, t2)
�

Again we have that either t ′ = t ′1 t ′2, or no suitable substitution possibly exists. Thus by inversion of typing for t ′

we get:
•; Φ `p t ′1 : Π(t ′a).t

′
b, •; Φ `p t ′2 : t ′a, t ′T =

⌈
t ′b
⌉
|Φ′| · (idΦ′ , t ′2).

Furthermore we have that Ψ; Φ `p Π(ta).tb : s and •; Φ `p Π(t ′a).t
′
b : s′ for suitable s, s′. We need s = s′, other-

wise no suitable σ̂Ψ

′ exists (because if t1 and t ′1 were unifiable by substitution, their Π-types would match, and
also their sorts, which is a contradiction).
We can use the induction hypothesis for Π(ta).tb and Π(t ′a).t

′
b, with the partial substitution σ̂Ψ limited only to

those variables relevant in Ψ `p Φ wf. In that case all of the requirements for σ̂Ψ hold (the uniqueness condition
also holds for this substitution, using part 1 for the fact that Φ and Φ′ only have a unique unification substi-
tution), so we get from the induction hypothesis either a σ̂Ψ

′ for Ψ̂′ = relevant(Ψ; Φ `p Π(ta).tb : s) such that
Φ · σ̂Ψ = Φ′ and (Π(ta).tb) · σ̂Ψ = Π(t ′a).t

′
b, or that no such σ̂Ψ

′ exists. In the second case, again we can show

145



that no suitable substitution for t and t ′ exists; so we focus in the first case.
We can now use the induction hypothesis for t1, using this σ̂Ψ

′. From that, we get that either a σ̂Ψ1 exists for
Ψ̂1 = relevant(Ψ; Φ `p t1 : Π(ta).tb) such that t1 · σ̂Ψ1 = t ′1 etc., or that no such σ̂Ψ1 exists, in which case we
argue that no global σ̂Ψ

′ exists for unifying t and t ′ (because we could limit it to the Ψ̂1 variables and yield a
contradiction).
We now form σ̂Ψ

′′ which is the limitation of σ̂Ψ

′ to the context Ψ̂′′ = relevant(Ψ; Φ `p ta : s∗). For that, we
have that • `p σ̂Ψ

′′ : Ψ̂′′, Φ · σ̂Ψ

′′
= Φ′ and ta · σ̂Ψ

′′
= ta. Also it is the unique substitution with those properties,

otherwise the induction hypothesis for ta would be violated.
Using σ̂Ψ

′′ we can allude to the induction hypothesis for t2, which either yields a substitution σ̂Ψ2 for
Ψ̂2 = relevant(Ψ; Φ `p t2 : ta), such that t2 · σ̂Ψ2 = t ′2, etc., or that no such substitution exists, which we prove
implies no global unifying substitution exists.
Having now the σ̂Ψ1 and σ̂Ψ2 specified above, we consider the substitution σ̂Ψr = σ̂Ψ1 ◦ σ̂Ψ2. This substi-
tution, if it exists, has the desired properties: we have that Ψ̂r = relevant(Ψ; Φ `p t1 t2 : dtbe · (idΦ, t2)) =
relevant(Ψ; Φ `p t1 : Π(ta).tb) ◦ relevant(Ψ; Φ `p t2 : ta), and thus • ` σ̂Ψr : Ψ̂r. Also, (t1 t2) · σ̂Ψr = t ′1 t ′2,
tT · σ̂Ψr = t ′T (because tb · σ̂Ψr = t ′b etc.), and Φ · σ̂Ψr = Φ′. It is also unique: if another substitution had the
same properties, we could limit it to either the relevant variables for t1 or t2 and get a contradiction. Thus this is
the desired substitution.
If σ̂Ψr does not exist, then no suitable substitution for unifying t and t ′ exists. This is again because we could
limit any potential such substitution to two parts, σ̂Ψ

′
1 and σ̂Ψ

′
2 (for Ψ̂1 and Ψ̂2 respectively), violating the

uniqueness of the substitutions yielded by the induction hypothesis.

Case
Ψ; Φ `p t1 : ta Ψ; Φ `p t2 : ta Ψ; Φ `p ta : Type

Ψ; Φ `p t1 = t2 : Prop
�

Similarly as above. First assume that t ′ = (t ′1 = t ′2), with t ′1 : t ′a, t ′2 : t ′a and t ′a : Type. Then, by induction hypothesis
get a unifying substitution σ̂Ψ

′ for ta and t ′a. Use that σ̂Ψ

′ in order to allude to the induction hypothesis for t1 and
t2 independently, yielding substitutions σ̂Ψ1 and σ̂Ψ2. Last, claim that the globally required substitution must
actually be equal to σ̂Ψ1 ◦ σ̂Ψ2.

Case
(Ψ).i = T T = [Φ∗] tT Ψ; Φ `p σ : Φ∗ Φ∗ ⊆Φ σ = idΦ∗

Ψ; Φ `p Xi/σ : tT ·σ
�

We trivially have tT ·σ = tT . We split cases depending on whether σ̂Ψ.i =? or not. If it is unspecified:
We split cases further depending on whether t ′ uses any variables higher than |Φ∗ · σ̂Ψ| − 1 or not.
That is, if t ′ < f |Φ∗ · σ̂Ψ| or not. In the case where this doesn’t hold, it is obvious that there is no
possible σ̂Ψ

′ such that (Xi/σ) · σ̂Ψ

′
= t ′, since σ̂Ψ

′ must include σ̂Ψ, and the term (Xi/σ) · σ̂Ψ

′ can
therefore not include variables outside the prefix Φ∗ · σ̂Ψ of Φ · σ̂Ψ.
In the case where t ′ < f |Φ∗ · σ̂Ψ|, we consider the substitution σ̂Ψ

′
= σ̂Ψ[i 7→ t ′]. In that

case we obviously have Φ · σ̂Ψ

′
= Φ′, tT · σ̂Ψ

′
= tT , and also t · σ̂Ψ = t ′. Also, Ψ̂′ =

relevant(Ψ; Φ `p Xi/σ : tT ·σ) = (relevant(Ψ�i; Φ∗ `p tT : s) ,?, · · · ,?)◦ relevant(Ψ; Φ `p σ : Φ∗)◦
(Ψ@̂i).
We need to show that • ` σ̂Ψ

′ : Ψ̂′. First, we have that relevant(Ψ; Φ `p σ : Φ∗) =
relevant(Ψ `p Φ wf) since Φ∗ ⊆ Φ. Second, we have that relevant(Ψ; Φ `p tT : s) =

(relevant(Ψ�i; Φ∗ `p tT : s) ,?, · · · ,?)◦ relevant(Ψ `p Φ wf). Thus we have that Ψ̂′ = Ψ̂◦ (Ψ@̂i). It
is now trivial to see that indeed • ` σ̂Ψ

′ : Ψ̂′.
If σ̂Ψ.i = t∗, then we split cases on whether t∗ = t ′ or not. If it is, then obviously σ̂Ψ is the desired unifying
substitution for which all the desired properties hold. If it is not, then no substitution with the desired properties
possibly exists, because it would violate the uniqueness assumption for σ̂Ψ.

146



Case (rest) � Similar techniques as above.

Part 1 By induction on the well-formedness derivation for Φ.

Case
Ψ `p • wf

�

Trivially, we either have Φ′ = •, in which case unspecΨ is the unique substitution with the desired properties,
or no substitution possibly exists.

Case
Ψ `p Φ wf Ψ; Φ `p t : s

Ψ `p (Φ, t) wf
�

We either have that Φ′ = Φ′, t ′ or no substitution possibly exists. By induction hypothesis get σ̂Ψ such that Φ ·
σ̂Ψ =Φ′ and • ` σ̂Ψ : Ψ̂ with Ψ̂= relevant(Ψ `p Φ wf). Now we use part 2 to either get a σ̂Ψ

′ which is obviously
the substitution that we want, since (Φ, t) · σ̂Ψ

′
= Φ′, t ′ and relevant(Ψ `p (Φ, t) wf) = relevant(Ψ; Φ `p t : s);

or we get the fact that no such substitution possibly exists. In that case, we again conclude that no substitution
for the current case exists either, otherwise it would violate the induction hypothesis.

Case
• `p Φ wf (Ψ).i = [Φ]ctx

Ψ `p Φ, Xi wf
�

We either have Φ′ = Φ, Φ′′, or no substitution possibly exists (since Φ does not depend on unification variables,
so we always have Φ · σ̂Ψ = Φ). We now consider the substitution σ̂Ψ = unspecΨ[i 7→ [Φ]Φ′′]. We obviously
have that (Φ, Xi) · σ̂Ψ = Φ, Φ′′, and also that • ` σ̂Ψ : Ψ̂ with Ψ̂ = Ψ@̂i = relevant(Ψ `p Φ, Xi wf). Thus this
substitution has the desired properties.

Part 3 By induction on the typing for T .

Case
Ψ; Φ `p t : tT Ψ; Φ ` tT : s

Ψ `p [Φ] t : [Φ] tT
�

By inversion of typing for T ′ we have: T ′ = [Φ] t ′, •; Φ `p t ′ : tT , •; Φ `p tT : s.
We obviously have Ψ̂ = relevant(Ψ; Φ `p tT : s) = unspecΨ, and the substitution σ̂Ψ = unspecΨ is the unique
substitution such that • ` σ̂Ψ : Ψ̂, Φ · σ̂Ψ = Φ and tT · σ̂Ψ = tT . We can thus use part 2 for attempting unification
between t and t ′, yielding a σ̂Ψ

′ such that • ` σ̂Ψ

′ : Ψ̂′ with Ψ̂′ = relevant(Ψ; Φ `p t : tT ) and t · σ̂Ψ

′
= t ′. We

have that relevant(Ψ; Φ `p t : tT ) = relevant(Ψ `p T : K), thus Ψ̂′ = Ψ by assumption. From that we realize
that σ̂Ψ

′ is a fully-specified substitution since • ` σ̂Ψ

′ : Ψ, and thus this is the substitution with the desired
properties.
If unification between t and t ′ fails, it is trivial to see that no substitution with the desired substitution exists,
otherwise it would lead directly to a contradiction.

Case
Ψ `p Φ, Φ

′ wf

Ψ `p [Φ]Φ′ : [Φ]ctx
�

By inversion of typing for T ′ we have: T ′ = [Φ]Φ′′, • `p Φ, Φ′′ wf, • `p Φ wf. From part 1 we get a σ̂Ψ unifying
Φ, Φ′ and Φ, Φ′′, or the fact that no such σ̂Ψ exists. In the first case, as above, it is easy to see that this is the
fully-specified substitution that we desire. In the second case, no suitable substitution exists, otherwise we are
led directly to a contradiction.

The above proof is constructive. Its computational content is actually a unification algorithm for our pat-
terns. We illustrate the algorithm below by giving its unification rules; notice that it follows the inductive

147



structure of the proof (and makes the same assumption about types-of-types being subderivations). If a
derivation according to the following rules is not possible, the algorithm returns failure.

Definition D.30 (Unification algorithm) We give the rules for the unification algorithm below.

(Ψ `p T : K)∼ (• `p T ′ : K). σ̂Ψ

(Ψ; Φ `p t : tT )∼
(
•; Φ `p t ′ : tT

)
/unspecΨ . σ̂Ψ

(Ψ `p [Φ] t : [Φ] tT )∼
(
• `p [Φ] t ′ : [Φ] t ′T

)
. σ̂Ψ

(
Ψ `p Φ, Φ

′ wf
)
∼
(
• `p Φ, Φ

′′ wf
)
. σ̂Ψ(

Ψ `p [Φ]Φ′ : [Φ]ctx
)
∼
(
• `p [Φ]Φ′′ : [Φ]ctx

)
. σ̂Ψ

(Ψ `p Φ wf)∼ (• `Φ′ wf). σ̂Ψ

(Ψ `p • wf)∼ (• ` • wf).unspecΨ

(Ψ `p Φ wf)∼
(
• `p Φ

′ wf
)
. σ̂Ψ (Ψ; Φ `p t : s)∼

(
•; Φ

′ ` t ′ : s
)
/ σ̂Ψ . σ̂Ψ

′

(Ψ `p (Φ, t) wf)∼
(
• ` (Φ′, t ′) wf

)
. σ̂Ψ

′

(Ψ `p Φ, Xi wf)∼
(
• `Φ, Φ

′ wf
)
.unspecΨ[i 7→Φ

′]

(Ψ; Φ `p t : tT )∼ (•; Φ′ ` t ′ : t ′T )/ σ̂Ψ . σ̂Ψ

′

(Ψ; Φ `p c : t)∼
(
•; Φ

′ ` c : t ′
)
/ σ̂Ψ . σ̂Ψ

′ (
Ψ; Φ `p s : s′

)
∼
(
•; Φ

′ ` s : s′
)
/ σ̂Ψ . σ̂Ψ

′

I · σ̂Ψ = I′

(Ψ; Φ `p fI : t)∼
(
•; Φ

′ ` fI′ : t ′
)
/ σ̂Ψ . σ̂Ψ

(Ψ; Φ `p t1 : s)∼
(
•; Φ

′ ` t ′1 : s
)
/ σ̂Ψ . σ̂Ψ

′(
Ψ; Φ, t1 `p dt2e|Φ| : s′

)
∼
(
•; Φ

′, t ′1 `p
⌈
t ′2
⌉
|Φ′| : s′

)
/ σ̂Ψ

′
. σ̂Ψ

′′
Ψ; Φ `p t1 : s Ψ; Φ, t1 `p dt2e|Φ| : s′

(s,s′,s′′) ∈ R

Ψ; Φ `p Π(t1).t2 : s′′

∼

•; Φ ` t ′1 : s •; Φ

′, t ′1 `
⌈
t ′2
⌉
|Φ′| : s′

(s,s′,s′′) ∈ R

•; Φ
′ `Π(t ′1).t

′
2 : s′′

/ σ̂Ψ . σ̂Ψ

′′

(
Ψ; Φ, t1 `p dt2e|Φ| : t ′

)
∼
(
•; Φ

′, t ′1 `p
⌈
t ′2
⌉
|Φ′| : t ′′

)
/ σ̂Ψ . σ̂Ψ

′
Ψ; Φ `p t1 : s Ψ; Φ, t1 `p dt2e|Φ| : t ′

Ψ; Φ `p Π(t1).
⌊
t ′
⌋
|Φ|, · : s′

Ψ; Φ `p λ(t1).t2 : Π(t1).
⌊
t ′
⌋
|Φ|, ·

∼

•; Φ

′ ` t ′1 : s •; Φ
′, t ′1 `

⌈
t ′2
⌉
|Φ′| : t ′′

•; Φ
′ `p Π(t ′1).

⌊
t ′′
⌋
|Φ′|, · : s′

•; Φ
′ ` λ(t ′1).t

′
2 : Π(t ′1).

⌊
t ′′
⌋
|Φ′|, ·

/ σ̂Ψ . σ̂Ψ

′

148



(
Ψ; Φ `p Π(ta).tb : s′

)
∼
(
•; Φ `p Π(t ′a).t

′
b : s′

)
/ σ̂Ψ|relevant(Ψ`pΦ wf) . σ̂Ψ

′

(Ψ; Φ `p t1 : Π(ta).tb)∼
(
•; Φ

′ `p t ′1 : Π(t ′a).t
′
b
)
/ σ̂Ψ

′
. σ̂Ψ1

(Ψ; Φ `p t2 : ta)∼
(
•; Φ

′ `p t ′2 : t ′a
)
/ σ̂Ψ

′|relevant(Ψ; Φ`pta:s) . σ̂Ψ2

Ψ; Φ `p ta : s

Ψ; Φ `p Π(ta).tb : s′

Ψ; Φ `p t1 : Π(ta).tb
Ψ; Φ `p t2 : ta

Ψ; Φ `p t1 t2 : dtbe|Φ| · (idΦ, t2)


∼



•; Φ
′ `p t ′a : s

•; Φ `p Π(t ′a).t
′
b : s

•; Φ
′ `p t ′1 : Π(t ′a).t

′
b

•; Φ
′ `p t ′2 : t ′a

•; Φ
′ `p t ′1 t ′2 :

⌈
t ′b
⌉
|Φ′| · (idΦ′ , t ′2)


/ σ̂Ψ . σ̂Ψ1 ◦ σ̂Ψ2

(Ψ; Φ `p t : Type)∼
(
•; Φ

′ `p t ′ : Type
)
/ σ̂Ψ . σ̂Ψ

′

(Ψ; Φ `p t1 : t)∼
(
•; Φ

′ `p t ′1 : t ′
)
/ σ̂Ψ

′
. σ̂Ψ1 (Ψ; Φ `p t2 : t)∼

(
•; Φ

′ `p t ′2 : t ′
)
/ σ̂Ψ

′
. σ̂Ψ2

Ψ; Φ `p t1 : t Ψ; Φ `p t2 : t
Ψ; Φ `p t : Type

Ψ; Φ `p t1 = t2 : Prop

∼

•; Φ `p t ′1 : t ′ •; Φ `p t ′2 : t ′

•; Φ `p t ′ : Type

•; Φ `p t ′1 = t ′2 : Prop

/ σ̂Ψ . σ̂Ψ1 ◦ σ̂Ψ2

σ̂Ψ.i =? Ψ.i = [Φ∗] tT t ′ < f |Φ∗ · σ̂Ψ|
(Ψ; Φ `p Xi/σ : tT ·σ)∼

(
•; Φ

′ ` t ′ : t ′T
)
/ σ̂Ψ . σ̂Ψ[i 7→ [Φ∗] t ′]

σ̂Ψ.i = [Φ∗] t t = t ′

(Ψ; Φ `p Xi/σ : tT )∼
(
•; Φ

′ ` t ′ : t ′T
)
/ σ̂Ψ . σ̂Ψ

Lemma D.31 The above rules are algorithmic.

Proved by the fact that they obey structural induction on the typing derivations, and are deterministic; non-
covered cases signify the unification failure result.

By mimicking the unification proof above, we could show independently that the above algorithm is sound
– that is, that the σ̂Ψ

′ it returns if it is successful is actually a substitution that makes t and t ′ unify (as well
as Φ and Φ′, along with tT and t ′T ) and is of the right type, provided that the assumptions about the input
substitution σ̂Ψ do hold. Furthermore, we could show completeness, the fact that if the algorithm fails, no
such substitution actually exists.

D.5 Computational language

Here we will refine our results for progress and preservation from the previous section, using the above results.

Definition D.32 We refine the typing rule for pattern matching from definition C.4 as shown below.

Ψ ` T : K Ψ, K; Γ ` dτe|Ψ|,1 : ? Ψ `p
⌈
Ψ
′⌉
|Ψ| wf

Ψ,
⌈
Ψ
′⌉
|Ψ| `p

⌈
T ′
⌉
|Ψ|,|Ψ′| : K unspecΨ,

⌈
Ψ
′⌉
|Ψ| v relevant

(
Ψ,
⌈
Ψ
′⌉
|Ψ| `p

⌈
T ′
⌉
|Ψ|,|Ψ′| : K

)
Ψ,
⌈
Ψ
′⌉
|Ψ| ; Σ; Γ `

⌈
e′
⌉
|Ψ|,|Ψ′| : dτe|Ψ|,1 · (idΨ,

⌈
T ′
⌉
|Ψ|,|Ψ′|)

Ψ; Σ; Γ ` unify T return (.τ) with (Ψ′.T ′ 7→ e′) : (dτe|Ψ|,1 · (idΨ, T ))+unit

Lemma D.33 (Substitution) Adaptation of the substitution lemma from C.13.

149



All the cases are entirely identical to the previous proof, with the exception of the pattern matching construct
which has a new typing rule. In that case, proceed similarly as before, with the use of the lemmas D.2, D.3 and
D.18 proved above.

Theorem D.34 (Preservation) Adaptation of theorem C.16 to the new rules.

All the cases are entirely identical to the previous proof, with the exception of the pattern matching construct.
In that case, we need to explicitly allude to the fact that if • `p dΨ′e|Ψ| wf, then obviously also • ` dΨ′e|Ψ| wf.
Similarly we have that dΨ′e0 `p dT ′e0,|Ψ′| : K implies dΨ′e0 ` dT ′e0,|Ψ′| : K.

Theorem D.35 (Progress) Adaptation of theorem E.11 to the new rules.

Again the only case that needs adaptation is the pattern matching case. In that case, we first note that if • ` T : K
(as we have here), we also have • `p T : K. Then, we allude to the theorem 3 to split cases depending on whether
a suitable σΨ exists or not. In both cases, one step rule is applicable – if a unique σΨ exists, then it has the desired
properties for the first pattern matching step rule to work; if it does not, the second pattern matching step rule is
applicable.

D.6 Sketch: practical pattern matching

The unification algorithm presented above requires full typing derivations for terms, something that is unrealistic
to keep around as part of the runtime representation of terms. Here we will present an informal refinement of
the above algorithm, that works on suitably annotated terms, instead of full typing derivations. The annotations
are the minimal possible extra information needed to simulate the above algorithm.

Definition D.36 We define a notion of annotated terms, for which we reuse the t syntactic class; it will be
apparent from the context whether we mean a normal or an annotated term.

t ::= c | s | fI | bi | λ(t1).t2 | Πs(t1).t2 | (t1 : t) t2 | t1 =t t2 | Xi/σ

Lemma D.37 1. If t is an unannotated term with •, Ψu; Φ `p t : t ′ then there exists a derivation for Ψu; Φ `p

t : t ′ where all terms are annotated terms.

2. The inverse is also true.

These are trivial to prove by structural induction on the typing derivations.

Definition D.38 The unification procedure is defined through the following judgement. It gets Ψ as a global
parameter, which we omit here.

(T )∼ (T ′)

(t)∼
(
t ′
)
/unspecΨ . σ̂Ψ

([Φ] t)∼
(
[Φ] t ′

)
. σ̂Ψ

(
Φ, Φ

′)∼ (Φ, Φ
′′). σ̂Ψ(

[Φ]Φ′
)
∼
(
[Φ]Φ′′

)
. σ̂Ψ

(Φ′)∼ (Φ′′)

(•)∼ (•).unspec
Ψ̂

(Φ)∼
(
Φ
′). σ̂Ψ (t)∼

(
t ′
)
/ σ̂Ψσ̂Ψ

′

((Φ, t))∼
(
(Φ′, t ′)

)
. σ̂Ψ

′

(Φ, Xi)∼
(
Φ,Φ′

)
= unspec

Ψ̂
[i 7→ [Φ]Φ′]

150



(t)∼ (t ′)

(c)∼ (c)/ σ̂Ψ . σ̂Ψ (s)∼ (s)/ σ̂Ψ . σ̂Ψ

I · σ̂Ψ = I′

( fI)∼
(

f ′I
)
/ σ̂Ψ . σ̂Ψ

s = s′ (t1)∼
(
t ′1
)
/ σ̂Ψ . σ̂Ψ

′
(dt2e)∼

(⌈
t ′2
⌉)

/ σ̂Ψ

′
. σ̂Ψ

′′

(Πs(t1).t2)∼
(
Πs′(t ′1).t

′
2
)
/ σ̂Ψ . σ̂Ψ

′′
(dt2e)∼

(⌈
t ′2
⌉)

/ σ̂Ψ . σ̂Ψ

′

(λ(t1).t2)∼
(
λ(t ′1).t

′
2
)
/ σ̂Ψ . σ̂Ψ

′

(t)∼
(
t ′
)
/ σ̂Ψ . σ̂Ψ

′
(t1)∼

(
t ′1
)
/ σ̂Ψ

′
. σ̂Ψ1 (t2)∼

(
t ′2
)
/ σ̂Ψ

′
. σ̂Ψ2 σ̂Ψ1 ◦ σ̂Ψ2 = σ̂Ψ

′′

((t1 : t) t2)∼
(
(t ′1 : t ′) t ′2

)
/ σ̂Ψ . σ̂Ψ

′′

(t)∼
(
t ′
)
/ σ̂Ψ . σ̂Ψ

′
(t1)∼

(
t ′1
)
/ σ̂Ψ

′
. σ̂Ψ1 (t2)∼

(
t ′2
)
/ σ̂Ψ

′
. σ̂Ψ2 σ̂Ψ1 ◦ σ̂Ψ2 = σ̂Ψ

′′

(t1 =t t2)∼
(
t ′1 =t ′ t ′2

)
/ σ̂Ψ . σ̂Ψ

′′

σ̂Ψ.i =? t ′ < f |σ · σ̂Ψ|
(Xi/σ)∼

(
t ′
)
/ σ̂Ψ . σ̂Ψ[i 7→ t ′]

σ̂Ψ.i = t ′

(Xi/σ)∼
(
t ′
)
/ σ̂Ψ . σ̂Ψ

E. Simple staging support

Here we will add a light-weight staging support to the computational language. We extend the computational
language as follows.

Definition E.1 The syntax of the computational language is extended below.

e ::= · · · | letstatic x = e in e′

Γ ::= · · · | Γ, x :s τ

Definition E.2 Freshening and binding for computational types and terms are extended as follows.

deeMN,K

dletstatic x = e in e′eMN,K = letstatic x = deeMN,K in de′eM+1
N,K

becMN,K

bletstatic x = e in e′cMN,K = letstatic x = becMN,K in be′cM+1
N,K

Definition E.3 Extension substitution application to computational-level types and terms.

e ·σΨ

letstatic x = e in e′ ·σΨ = letstatic x = e ·σΨ in e′ ·σΨ

151



Definition E.4 Limiting a context to the static types is defined as follows.

Γ|static

•|static = •
(Γ, x :s t)|static = Γ|static, x : t
(Γ, x : t)|static = Γ|static
(Γ, α : k)|static = Γ|static

Definition E.5 The typing judgements for the computational language are extended below.

Ψ; Σ; Γ ` e : τ

•; Σ; Γ|static ` e : τ Ψ; Σ; Γ,x :s τ ` e′ : τ

Ψ; Σ; Γ ` letstatic x = e in e′ : τ

x :s τ ∈ Γ

Ψ; Σ; Γ ` x : τ

Definition E.6 Small-step operational semantics for the language are extended below.

e ::= Λ(K).e | e T | pack T return (.τ) with e | unpack e (.)x.(e′)
| () | error | λx : τ.e | e e′ | x | (e, e′) | proji e | inji e | case(e, x.e′, x.e′′) | fold e | unfold e | ref e
| e := e′ | !e | l | Λα : k.e | e τ | fix x : τ.e
| unify T return (.τ) with (Ψ.T ′ 7→ e′) | letstatic x = e in e′

v ::= Λ(K).ed | pack T return (.τ) with v | () | λx : τ.ed | (v, v′) | inji v | fold v | l | Λα : k.ed

ed ::= Λ(K).ed | ed T | pack T return (.τ) with ed | unpack ed (.)x.(e′d)
| () | error | λx : τ.ed | ed e′d | x | (ed , e′d) | proji ed | inji ed | case(ed , x.e′d , x.e′′d) | fold ed | unfold ed

| ref ed | ed := e′d | !ed | l | Λα : k.ed | ed τ | fix x : τ.ed

| unify T return (.τ) with (Ψ.T ′ 7→ e′d)
S ::= letstatic x = • in e′ | letstatic x = S in e′ | Λ(K).S | λx : τ.S | unpack ed (.)x.(S)
| case(ed , x.S, x.e2) | case(ed , x.ed , x.S) | Λα : k.S | fix x : τ.S | unify T return (.τ) with (Ψ.T ′ 7→ S)
| Es[S]

Es ::= Es T | pack T return (.τ) with Es | unpack Es (.)x.(e′) | Es e′ | ed Es | (Es, e) | (ed , Es) | proji Es

| inji Es | case(Es, x.e1, x.e2) | fold Es | unfold Es | ref Es | Es := e′ | ed := Es | !Es | Es τ

E ::= • | E T | pack T return (.τ) with E | unpack E (.)x.(ed) | E ed | v E | (E, ed) | (v, E) | proji E | inji E
| case(E, x.e′d , x.e′′d) | fold E | unfold E | ref E | E := ed | v := E | !E | E τ

µ ::= • | µ, l 7→ v

( µ , e )−→s (( µ , e′ )|error)

( µ , ed )−→ ( µ′ , e′d )

( µ , S[ed ] )−→s ( µ′ , S[e′d ] )

( µ , ed )−→ error

( µ , S[ed ] )−→s error
( µ , S[letstatic x = v in e] )−→s ( µ , S[e[v/x]] )

( µ , letstatic x = v in e )−→s ( µ , e[v/x] )

Most lemmas are trivial to adapt. We adapt the substitution lemma for computational terms below.

Lemma E.7 (Substitution) 1. If Ψ, Ψ′; Γ, α′ : k′, Γ′ ` τ : k and Ψ; Γ ` τ′ : k′ then Ψ, Ψ′; Γ, Γ′[τ′/α′] `
τ[τ′/α′] : k.

152



2. If Ψ, Ψ′; Σ Γ, α′ : k′, Γ′ ` e : τ and Ψ; Γ ` τ′ : k′ then Ψ, Ψ′; Σ; Γ, Γ′[τ′/α′] ` e[τ′/α′] : τ[τ′/α′].

3. If Ψ, Ψ′; Σ Γ, x′ : τ′, Γ′ ` ed : τ and Ψ; Σ; Γ ` e′d : τ′ then Ψ, Ψ′; Σ; Γ, Γ′ ` ed [e′d/x′] : τ.

4. If Ψ; Γ, x :s τ, Γ′ ` e : τ′ and •; Σ; • ` v : τ then Ψ; Σ; Γ, Γ′ ` e[v/x] : τ′.

5. If Ψ; Γ, x : τ, Γ′ ` e : τ′ and •; Σ; • ` v : τ then Ψ; Σ; Γ, Γ′ ` e[v/x] : τ′.

Easy proof by structural induction on the typing derivation for e. We prove the interesting cases below:

Part 3. Case
x :s τ ∈ Γ

Ψ; Σ; Γ ` x : τ
�

We have that ed [e′d/x] = e′d , and Ψ; Σ; Γ ` e′d : τ, which is the desired.

Case
•; Σ; Γ|static ` e : τ Ψ; Σ; Γ, x :s τ ` e′ : τ

′

Ψ; Σ; Γ ` letstatic x = e in e′ : τ
′ �

Impossible case, because the theorem only has to do with ed cases.

Part 4. Most cases are trivial. The only interesting case follows.

Case
•; Σ; Γ|static, x : τ, Γ

′|static ` e : τ Ψ; Σ; Γ, x :s τ, Γ
′, x′ :s τ

′′ ` e′ : τ
′

Ψ; Σ; Γ, x :s τ, Γ
′ ` letstatic x′ = e in e′ : τ

′ �

We use part 5 for e to get that •; Σ; Γ|static, Γ′|static ` e[v/x] : τ.
By induction hypothesis for e′ we get Ψ; Σ; Γ, Γ′,x′ :s τ′′ ` e′[v/x] : τ′.
Thus using the same typing rule we get the desired result.

Part 5. Trivial by structural induction.

Lemma E.8 (Types of decompositions) 1. If Ψ; Σ; Γ ` S[e] : τ with Γ|static = •, then there exists τ′ such that
•; Σ; • ` e : τ′ and for all e′ such that •; Σ; • ` e′ : τ′, we have that Ψ; Σ; Γ ` S[e′] : τ.

2. If Ψ; Σ; Γ ` Es[e] : τ then there exists τ′ such that Ψ; Σ; Γ ` e : τ′ and for all e′ such that Ψ; Σ; Γ ` e′ : τ′, we
have that Ψ; Σ; Γ ` Es[e′] : τ.

Part 1. By structural induction on S.

Case S= letstatic x = • in e′ � By inversion of typing we get that •; Σ; Γ|static ` e : τ. We have Γ|static, thus
we get •; Σ; • ` e : τ′. Using the same typing rule we get the desired result for S[e′].

Case S= letstatic x = S′ in e′′ � By inductive hypothesis for S′ we get the desired directly.

Case S= Λ(K).S′ � We have that dS′[ed ]e = S′′[dee] with S′′ = dS′[•]e. By inductive hypothesis for
Ψ, K; Σ; Γ ` S′′[dee] : τ we get that •; Σ; • ` dee : τ′. From this we directly get dee = e, and the desired
follows immediately (using the rest of the inductive hypothesis).

Case S= Es[S] � We have that Ψ; Σ; Γ ` Es[S[ed ]] : τ. Using part 2 for Es and S[ed ] we get that Ψ; Σ; Γ `
S[ed ] : τ′ for some τ′ and also that for all e′ such that Ψ; Σ; Γ ` e : τ′, Ψ; Σ; Γ ` Es[e′] : τ. Then using induction
hypothesis we get a τ′′ such that •; Σ; • ` ed : τ′′. For this type, we also have that •; Σ; • ` e′d : τ′′ implies
Ψ; Σ; Γ ` S[e′d ] : τ′, which further implies Ψ; Σ; Γ ` Es[S[e′d ]] : τ.

The rest of the cases follow similar ideas.

153



Part 2. By induction on the structure of Es. In each case, use inversion of typing to get the type for e, and then
use the same typing rule to get the derivation for Es[e′].

Theorem E.9 (Preservation) 1. If •; Σ; • ` e : τ, µ ∼ Σ, ( µ , e ) −→s ( µ′ , e′ ) then there exists Σ′ such that
Σ⊆ Σ′, µ′ ∼ Σ′ and •; Σ′; • ` e′ : τ.

2. If •; Σ; • ` ed : τ, µ ∼ Σ, ( µ , ed ) −→s ( µ′ , e′d ) then there exists Σ′ such that Σ ⊆ Σ′, µ′ ∼ Σ′ and
•; Σ′; • ` e′d : τ.

Part 1 We proceed by induction on the derivation of ( µ , e )−→ ( µ′ , e′ ).

Case
( µ , ed )−→ ( µ′ , e′d )

( µ , S[ed ] )−→s ( µ′ , S[e′d ] )
�

Using the lemma E.8 we get •; Σ; • ` ed : τ′. Using part 2, we get that •; Σ; • ` e′d : τ′. Thus, using again the
same lemma we get the desired.

Case ( µ , S[letstatic x = v in e] )−→s ( µ , S[e[v/x]] ) �

Using the lemma E.8 we get •; Σ; • ` letstatic x = v in e : τ′. By typing inversion we get that •; Σ; • ` v : τ′′,
and also that •; Σ; x :s τ′′ ` e : τ′. Using the substitution lemma E.7 we get the desired result.

The rest of the cases are trivial.

Part 2 Proceeds exactly as before, as ed entirely matches the definition of expressions prior to the extension.

Theorem E.10 (Unique decomposition) 1. For every expression e, we have:

(a) Either e is a dynamic expression ed , in which case there is no way to write ed as S[e′] for any e′.

(b) Or there is a unique decomposition of e into S[ed ].

2. For every expression ed , we have:

(a) Either it is a value v and the decomposition v = E[e] implies E= • and e = v.

(b) Or, there is a unique decomposition of ed into ed = E[v].

Part 1. Proceed by induction on the structure of the expression e.

Case Λ(K).e′ � By induction hypothesis on the structure of e′. If we have e′ = ed , then this is a dynamic
expression already. In the other cases, we get a unique decomposition of e′ into S′[e′′]. The original expression
e can be uniquely decomposed using S = Λ(K).S′, with e = S[e′′]. This decomposition is unique because the
outer frame is uniquely determined; if the inner frames or the expression filling the hole could be different, we
would violate the uniqueness part of the decomposition returned by induction hypothesis.

Case e′ T � By induction hypothesis we get that either e′ = e′d , or there is a unique decomposition of e′ into
S′[e′′]. In that case, e is uniquely decomposed using S= Es[S

′] with Es = • T , into e = S′[e′′] T .

Case unpack x (.)e′.(e′′) � By induction hypothesis on e′; if it is a dynamic expression, then by induction
hypothesis on e′′; if that too is a dynamic expression, then the original expression is too. Otherwise, use
the unique decomposition of e′′ = S′[e′′′] to get the unique decomposition e = unpack x (.)ed .(S

′[e′′′]). If e′

is not a dynamic expression, use the unique decomposition of e′ = S′′[e′′′′] to get the unique decomposition
e = unpack x (.)S′′[e′′′′].(e′′).

154



Case letstatic x = e′ in e′′ � By induction hypothesis on e′.
In the case that e′ = ed , then trivially we have the unique decomposition e = (letstatic x = • in e′′)[ed ].
In the case where e′ = S[ed ], we have the unique decomposition e = (letstatic x = S in e′′)[ed ].

The rest of the cases are similar.

Part 2. Trivial by induction on the structure of the dynamic expression ed .

Theorem E.11 (Progress) 1. If •; Σ; • ` e : τ and µ∼Σ, then either µ, e−→s error, or e is a dynamic expression
ed , or there exist µ′ and e′ such that µ, e−→s µ′, e′.

2. If •; Σ; • ` ed : τ and µ∼ Σ, then either µ, ed −→ error, or ed is a value v, or there exist µ′ and e′d such that
µ, ed −→ µ′, e′d .

Part 1 First, we use the unique decomposition lemma E.10, we get that either e is a dynamic expression, in
which case we are done; or a decomposition into S[e′d ]. In that case, we use the lemma E.8 and part 2 to get
that either e′d is a value or that some progress can be made: either by failing or getting a µ′,e′′d , in which case
we use the appropriate rule for −→s either to fail or to progress to µ′,S[e′′d ]. If e′d is a value, then we split cases
depending on S – if it is simply letstatic x = • in e or it is nested. In both cases we make progress using the
appropriate step rule.

Part 2 Identical as before.

F. Collapsing terms with extension variables into terms with normal variables

Definition F.1 A decidable judgement for deciding whether a term t, a context Φ, etc. are collapsable to a
normal logical term is given below.

Intuitively, it defines as collapsable terms where all context Φ involved (even inside extension variable types)
are subcontexts of a single context Φ′′ (which is the result of the procedure), and all extension variables are used
with identity substitutions of that context.

collapsible(Ψ)/Φ′ .Φ′′

collapsible(•)/Φ
′ .Φ

′
collapsible(Ψ)/Φ

′ .Φ
′′ collapsible(K)/Φ

′′ .Φ
′′′

collapsible(Ψ, K)/Φ
′ .Φ

′′′

collapsible(K)/Φ′ .Φ′′

K = T collapsible(T )/Φ
′ .Φ

′′

collapsible(K)/Φ
′ .Φ

′′
collapsible(Φ)/Φ

′ .Φ
′′

collapsible([Φ]ctx)/Φ
′ .Φ

′′

collapsible(T )/Φ′ .Φ′′

collapsible(Φ)/Φ
′ .Φ

′′ collapsible(t)/Φ
′′

collapsible([Φ] t)/Φ
′ .Φ

′′
collapsible(Φ1, Φ2)/Φ

′ .Φ
′′

collapsible([Φ1]Φ2)/Φ
′ .Φ

′′

155



collapsible(Φ)/Φ′ .Φ′′

collapsible(•)/Φ
′ .Φ

′
collapsible(Φ)/Φ

′ .Φ
′′

Φ = Φ
′′ collapsible(t)/Φ

collapsible(Φ, t)/Φ
′ . (Φ, t)

collapsible(Φ)/Φ
′ .Φ

′′
Φ⊂Φ

′′ collapsible(t)/Φ
′′

collapsible(Φ, t)/Φ
′ .Φ

′′
collapsible(Φ)/Φ

′ .Φ
′′

Φ = Φ
′′

collapsible(Φ, Xi)/Φ
′ . (Φ, Xi)

collapsible(Φ)/Φ
′ .Φ

′′
Φ⊂Φ

′′

collapsible(Φ, Xi)/Φ
′ .Φ

′′

collapsible(t)/Φ′

collapsible(s)/Φ
′ collapsible(c)/Φ

′ collapsible( fI)/Φ
′

collapsible(t1)/Φ
′ collapsible(dt2e)/Φ

′

collapsible(λ(t1).t2)/Φ
′

collapsible(t1)/Φ
′ collapsible(dt2e)/Φ

′

collapsible(Π(t1).t2)/Φ
′

collapsible(t1)/Φ
′ collapsible(t2)/Φ

′

collapsible(t1 t2)/Φ
′

collapsible(t1)/Φ
′ collapsible(t2)/Φ

′

collapsible(t1 = t2)/Φ
′

σ⊆ idΦ
′

collapsible(Xi/σ)/Φ
′

collapsible(Ψ ` T : K).Φ′

collapsible(Ψ)/•.Φ
′ collapsible(K)/Φ

′ .Φ
′′ collapsible(T )/Φ

′′ .Φ
′′

collapsible(Ψ ` T : K).Φ
′′

collapsible(Ψ `Φ wf).Φ′

collapsible(Ψ)/•.Φ
′ collapsible(Φ)/Φ

′ .Φ
′′

collapsible(Ψ `Φ wf).Φ
′′

Lemma F.2 1. If collapsible(Φ)/Φ′ .Φ′′ then either Φ′ ⊆Φ and Φ′′ = Φ, or Φ⊆Φ′ and Φ′′ = Φ′.

2. If collapsible(Ψ ` [Φ] t : [Φ] tT ).Φ′ then Φ⊆Φ′.

3. If collapsible(Ψ ` [Φ0]Φ1 : [Φ0]Φ1).Φ′ then Φ0,Φ1 ⊆Φ′.

Trivial by structural induction.

Lemma F.3 1. If collapsible(Ψ)/•.Φ and Φ⊆Φ′ then collapsible(Ψ)/Φ′ .Φ′.

2. If collapsible(K)/•.Φ and Φ⊆Φ′ then collapsible(K)/Φ′ .Φ′.

3. If collapsible(T )/•.Φ and Φ⊆Φ′ then collapsible(T )/Φ′ .Φ′.

4. If collapsible(Φ0)/•.Φ and Φ⊆Φ′ then collapsible(Φ0)/Φ′ .Φ′.

156



Trivial by structural induction on the collapsing relation.

Lemma F.4 If `Ψ wf and collapsible(Ψ)/•.Φ0, then there exist Ψ1, σ1
Ψ

, σ2
Ψ

, Φ1, σ1 and σ−1 such that:
Ψ1 ` σ1

Ψ
: Ψ,

• ` σ2
Ψ

: Ψ1,
Ψ1 `Φ1 wf,
Ψ1; Φ1 ` σ1 : Φ0 ·σ1

Ψ
,

Ψ; Φ0 ` σ−1 : Φ1 ·σ2
Ψ

,
for all t such that Ψ; Φ0 ` t : t ′, we have t ·σ1

Ψ
·σ1 ·σ2

Ψ
·σ−1 = t, and all members of Ψ1 are of the form [Φ∗] t

where Φ∗ ⊆Φ1.

By induction on the derivation of the relation collapsible(Ψ)/•.Φ0.

Case Ψ = • �

We choose Ψ1 = •; σ1
Ψ
= σ2

Ψ
= •; Φ1 = •; σ1 = •; σ−1 = • Φ1 = • and the desired trivially hold.

Case Ψ = Ψ
′, [Φ]ctx �

From the collapsable relation, we get: collapsible(Ψ′) / • .Φ′0, collapsible([Φ]ctx) /Φ′0 .Φ0. By induction
hypothesis for Ψ′, get:

Ψ′1 ` σ′1
Ψ

: Ψ′,
• ` σ′2

Ψ
: Ψ′1,

Ψ′1 `Φ′1 wf,
Ψ′1; Φ′1 ` σ′1 : Φ′0 ·σ′1

Ψ
,

Ψ′; Φ′0 ` σ′−1 : Φ′1 ·σ′2
Ψ

,
for all t such that Ψ′; Φ′0 ` t : t ′, we have t ·σ′1

Ψ
·σ′1 ·σ′2

Ψ
·σ′−1 = t, and all members of Ψ′1 are of the

form [Φ∗] t where Φ∗ ⊆Φ′1.
By inversion of typing for [Φ]ctx we get that Ψ′ `Φ wf.
We fix σ1

Ψ
= σ′1

Ψ
, [Φ′0 ·σ′1

Ψ
] which is a valid choice as long as we select Ψ1 so that Ψ′1 ⊆Ψ1. This substitution

has correct type by taking into account the substitution lemma for Φ′0 and σ′1
Ψ

.
For choosing the rest, we proceed by induction on the derivation of Φ′0 ⊆Φ0.
If Φ0 = Φ′0, then:

We have Φ⊆Φ′0 because of the previous lemma.
Choose Ψ1 = Ψ′1 ; σ2

Ψ
= σ′2

Ψ
; Φ1 = Φ′1 ; σ1 = σ′1 ; σ−1 = σ′−1.

Everything holds trivially, other than σ1
Ψ

typing. This too is easy to prove by taking into account the
substitution lemma for Φ and σ′1

Ψ
. Also, σ′−1 typing uses extension variable weakening. Last, for the

cancellation part, terms that are typed under Ψ are also typed under Ψ′ so this part is trivial too.
If Φ0 = Φ′0, t, then: (here we abuse things slightly – by identifying the context and substitutions from induction
hypothesis with the ones we already have: their properties are the same for the new Φ′0)

We have Φ = Φ0 = Φ′0, t because of the previous lemma (Φ0 is not Φ′0 thus Φ0 = Φ).
First, choose Φ1 = Φ′1, t ·σ′1

Ψ
·σ′1. This is a valid choice, because Ψ′; Φ′0 ` t : s; by applying σ′1

Ψ
we

get Ψ′1; Φ′0 ·σ′1
Ψ
` t ·σ′1

Ψ
: s; by applying σ′1 we get Ψ′1; Φ′1 ` t ·σ′1

Ψ
·σ′1 : s.

Thus Ψ′1 `Φ′1, t ·σ′1
Ψ
·σ′1 wf (and the Ψ1 we will choose is supercontext of Ψ′1).

Now, choose Ψ1 = Ψ′1, [Φ1] t ·σ′1Ψ ·σ′1. This is well-formed because of what we proved above about
the substituted t, taking weakening into account. Also, the condition for the contexts in Ψ1 being
subcontexts of Φ1 obviously holds.

157



Choose σ2
Ψ
= σ′2

Ψ
, [Φ1] f|Φ′1|. We have • ` σ2

Ψ
: Ψ1 directly by our construction.

Choose σ1 = σ′1, f|Φ′1|. We have that this latter term can be typed as Ψ1; Φ1 ` f|Φ′1| : t ·σ′1
Ψ
·σ′1, and

thus we have Ψ1; Φ1 ` σ1 : Φ′0 ·σ′1
Ψ
, t ·σ′1

Ψ
.

Choose σ−1 = σ′−1, f|Φ′0|, which is typed correctly since t · σ′1
Ψ
· σ′1 · σ′2

Ψ
· σ−1 = t. Last, assume

Ψ; Φ′0, t ` t∗ : t ′∗. We prove t∗ ·σ1
Ψ
·σ1 ·σ2

Ψ
·σ−1 = t∗.

First, t∗ is also typed under Ψ′ because t∗ cannot use the newly-introduced variable directly
(even in the case where it would be part of Φ0, there’s still no extension variable that has
X|Ψ′| in its context).
Thus it suffices to prove t∗ ·σ′1Ψ ·σ1 ·σ2

Ψ
·σ−1 = t∗.

Then proceed by structural induction on t∗. The only interesting case occurs when t∗ =
f|Φ′0|, in which case we have:
f|Φ′0| ·σ′1Ψ ·σ1 ·σ2

Ψ
·σ−1 = f|Φ′0·σ′1

Ψ
| ·σ1 ·σ2

Ψ
·σ−1 = f|Φ′1| ·σ2

Ψ
·σ−1 = f|Φ′1·σ2

Ψ
| ·σ−1 = f|Φ′0|

If Φ0 = Φ′0, Xi:
By well-formedness inversion we get that Ψ.i = [Φ∗]ctx, and by repeated inversions of the col-
lapsable relation we get Φ∗ ⊆Φ′0.
Choose Φ1 = Φ′1 ; Ψ1 = Ψ′1 ; σ2

Ψ
= σ′2

Ψ
; σ1 = σ′1; σ−1 = σ′−1.

Most desiderata are trivial. For σ1, note that (Φ′1, Xi) ·σ′1Ψ = Φ′1 ·σ′1
Ψ

since by construction we have
that σ′1

Ψ
always substitutes parametric contexts by the empty context.

For cancellation, we need to prove that for all t such that Ψ; Φ′0, Xi ` t∗ : t ′∗, we have t∗ ·σ1
Ψ
·σ1 ·

σ2
Ψ
·σ−1 = t∗. This is proved directly by noticing that t∗ is typed also under Ψ′ (if Xi was the just-

introduced variable, it wouldn’t be able to refer to itself).

Case Ψ = Ψ
′, [Φ] t �

From the collapsable relation, we get: collapsible(Ψ′)/•.Φ′0, collapsible(Φ)/Φ′0 .Φ0, collapsible(t)/Φ0. By
induction hypothesis for Ψ′, get:

Ψ′1 ` σ′1
Ψ

: Ψ′,
• ` σ′2

Ψ
: Ψ′1,

Ψ′1 `Φ′1 wf,
Ψ′1; Φ′1 ` σ′1 : Φ′0 ·σ′1

Ψ
,

Ψ′; Φ′0 ` σ′−1 : Φ′1 ·σ′2
Ψ

,
for all t such that Ψ′; Φ′0 ` t : t ′, we have t ·σ′1

Ψ
·σ′1 ·σ′2

Ψ
·σ′−1 = t, and all members of Ψ′1 are of the

form [Φ∗] t where Φ∗ ⊆Φ′1.
Also from typing inversion we get: Ψ′ `Φ wf and Ψ′; Φ ` t : s.
We proceed similarly as in the previous case, by induction on Φ′0⊆Φ0, in order to redefine Ψ′1,σ′1

Ψ
,σ′2

Ψ
,Φ′1,σ′1,σ−1

with the properties:
Ψ′1 ` σ′1

Ψ
: Ψ′,

• ` σ′2
Ψ

: Ψ′1,
Ψ′1 `Φ′1 wf,
Ψ′1; Φ′1 ` σ′1 : Φ0 ·σ′1

Ψ
,

Ψ′; Φ0 ` σ′−1 : Φ′1 ·σ′2
Ψ

,
for all t such that Ψ′; Φ0 ` t : t ′, we have t ·σ′1

Ψ
·σ′1 ·σ′2

Ψ
·σ′−1 = t, and all members of Ψ′1 are of the

form [Φ∗] t where Φ∗ ⊆Φ′1.
Now we have Φ⊆Φ0 thus Ψ′; Φ0 ` t : s.
By applying σ′1

Ψ
and then σ′1 to t we get Ψ′1; Φ′1 ` t ·σ′1

Ψ
·σ′1 : s. We can now choose Φ1 = Φ′1, t ·σ′1

Ψ
·σ′1.

Choose Ψ1 = Ψ′1, [Φ1] t ·σ′1
Ψ
·σ′1. It is obviously well-formed.

Now, will choose σ1
Ψ

:

158



Need to choose t1 such that Ψ1; Φ ·σ′1
Ψ
` t1 : t ·σ′1

Ψ
.

Assuming t1 = X|Φ′1|/σ, we need t ·σ′1
Ψ
·σ′1 ·σ = t ·σ′1

Ψ
and Ψ1; Φ ·σ′1

Ψ
` σ : Φ1.

Thus, what we require is the inverse of σ1. By construction, there exists such a σ, because σ1 is just
a variable renaming. (Note that this is different from σ−1.)
Therefore, set σ1

Ψ
= σ′1

Ψ
, [Φ]X|Φ′1|/σ, which has the desirable properties.

Choose σ2
Ψ
= σ′2

Ψ
, [Φ1] f|Φ′1|. We trivially have • ` σ2

Ψ
: Ψ1.

Choose σ1 = σ′1, with typing holding obviously.
Choose σ−1 = σ′−1, X|Ψ′|/idΦ. Consider the cancellation fact; typing is then possible.
It remains to prove that for all t∗ such that Ψ′, [Φ] t; Φ0 ` t∗ : t ′∗, we have t ·σ1

Ψ
·σ1 ·σ2

Ψ
·σ−1 = t.

This is done by structural induction on t∗, with the interesting case being t∗ = X|Ψ′|/σ∗. By inversion of col-
lapsable relation, we get that σ∗ = idΦ.
Thus (X|Ψ′|/idΦ) ·σ1

Ψ
·σ1 ·σ2

Ψ
·σ−1 = (X|Φ′1|/σ) ·(idΦ ·σ1

Ψ
) ·σ1 ·σ2

Ψ
·σ−1 = (X|Φ′1|/σ) ·(idΦ ·σ1

Ψ
) ·σ1 ·σ2

Ψ
·σ−1 =

(X|Φ′1|/σ) ·σ1 ·σ2
Ψ
·σ−1 = (X|Φ′1|/(σ ·σ1)) ·σ2

Ψ
·σ−1 = (X|Φ′1|/(idΦ1)) ·σ2

Ψ
·σ−1 = ( f|Φ′1| · (idΦ1 ·σ2

Ψ
)) ·σ−1 =

( f|Φ′1| · idΦ1 ·σ2
Ψ
) ·σ−1 = f|Φ′1·σ2

Ψ
| ·σ−1 = X|Ψ′|/idΦ.

Theorem F.5 If Ψ ` [Φ] t : [Φ] tT and collapsible(Ψ ` [Φ] t : [Φ] tT ) = Φ∗, then there exist Φ′, t ′, t ′T and σ such
that • `Φ′ wf, • ` [Φ′] t ′ : [Φ′] t ′T , Ψ; Φ ` σ : Φ′, t ′ ·σ = t and t ′T ·σ = tT .

Easy to prove using above lemma. Set Φ′ = Φ1 ·σ2
Ψ

, t ′ = t ·σ1
Ψ
·σ1 ·σ2

Ψ
, t ′T = tT ·σ1

Ψ
·σ1 ·σ2

Ψ
, and also set

σ = σ−1.

159



A Case for Behavior-Preserving Actions in
Separation Logic

David Costanzo and Zhong Shao

Yale University

Abstract. Separation Logic is a widely-used tool that allows for local
reasoning about imperative programs with pointers. A straightforward
definition of this “local reasoning” is that, whenever a program runs
safely on some state, adding more state would have no effect on the pro-
gram’s behavior. However, for a mix of technical and historical reasons,
local reasoning is defined in a more subtle way, allowing a program to
lose some behaviors when extra state is added. In this paper, we propose
strengthening local reasoning to match the straightforward definition
mentioned above. We argue that such a strengthening does not have any
negative effect on the usability of Separation Logic, and we present four
examples that illustrate how this strengthening simplifies some of the
metatheoretical reasoning regarding Separation Logic. In one example,
our change even results in a more powerful metatheory.

1 Introduction

Separation Logic [8, 13] is widely used for verifying the correctness of C-like
imperative programs [9] that manipulate mutable data structures. It supports
local reasoning [15]: if we know a program’s behavior on some heap, then we
can automatically infer something about its behavior on any larger heap. The
concept of local reasoning is embodied as a logical inference rule, known as the
frame rule. The frame rule allows us to extend a specification of a program’s
execution on a small heap to a specification of execution on a larger heap.

For the purpose of making Separation Logic extensible, it is common practice
to abstract over the primitive commands of the programming language being
used. By “primitive commands” here, we mean commands that are not defined
in terms of other commands. Typical examples of primitive commands include
variable assignment x := E and heap update [E] := E′. One example of a
non-primitive command is whileB doC.

When we abstract over primitive commands, we need to make sure that we
still have a sound logic. Specifically, it is possible for the frame rule to become
unsound for certain primitive commands. In order to guarantee that this does not
happen, certain “healthiness” conditions are required of primitive commands. We
refer to these conditions together as “locality,” since they guarantee soundness
of the frame rule, and the frame rule is the embodiment of local reasoning.

As one might expect, locality in Separation Logic is defined in such a way that
it is precisely strong enough to guarantee soundness of the frame rule. In other

160



words, the frame rule is sound if and only if all primitive commands are local.
In this paper, we consider a strengthening of locality. Clearly, any strengthening
will still guarantee soundness of the frame rule. The tradeoff, then, is that the
stronger we make locality, the fewer primitive commands there will be that satisfy
locality. We claim that we can strengthen locality to the point where: (1) the
usage of the logic is unaffected — specifically, we do not lose the ability to model
any primitive commands that are normally modeled in Separation Logic; (2) our
strong locality is precisely the property that one would intuitively expect it to
be — that the behavior of a program is completely independent from any unused
state; and (3) we significantly simplify various technical work in the literature
relating to metatheoretical facts about Separation Logic. We refer to our stronger
notion of locality as “behavior preservation,” because the behavior of a program
is preserved when moving from a small state to a larger one.

We justify statement (1) above, that the usage of the logic is unaffected,
in Section 3 by demonstrating a version of Separation Logic using the same
primitive commands as the standard one presented in [13], for which our strong
locality holds. We show that, even though we need to alter the state model of
standard Separation Logic, we do not need to change any of the inference rules.
We justify the second statement, that our strong locality preserves program
behavior, in Section 2. We will also show that the standard, weaker notion of
locality is not behavior-preserving. We provide some justification of the third
statement, that behavior preservation significantly simplifies Separation Logic
metatheory, in Section 5 by considering four specific examples in detail. As a
primer, we will say a little bit about each example here.

The first simplification that we show is in regard to program footprints, as
defined and analyzed in [12]. Informally, a footprint of a program is a set of
states such that, given the program’s behavior on those states, it is possible to
infer all of the program’s behavior on all other states. Footprints are useful for
giving complete specifications of programs in a concise way. Intuitively, locality
should tell us that the set of smallest safe states, or states containing the minimal
amount of resources required for the program to safely execute, should always
be a footprint. However, this is not the case in standard Separation Logic. To
quote the authors in [12], the intuition that the smallest safe states should form
a footprint “fails due to the subtle nature of the locality condition.” We show
that in the context of behavior-preserving locality, the set of smallest safe states
does indeed form a footprint.

The second simplification regards the theory of data refinement, as defined
in [6]. Data refinement is a formalism of the common programming paradigm in
which an abstract module, or interface, is implemented by a concrete instantia-
tion. In the context of [6], our programming language consists of a standard one,
plus abstract module operations that are guaranteed to satisfy some specifica-
tion. We wish to show that, given concrete and abstract modules, and a relation
relating their equivalent states, any execution of the program that can happen
when using the concrete module can also happen when using the abstract one.

161



We simplify the data refinement theory by eliminating the need for two some-
what unintuitive requirements used in [6], called contents independence and
growing relations. Contents independence is a strengthening of locality that is
implied by the stronger behavior preservation. A growing relation is a technical
requirement guaranteeing that the area of memory used by the abstract mod-
ule is a subset of that used by the concrete one. It turns out that behavior
preservation is strong enough to completely eliminate the need to require grow-
ing relations, without automatically implying that any relations are growing.
Therefore, we can prove refinement between some modules (e.g., ones that use
completely disjoint areas of memory) that the system of [6] cannot handle.

Our third metatheoretical simplification is in the context of Relational Sepa-
ration Logic, defined in [14]. Relational Separation Logic is a tool for reasoning
about the relationship between two executions on different programs. In [14],
soundness of the relational frame rule is initially shown to be dependent on pro-
grams being deterministic. The author presents a reasonable solution for making
the frame rule sound in the presence of nondeterminism, but the solution is some-
what unintuitive and, more importantly, a significant chunk of the paper (about
9 pages out of 41) is devoted to developing the technical details of the solution.
We show that under the context of behavior preservation, the relational frame
rule as initially defined is already sound in the presence of nondeterminism, so
that section of the paper is no longer needed.

The fourth simplification is minor, but still worth noting. For technical rea-
sons, the standard definition of locality does not play well with a model in which
the total amount of available memory is finite. Separation Logic generally avoids
this issue by simply using an infinite space of memory. This works fine, but there
may be situations in which we wish to use a model that more closely represents
what is actually going on inside our computer. While Separation Logic can be
made to work in the presence of finite memory, doing so is not a trivial matter.
We will show that under our stronger notion of locality, no special treatment is
required for finite-sized models.

All proofs in Sections 3 and 4 have been fully mechanized in the Coq proof
assistant [7]. The Coq source files, along with their conversions to pdf, can be
found at the link to the technical report for this paper [5].

2 Locality and Behavior Preservation

In standard Separation Logic [8, 13, 15, 4], there are two locality properties,
known as Safety Monotonicity and the Frame Property, that together imply
soundness of the frame rule. Safety Monotonicity says that any time a program
executes safely in a certain state, the same program must also execute safely in
any larger state — in other words, unused resources cannot cause a program to
crash. The Frame Property says that if a program executes safely on a small
state, then any terminating execution of the program on a larger state can be
tracked back to some terminating execution on the small state by assuming that
the extra added state has no effect and is unchanged. Furthermore, there is a

162



third property, called Termination Monotonicity, that is required whenever we
are interested in reasoning about divergence (nontermination). This property
says that if a program executes safely and never diverges on a small state, then
it cannot diverge on any larger state.

To describe these properties formally, we first formalize the idea of program
state. We will describe the theory somewhat informally here; full formal detail
will be described later in Section 4. We define states σ to be members of an
abstract set Σ. We assume that whenever two states σ0 and σ1 are “disjoint,”
written σ0#σ1, they can be combined to form the larger state σ0 ·σ1. Intuitively,
two states are disjoint when they occupy disjoint areas of memory.

We represent the semantic meaning of a program C by a binary relation JCK.
We use the common notational convention aRb for a binary relation R to denote
(a, b) ∈ R. Intuitively, σJCKσ′ means that, when executing C on initial state σ,
it is possible to terminate in state σ′. Note that if σ is related by JCK to more
than one state, this simply means that C is a nondeterministic program.

We also define two special behaviors bad and div:

– The notation σJCKbad means that C can crash or get stuck when executed
on σ, while

– The notation σJCKdiv means that C can diverge (execute forever) when
executed on σ.

As a notational convention, we use τ to range over elements of Σ∪{bad, div}.
We require that for any state σ and program C, there is always at least one τ such
that σJCKτ . In other words, every execution must either crash, go on forever, or
terminate in some state.

Now we can define the properties described above more formally. Following
are definitions of Safety Monotonicity, the Frame Property, and Termination
Monotonicity, respectively:

1.) ¬σ0JCKbad ∧ σ0#σ1 =⇒ ¬(σ0 · σ1)JCKbad
2.) ¬σ0JCKbad ∧ (σ0 · σ1)JCKσ′ =⇒ ∃σ′0 . σ′ = σ′0 · σ1 ∧ σ0JCKσ′0
3.) ¬σ0JCKbad ∧ ¬σ0JCKdiv ∧ σ0#σ1 =⇒ ¬(σ0 · σ1)JCKdiv

The standard definition of locality was defined in this way because it is the
minimum requirement needed to make the frame rule sound — it is as weak as
it can possibly be without breaking the logic. It was not defined to correspond
with any intuitive notion of locality. As a result, there are two subtleties in the
definition that might seem a bit odd. We will now describe these subtleties and
the changes we make to get rid of them. Note that we are not arguing in this
section that there is any benefit to changing locality in this way (other than
the arguably vacuous benefit of corresponding to our “intuition” of locality) —
the benefit will become clear when we discuss how our change simplifies the
metatheory in Section 5.

The first subtlety is that Termination Monotonicity only applies in one di-
rection. This means that we could have a program C that runs forever on a

163



state σ, but when we add unused state, we suddenly lose the ability for that
infinite execution to occur. We can easily get rid of this subtlety by replacing
Termination Monoticity with the following Termination Equivalence property:

¬σ0JCKbad ∧ σ0#σ1 =⇒ (σ0JCKdiv ⇐⇒ (σ0 · σ1)JCKdiv)

The second subtlety is that locality gives us a way of tracking an execution
on a large state back to a small one, but it does not allow for the other way
around. This means that there can be an execution on a state σ that becomes
invalid when we add unused state. This subtlety is a little trickier to remedy
than the other. If we think of the Frame Property as really being a “Backwards
Frame Property,” in the sense that it only works in the direction from large state
to small state, then we clearly need to require a corresponding Forwards Frame
Property. We would like to say that if C takes σ0 to σ′0 and we add the unused
state σ1, then C takes σ0 · σ1 to σ′0 · σ1:

σ0JCKσ′0 ∧ σ0#σ1 =⇒ (σ0 · σ1)JCK(σ′0 · σ1)

Unfortunately, there is no guarantee that σ′0 · σ1 is defined, as the states
might not occupy disjoint areas of memory. In fact, if C causes our initial state
to grow, say by allocating memory, then there will always be some σ1 that is
disjoint from σ0 but not from σ′0 (e.g., take σ1 to be exactly that allocated
memory). Therefore, it seems as if we are doomed to lose behavior in such a
situation upon adding unused state.

There is, however, a solution worth considering: we could disallow programs
from ever increasing state. In other words, we can require that whenever C takes
σ0 to σ′0, the area of memory occupied by σ′0 must be a subset of that occupied
by σ0. In this way, anything that is disjoint from σ0 must also be disjoint from
σ′0, so we will not lose any behavior. Formally, we express this property as:

σ0JCKσ′0 =⇒ (∀σ1 . σ0#σ1 ⇒ σ′0#σ1)

We can conveniently combine this property with the previous one to express
the Forwards Frame Property as the following condition:

σ0JCKσ′0 ∧ σ0#σ1 =⇒ σ′0#σ1 ∧ (σ0 · σ1)JCK(σ′0 · σ1)

At first glance, it may seem imprudent to impose this requirement, as it
apparently disallows memory allocation. However, it is in fact still possible to
model memory allocation — we just have to be a little clever about it. Specif-
ically, we can include a set of memory locations in our state that we designate
to be the “free list1.” When memory is allocated, all allocated cells must be
taken from the free list. Contrast this to standard Separation Logic, in which
newly-allocated heap cells are taken from outside the state. In the next section,
we will show that we can add a free list in this way to the model of Separation
Logic without requiring a change to any of the inference rules.

We conclude this section with a brief justification of the term “behavior preser-
vation.” Given that C runs safely on a state σ0, we think of a behavior of C on

1 The free list is actually a set rather than a list; we use the term “free list” because
it is commonly used in the context of memory allocation.

164



E ::= E +E′ | E −E′ | E ×E′ | . . . | −1 | 0 | 1 | . . . | x | y | . . .
B ::= E = E′ | false | B ⇒ B′

P,Q ::= B | false | emp | E 7→ E′ | P ⇒ Q | ∀x.P | P ∗Q
C ::= skip | x := E | x := [E] | [E] := E′

| x := cons(E1, . . . , En) | free(E) | C;C′

| ifB thenC elseC′ | whileB doC

Fig. 1. Assertion and Program Syntax

σ0 as a particular execution, which can either diverge or terminate at some state
σ′0. The Forwards Frame Property tells us that execution on a larger state σ0 ·σ1
simulates execution on the smaller state σ0, while the Backwards (standard)
Frame Property says that execution on the smaller state simulates execution on
the larger one. Since standard locality only requires simulation in one direction,
it is possible for a program to have fewer valid executions, or behaviors, when
executing on σ0 · σ1 as opposed to just σ0. Our stronger locality disallows this
from happening, enforcing a bisimulation under which all behaviors are preserved
when extra resources are added.

3 Impact on a Concrete Separation Logic

We will now present one possible RAM model that enforces our stronger notion of
locality without affecting the inference rules of standard Separation Logic. In the
standard model of [13], a program state consists of two components: a variable
store and a heap. When new memory is allocated, the memory is “magically”
added to the heap. As shown in Section 2, we cannot allow allocation to increase
the program state in this way. Instead, we will include an explicit free list, or
a set of memory locations available for allocation, inside of the program state.
Thus a state is now is a triple (s, h, f) consisting of a store, a heap, and a free list,
with the heap and free list occupying disjoint areas of memory. Newly-allocated
memory will always come from the free list, while deallocated memory goes back
into the free list. Since the standard formulation of Separation Logic assumes that
memory is infinite and hence that allocation never fails, we similarly require that
the free list be infinite. More specifically, we require that there is some location
n such that all locations above n are in the free list.

Formally, states are defined as follows:

Var V
4
= {x, y, z, . . .} Store S

4
= V → Z Heap H

4
= N⇀

fin
Z

Free List F
4
= {N ∈ P(N) | ∃n . ∀k ≥ n . k ∈ N}

State Σ
4
= {(s, h, f) ∈ S ×H × F | dom(h) ∩ f = ∅}

As a point of clarification, we are not claiming here that including the free
list in the state model is a novel idea. Other systems (e.g., [12]) have made use of

165



a very similar idea. The two novel contributions that we will show in this section
are: (1) that a state model which includes an explicit free list can provide a
behavior-preserving semantics, and (2) that the corresponding program logic can
be made to be completely backwards-compatible with standard Separation Logic
(meaning that any valid Separation Logic derivation is also a valid derivation in
our logic).

Assertion syntax and program syntax are given in Figure 1, and are exactly
the same as in the standard model for Separation Logic.

Our satisfaction judgement (s, h, f) |= P for an assertion P is defined by ig-
noring the free list and only considering whether (s, h) satisfies P . Our definition
of (s, h) |= P is identical to that of standard Separation Logic.

The small-step operational semantics for our machine is defined as σ,C −→
σ′, C ′ and is straightforward; the full details can be found in the extended
TR. The most interesting aspects are the rules for allocation and dealloca-
tion, since they make use of the free list. x := cons(E1, . . . , En) allocates a
nondeterministically-chosen contiguous block of n heap cells from the free list,
while free(E) puts the single heap cell pointed to by E back onto the free list.
None of the operations make use of any memory existing outside the program
state — this is the key for obtaining behavior-preservation.

To see how out state model fits into the structure defined in Section 2, we
need to define the state combination operator. Given two states σ1 = (s1, h1, f1)
and σ2 = (s2, h2, f2), the combined state σ1 · σ2 is equal to (s1, h1 ] h2, f1) if
s1 = s2, f1 = f2, and the domains of h1 and h2 are disjoint; otherwise, the
combination is undefined. Note that this combined state satisfies the requisite
condition dom(h1 ] h2) ∩ f1 = ∅ because h1, h2, and f1 are pairwise disjoint by
assumption. The most important aspect of this definition of state combination
is that we can never change the free list when adding extra resources. This guar-
antees behavior preservation of the nondeterministic memory allocator because
the allocator’s set of possible behaviors is precisely defined by the free list.

In order to formally compare our logic to “standard” Separation Logic, we
need to provide the standard version of the small-step operational semantics,
denoted as (s, h), C  (s′, h′), C ′. This semantics does not have explicit free
lists in the states, but instead treats all locations outside the domain of h as
free. We formalize this semantics in the extended TR, and prove the following
relationship between the two operational semantics:

(s, h), C
n
 (s′, h′), C′ ⇐⇒ ∃f, f ′ . (s, h, f), C

n−→ (s′, h′, f ′), C′

The inference rules in the form ` {P}C {Q} for our logic are same as those
used in standard Separation Logic. In the extended TR, we state all the inference
rules and prove that our logic is both sound and complete; therefore, behavior
preservation does not cause any complications in the usage of Separation Logic.
Any specification that can be proved using the standard model can also be proved
using our model. Also in the TR, we prove that our model enjoys the stronger,
behavior-preserving notion of locality described in Sec 2.

Even though our logic works exactly the same as standard Separation Logic,
our underlying model now has this free list within the state. Therefore, if we

166



so desire, we could define additional assertions and inference rules allowing for
more precise reasoning involving the free list. One idea is to have a separate,
free list section of assertions in which we write, for example, E ∗ true to claim
that E is a part of the free list. Then the axiom for free would look like:

{E 7→ −; true} free(E) {emp;E ∗ true}

4 The Abstract Logic

In order to clearly explain how our stronger notion of locality resolves the
metatheoretical issues described in Section 1, we will first formally describe how
our locality fits into a context similar to that of Abstract Separation Logic [4].
With a minor amount of work, the logic of Section 3 can be molded into a
particular instance of the abstract logic presented here.

We define a separation algebra to be a set of states Σ, along with a partial
associative and commutative operator · : Σ → Σ ⇀ Σ. The disjointness relation
σ0#σ1 holds iff σ0 ·σ1 is defined, and the substate relation σ0 � σ1 holds iff there
is some σ′0 such that σ0 · σ′0 = σ1. A particular element of Σ is designated as a
unit state, denoted u, with the property that for any σ, σ#u and σ · u = σ. We
require the · operator to be cancellative, meaning that σ ·σ0 = σ ·σ1 ⇒ σ0 = σ1.

An action is a set of pairs of type Σ∪{bad, div}×Σ∪{bad, div}. We require
the following two properties: (1) actions always relate bad to bad and div to div,
and never relate bad or div to anything else; and (2) actions are total, in the
sense that for any τ , there exists some τ ′ such that τAτ ′ (recall from Section 2
that we use τ to range over elements of Σ ∪ {bad, div}). Note that these two
requirements are preserved over the standard composition of relations, as well
as over both finitary and infinite unions. We write Id to represent the identity
action {(τ, τ) | τ ∈ Σ ∪ {bad, div}}.

Note that it is more standard in the literature to have the domain of actions
range only over Σ — we use Σ∪{bad, div} here because it has the pleasant effect
of making JC1;C2K correspond precisely to standard composition. Intuitively,
once an execution goes wrong, it continues to go wrong, and once an execution
diverges, it continues to diverge.

A local action is an action A that satisfies the following four properties, which
respectively correspond to Safety Monotonicity, Termination Equivalence, the
Forwards Frame Property, and the Backwards Frame Property from Section 2:

1.) ¬σ0Abad ∧ σ0#σ1 =⇒ ¬(σ0 · σ1)Abad

2.) ¬σ0Abad ∧ σ0#σ1 =⇒ (σ0Adiv ⇐⇒ (σ0 · σ1)Adiv)

3.) σ0Aσ
′
0 ∧ σ0#σ1 =⇒ σ′0#σ1 ∧ (σ0 · σ1)A(σ′0 · σ1)

4.) ¬σ0Abad ∧ (σ0 · σ1)Aσ′ =⇒ ∃σ′0 . σ′ = σ′0 · σ1 ∧ σ0Aσ′0

We denote the set of all local actions by LocAct. We now show that the set
of local actions is closed under composition and (possibly infinite) union. We use

167



C ::= c | C1;C2 | C1 + C2 | C∗

∀c . JcK ∈ LocAct JC1;C2K
4
= JC1K; JC2K

JC1 + C2K
4
= JC1K ∪ JC2K JC∗K 4=

⋃
n∈N

JCKn

JCK0 4= Id JCKn+1 4= JCK; JCKn

Fig. 2. Command Definition and Denotational Semantics

the notation A1;A2 to denote composition, and
⋃
A to denote union (where A

is a possibly infinite set of actions). The formal definitions of these operations
follow. Note that we require that A be non-empty. This is necessary because⋃
∅ is ∅, which is not a valid action. Unless otherwise stated, whenever we write⋃
A, there will always be an implicit assumption that A 6= ∅.

τA1;A2τ
′ ⇐⇒ ∃τ ′′ . τA1τ

′′ ∧ τ ′′A2τ
′

τ
⋃
Aτ ′ ⇐⇒ ∃A ∈ A . τAτ ′ (A 6= ∅)

Lemma 1. If A1 and A2 are local actions, then A1;A2 is a local action.

Lemma 2. If every A in the set A is a local action, then
⋃
A is a local action.

Figure 2 defines our abstract program syntax and semantics. The language
consists of primitive commands, sequencing (C1;C2), nondeterministic choice
(C1 + C2), and finite iteration (C∗). The semantics of primitive commands are
abstracted — the only requirement is that they are local actions. Therefore, from
the two previous lemmas and the trivial fact that Id is a local action, it is clear
that the semantics of every program is a local action.

Note that in our concrete language used if statements and while loops. As
shownin [4], it is possible to represent if and while constructs with finite itera-
tion and nondeterministic choice by including a primitive command assume(B),
which does nothing if the boolean expression B is true, and diverges otherwise.

Now that we have defined the interpretation of programs as local actions, we
can talk about the meaning of a triple {P}C {Q}. We define an assertion P to
be a set of states, and we say that a state σ satisfies P iff σ ∈ P . We can then
define the separating conjunction as follows:

P ∗Q 4= {σ ∈ Σ | ∃σ0 ∈ P, σ1 ∈ Q . σ = σ0 · σ1}

Given an assignment of primitive commands to local actions, we say that a
triple is valid, written |= {P}C {Q}, just when the following two properties hold

168



¬σJcKbad
` {{σ}} c {{σ′ | σJcKσ′}}

(PRIM)
` {P}C1 {Q} ` {Q}C2 {R}

` {P}C1;C2 {R}
(SEQ)

` {P}C1 {Q} ` {P}C2 {Q}
` {P}C1 + C2 {Q}

(PLUS)
` {P}C {P}
` {P}C∗ {P}

(STAR)

` {P}C {Q}
` {P ∗R}C {Q ∗R}

(FRAME)
P ′ ⊆ P ` {P}C {Q} Q ⊆ Q′

` {P ′}C {Q′}
(CONSEQ)

∀i ∈ I . ` {Pi}C {Qi}

` {
⋃
Pi}C {

⋃
Qi}

(DISJ)
∀i ∈ I . ` {Pi}C {Qi} I 6= ∅

` {
⋂
Pi}C {

⋂
Qi}

(CONJ)

Fig. 3. Inference Rules

for all states σ and σ′:

1.) σ ∈ P =⇒ ¬σJCKbad
2.) σ ∈ P ∧ σJCKσ′ =⇒ σ′ ∈ Q

The inference rules of the logic are given in Figure 3. Note that we are tak-
ing a significant presentation shortcut here in the inference rule for primitive
commands. Specifically, we assume that we know the exact local action JcK of
each primitive command c. This assumption makes sense when we define our
own primitive commands, as we do in the logic of Section 3. However, in a more
general setting, we might be provided with an opaque function along with a spec-
ification (precondition and postcondition) for the function. Since the function is
opaque, we must consider it to be a primitive command in the abstract setting.
Yet we do not know how it is implemented, so we do not know its precise local
action. In [4], the authors provide a method for inferring a “best” local action
from the function’s specification. With a decent amount of technical develop-
ment, we can do something similar here, using our stronger definition of locality.
These details can be found in the technical report [5].

Given this assumption, we prove soundness and completeness of our abstract
logic. The details of the proof can be found in our Coq implementation [5].

Theorem 1 (Soundness and Completeness).

` {P}C {Q} ⇐⇒ |= {P}C {Q}

5 Simplifying Separation Logic Metatheory

Now that we have an abstracted formalism of our behavior-preserving local ac-
tions, we will resolve each of the four metatheoretical issues described in Sec 1.

169



5.1 Footprints and Smallest Safe States

Consider a situation in which we are handed a program C along with a specifi-
cation of what this program does. The specification consists of a set of axioms;
each axiom has the form {P}C {Q} for some precondition P and postcondition
Q. A common question to ask would be: is this specification complete? In other
words, if the triple |= {P}C {Q} is valid for some P and Q, then is it possible
to derive ` {P}C {Q} from the provided specification?

In standard Separation Logic, it can be extremely difficult to answer this
question. In [12], the authors conduct an in-depth study of various conditions
and circumstances under which it is possible to prove that certain specifications
are complete. However, in the general case, there is no easy way to prove this.

We can show that under our assumption of behavior preservation, there is
a very easy way to guarantee that a specification is complete. In particular, a
specification that describes the exact behavior of C on all of its smallest safe
states is always complete. Formally, a smallest safe state is a state σ such that
¬σJCKbad and, for all σ′ ≺ σ, σ′JCKbad.

To see that such a specification may not be complete in standard Separation
Logic, we borrow an example from [12]. Consider the program C, defined as
x := cons(0); free(x). This program simply allocates a single cell and then frees
it. Under the standard model, the smallest safe states are those of the form (s, ∅)
for any store s. For simplicity, assume that the only variables in the store are
x and y. Define the specification to be the infinite set of triples that have the
following form, for any a, b in Z, and any a′ in N:

{x = a ∧ y = b ∧ emp}C {x = a′ ∧ y = b ∧ emp}

Note that a′ must be in N because only valid unallocated memory addresses can
be assigned into x. It should be clear that this specification describes the exact
behavior on all smallest safe states of C. Now we claim that the following triple
is valid, but there is no way to derive it from the specification.

{x = a ∧ y = b ∧ y 7→ −}C {x = a′ ∧ y = b ∧ y 7→ − ∧ a′ 6= b}

The triple is clearly valid because a′ must be a memory address that was initially
unallocated, while address b was initially allocated. Nevertheless, there will not
be any way to derive this triple, even if we come up with new assertion syntax
or inference rules. The behavior of C on the larger state is different from the
behavior on the small one, but there is no way to recover this fact once we make
C opaque. It can be shown (see [12]) that if we add triples of the above form to
our specification, then we will obtain a complete specification for C. Yet there
is no straightforward way to see that such a specification is complete.

We will now formally prove that, in our system, there is a canonical form
for complete specification. We first note that we will need to assume that our
set of states is well-founded with respect to the substate relation (i.e., there
is no infinite strictly-decreasing chain of states). This assumption is true for

170



most standard models of Separation Logic, and furthermore, there is no reason
to intuitively believe that the smallest safe states should be able to provide a
complete specification when the assumption is not true.

We say that a specification Ψ is complete for C if, whenever |= {P}C {Q} is
valid, the triple ` {P}C {Q} is derivable using only the inference rules that are
not specific to the structure of C (i.e., the frame, consequence, disjunction, and
conjunction rules), plus the following axiom rule:

{P}C {Q} ∈ Ψ
` {P}C {Q}

For any σ, let σJCK denote the set of all σ′ such that σJCKσ′. For any set of
states S, we define a canonical specification on S as the set of triples of the form
{{σ}}C {σJCK} for any state σ ∈ S. If there exists a canonical specification on
S that is complete for C, then we say that S forms a footprint for C. We can
then prove the following theorem (see the extended TR):

Theorem 2. For any program C, the set of all smallest safe states of C forms
a footprint for C.

Note that while this theorem guarantees that the canonical specification is
complete, we may not actually be able to write down the specification simply
because the assertion language is not expressive enough. This would be the case
for the behavior-preserving nondeterministic memory allocator if we used the
assertion language presented in Section 3. We could, however, express canonical
specifications in that system by extending the assertion language to talk about
the free list (as briefly discussed at the end of Section 3).

5.2 Data Refinement

In [6], the goal is to formalize the concept of having a concrete module correctly
implement an abstract one, within the context of Separation Logic. Specifically,
the authors prove that as long as a client program “behaves nicely,” any execu-
tion of the program using the concrete module can be tracked to a corresponding
execution using the abstract module. The client states in the corresponding ex-
ecutions are identical, so the proof shows that a well-behaved client cannot tell
the difference between the concrete and abstract modules.

To get their proof to work out, the authors require two somewhat odd proper-
ties to hold. The first is called contents independence, and is an extra condition
on top of the standard locality conditions. The second is called a growing rela-
tion — it refers to the relation connecting a state of the abstract module to its
logically equivalent state(s) in the concrete module. All relations connecting the
abstract and concrete modules in this way are required to be growing, which
means that the domain of memory used by the abstract state must be a subset
of that used by the concrete state. This is a somewhat unintuitive and restric-
tive requirement which is needed for purely technical reasons. We will show that

171



behavior preservation completely eliminates the need for both contents indepen-
dence and growing relations.

We now provide a formal setting for the data refinement theory. This formal
setting is similar to the one in [6], but we will make some minor alterations to
simplify the presentation. The programming language is defined as:

C ::= skip | c | m | C1;C2 | ifB thenC1 elseC2

| whileB doC

c is a primitive command (sometimes referred to as “client operation” in this
context). m is a module command taken from an abstracted set MOp (e.g., a
memory manager might implement the two module commands cons and free).

The abstracted client and module commands are assumed to have a seman-
tics mapping them to particular local actions. We of course use our behavior-
preserving notion of “local” here, whereas in [6], the authors use the three proper-
ties of safety monotonicity, the (backwards) frame property, and a new property
called contents independence. It is trivial to show that behavior preservation im-
plies contents independence, as contents independence is essentially a forwards
frame property that can only be applied under special circumstances.

A module is a pair (p, η) representing a particular implementation of the mod-
ule commands in MOp; the state predicate p describes the module’s invariant
(e.g., that a valid free list is stored starting at a location pointed to by a par-
ticular head pointer), while η is a function mapping each module command to
a particular local action. The predicate p is required to be precise [11], meaning
that no state can have more than one substate satisfying p (if a state σ does
have a substate satisfying p, then we refer to that uniquely-defined state as σp).
Additionally, all module operations are required to preserve the invariant p:

¬σ(ηm)bad ∧ σ ∈ p ∗ true ∧ σ(ηm)σ′ =⇒ σ′ ∈ p ∗ true

We define a big-step operational semantics parameterized by a module (p, η).
This semantics is fundamentally the same as the one defined in [6]; the extended
TR contains the full details. The only aspect that is important to mention here
is that the semantics is equipped with a special kind of faulting called “access
violation.” Intuitively, an access violation occurs when a client operation’s ex-
ecution depends on the module’s portion of memory. More formally, it occurs
when the client operation executes safely on a state where the module’s mem-
ory is present (i.e., a state satisfying p ∗ true), but faults when that memory is
removed from the state.

The main theorem that we get out of this setup is a refinement simulation
between a program being run in the presence of an abstract module (p, η), and
the same program being run in the presence of a concrete module (q, µ) that
implements the same module commands (i.e., bηc = bµc, where the floor notation
indicates domain). Suppose we have a binary relation R relating states of the
abstract module to those of the concrete module. For example, if our modules
are memory managers, then R might relate a particular set of memory locations

172



available for allocation to all lists containing that set of locations in some order.
To represent that R relates abstract module states to concrete module states, we
require that whenever σ1Rσ2, σ1 ∈ p and σ2 ∈ q. Given this relation R, we can
make use of the separating conjunction of Relational Separation Logic [14] and
write R ∗ Id to indicate the relation relating any two states of the form σp · σc
and σq · σc, where σpRσq.

Now, for any module (p, η), let C[(p, η)] be notation for the program C whose
semantics have (p, η) filled in for the parameter module. Then our main theorem
says that, if η(f) simulates µ(f) under relation R ∗ Id for all f ∈ bηc, then for
any program C, C[(p, η)] also simulates C[(q, µ)] under relation R ∗ Id. More
formally, say that C1 simulates C2 under relation R (written R;C2 ⊆ C1;R)
when, for all σ1, σ2 such that σ1Rσ2:

1.) σ1JC1Kbad ⇐⇒ σ2JC2Kbad, and

2.) ¬σ1JC1Kbad =⇒ (∀σ′2 . σ2JC2Kσ′2 ⇒ ∃σ′1 . σ1JC1Kσ′1 ∧ σ′1Rσ′2)

Theorem 3. Suppose we have modules (p, η) and (q, µ) with bηc = bµc and a
refinement relation R as described above, such that R ∗ Id;µ(f) ⊆ η(f);R ∗ Id
for all f ∈ bηc. Then, for any program C, R ∗ Id;C[(q, µ)] ⊆ C[(p, η)];R ∗ Id.

While the full proof can be found in the extended TR, we will semi-formally
describe here the one case that highlights why behavior preservation eliminates
the need for contents independence and growing relations: when C is simply a
client command c. We wish to prove that C[(p, η)] simulates C[(q, µ)], so suppose
we have related states σ1 and σ2, and executing c on σ2 results in σ′2. Since σ1
and σ2 are related by R ∗ Id, we have that σ1 = σp · σc and σ2 = σq · σc. We

know that (1) σq ·σc
c→ σ′2, (2) c is local, and (3) c runs safely on σc because the

client operation’s execution must be independent of the module state σq; thus

the backwards frame property tells us that σ′2 = σq · σ′c and σc
c→ σ′c. Now, if c

is behavior-preserving, then we can simply apply the forwards frame property,
framing on the state σp, to get that σp#σ′c and σp · σc

c→ σp · σ′c, completing
the proof for this case. However, without behavior preservation, contents inde-
pendence and growing relations are used in [6] to finish the proof. Specifically,

because we know that σq · σc
c→ σq · σ′c and that c runs safely on σc, contents

independence says that σ ·σc
c→ σ ·σ′c for any σ whose domain is a subset of the

domain of σq. Therefore, we can choose σ = σp because R is a growing relation.

5.3 Relational Separation Logic

Relational Separation Logic [14] allows for simple reasoning about the relation-
ship between two executions. Instead of deriving triples {P}C {Q}, a user of the
logic derives quadruples of the form:

{R}
C

C ′
{S}

173



R and S are binary relations on states, rather than unary predicates. Semanti-
cally, a quadruple says that if we execute the two programs in states that are
related by R, then both executions are safe, and any termination states will be
related by S. Furthermore, we want to be able to use this logic to prove program
equivalence, so we also require that initial states related by R have the same
divergence behavior. Formally, we say that the above quadruple is valid if, for
any states σ1, σ2, σ′1, σ′2:

1.) σ1Rσ2 =⇒ ¬σ1JCKbad ∧ ¬σ2JC ′Kbad
2.) σ1Rσ2 =⇒ (σ1JCKdiv ⇐⇒ σ2JC ′Kdiv)

3.) σ1Rσ2 ∧ σ1JCKσ′1 ∧ σ2JC ′Kσ′2 =⇒ σ′1Sσ
′
2

Relational Separation Logic extends the separating conjunction to work for
relations, breaking related states into disjoint, correspondingly-related pieces:

σ1(R ∗ S)σ2 ⇐⇒ ∃ σ1r, σ1s, σ2r, σ2s .
σ1 = σ1r · σ1s ∧ σ2 = σ2r · σ2s ∧ σ1rRσ2r ∧ σ1sSσ2s

Just as Separation Logic has a frame rule for enabling local reasoning, Rela-
tional Separation Logic has a frame rule with the same purpose. This frame rule
says that, given that we can derive the quadruple above involving R, S, C, and
C ′, we can also derive the following quadruple for any relation T :

{R ∗ T}
C

C ′
{S ∗ T}

In [14], it is shown that the frame rule is sound when all programs are determin-
istic but it is unsound if nondeterministic programs are allowed, so this frame
rule cannot be used when we have a nondeterministic memory allocator.

To deal with nondeterministic programs, a solution is proposed in [14], in
which the interpretation of quadruples is strengthened. The new interpretation
for a quadruple containing R, S, C, and C ′ is that, for any σ1, σ2, σ′1, σ′2, σ, σ′:

1.) σ1Rσ2 =⇒ ¬σ1JCKbad ∧ ¬σ2JC ′Kbad
2.) σ1Rσ2 ∧ σ1#σ ∧ σ2#σ′ =⇒ ((σ1 · σ)JCKdiv ⇐⇒ (σ2 · σ′)JC ′Kdiv)

3.) σ1Rσ2 ∧ σ1JCKσ′1 ∧ σ2JC ′Kσ′2 =⇒ σ′1Sσ
′
2

Note that this interpretation is the same as before, except that the second prop-
erty is strengthened to say that divergence behavior must be equivalent not only
on the initial states, but also on any larger states. It can be shown that the frame
rule becomes sound under this stronger interpretation of quadruples.

In our behavior-preserving setting, it is possible to use the simpler interpre-
tation of quadruples without breaking soundness of the frame rule. We could
prove this by directly proving frame rule soundness, but instead we will take a
shorter route in which we show that, when actions are behavior-preserving, a

174



quadruple is valid under the first interpretation above if and only if it is valid
under the second interpretation — i.e., the two interpretations are the same in
our setting. Since the frame rule is sound under the second interpretation, this
implies that it will also be sound under the first interpretation.

Clearly, validity under the second interpretation implies validity under the
first, since it is a direct strengthening. To prove the inverse, suppose we have a
quadruple (involving R, S, C, and C ′) that is valid under the first interpretation.
Properties 1 and 3 of the second interpretation are identical to those of the first,
so all we need to show is that Property 2 holds. Suppose that σ1Rσ2, σ1#σ, and
σ2#σ′. By Property 1 of the first interpretation, we know that ¬σ1JCKbad and
¬σ2JC ′Kbad. Therefore, Termination Equivalence tells us that σ1JCKdiv ⇐⇒
(σ1 ·σ)JCKdiv, and that σ2JC ′Kdiv ⇐⇒ (σ2 ·σ′)JC ′Kdiv. Furthermore, we know
by Property 2 of the first interpretation that σ1JCKdiv ⇐⇒ σ2JC ′Kdiv. Hence
we obtain our desired result.

In case the reader is curious, the reason that the frame rule under the first
interpretation is sound when all programs are deterministic is simply that deter-
minism (along with standard locality) implies Termination Equivalence. A proof
of this can be found in the extended TR.

5.4 Finite Memory

Since standard locality allows the program state to increase during execution,
it does not play nicely with a model in which memory is finite. Consider any
command that grows the program state in some way. Such a command is safe on
the empty state but, if we extend this empty state to the larger state consisting of
all available memory, then the command becomes unsafe. Hence such a command
violates Safety Monotonicity.

There is one commonly-used solution for supporting finite memory without
enforcing behavior preservation: say that, instead of faulting on the state consist-
ing of all of memory, a state-growing command diverges. Furthermore, to satisfy
Termination Monotonicity, we also need to allow the command to diverge on
any state. The downside of this solution, therefore, is that it is only reasonable
when we are not interested in the termination behavior of programs.

When behavior preservation is enforced, we no longer have any issues with
finite memory models because program state cannot increase during execution.
The initial state is obviously contained within the finite memory, so all states
reachable through execution must also be contained within memory.

6 Related Work and Conclusions

The definition of locality (or local action), which enables the frame rule, plays
a critical role in Separation Logic [8, 13, 15]. Almost all versions of Separation
Logic — including their concurrent [3, 10, 4], higher-order [2], and relational [14]
variants, as well as mechanized implementation (e.g., [1]) — have always used

175



the same locality definition that matches the well-known Safety and Termination
Monotonicity properties and the Frame Property [15].

In this paper, we argued a case for strengthening the definition of locality
to enforce behavior preservation. This means that the behavior of a program
when executed on a small state is identical to the behavior when executed on a
larger state — put another way, excess, unused state cannot have any effect on
program behavior. We showed that this change can be made to have no effect on
the usage of Separation Logic, and we gave multiple examples of how it simplifies
reasoning about metatheoretical properties.

Determinism Constancy One related work that calls for comparison is the prop-
erty of “Determinism Constancy” presented by Raza and Gardner [12], which is
also a strengthening of locality. While they use a slightly different notion of ac-
tion than we do, it can be shown that Determinism Constancy, when translated
into our context (and ignoring divergence behaviors), is logically equivalent to:

σ0JCKσ′0 ∧ σ′0#σ1 =⇒ σ0#σ1 ∧ (σ0 · σ1)JCK(σ′0 · σ1)

For comparison, we repeat our Forwards Frame Property here:

σ0JCKσ′0 ∧ σ0#σ1 =⇒ σ′0#σ1 ∧ (σ0 · σ1)JCK(σ′0 · σ1)

While our strengthening of locality prevents programs from increasing state dur-
ing execution, Determinism Constancy prevents programs from decreasing state.
The authors use Determinism Constancy to prove the same property regarding
footprints that we proved in Section 5.1. Note that, while behavior preservation
does not imply Determinism Constancy, our concrete logic of Section 3 does have
the property since it never decreases state (we chose to have the free command
put the deallocated cell back onto the free list, rather than get rid of it entirely).

While Determinism Constancy is strong enough to prove the footprint prop-
erty, it does not provide behavior preservation — an execution on a small state
can still become invalid on a larger state. Thus it will not, for example, help in
resolving the dilemma of growing relations in the data refinement theory. Due
to the lack of behavior preservation, we do not expect the property to have a
significant impact on the metatheory as a whole. Note, however, that there does
not seem to be any harm in using both behavior preservation and Determin-
ism Constancy. The two properties together enforce that the area of memory
accessible to a program be constant throughout execution.

Module Reasoning Besides our discussion of data refinement in Section 5.2, there
has been some previous work on reasoning about modules and their implementa-
tions. In [11], a “Hypothetical Frame Rule” is used to allow modular reasoning
when a module’s implementation is hidden from the rest of the code. In [2],
a higher-order frame rule is used to allow reasoning in a higher-order language
with hidden module or function code. However, neither of these works discuss re-
lational reasoning between different modules. We are not aware of any relational
logic for reasoning about modules.

176



Acknowledgements. We thank Xinyu Feng and anonymous referees for sugges-
tions and comments on an earlier version of this paper. This material is based on
research sponsored by DARPA under agreement numbers FA8750-10-2-0254 and
FA8750-12-2-0293, and by NSF grants CNS-0910670, CNS-0915888, and CNS-
1065451. The U.S. Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright notation thereon. The
views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of these agencies.

References

1. A. W. Appel and S. Blazy. Separation logic for small-step cminor. In Theorem
Proving in Higher Order Logics, 20th International Conference, TPHOLs 2007,
Kaiserslautern, Germany, September 10-13, 2007, Proceedings, pages 5–21, 2007.

2. L. Birkedal, N. Torp-Smith, and H. Yang. Semantics of separation-logic typing
and higher-order frame rules. In Proc. 20th IEEE Symp. on Logic in Computer
Science, pages 260–269, 2005.

3. S. Brookes. A semantics for concurrent separation logic. In Proc. 15th International
Conference on Concurrency Theory (CONCUR’04), volume 3170 of LNCS, 2004.

4. C. Calcagno, P. O’Hearn, and H. Yang. Local action and abstract separation logic.
In Logic in Computer Science, 2007. LICS 2007. 22nd Annual IEEE Symposium
on, pages 366–378, July 2007.

5. D. Costanzo and Z. Shao. A case for behavior-preserving actions in separation
logic. Technical report, Dept. of Computer Science, Yale University, New Haven,
CT, June 2012. http://flint.cs.yale.edu/publications/bpsl.html.

6. I. Filipovic, P. W. O’Hearn, N. Torp-Smith, and H. Yang. Blaming the client: on
data refinement in the presence of pointers. Formal Asp. Comput., 22(5):547–583,
2010.

7. G. Huet, C. Paulin-Mohring, et al. The Coq proof assistant reference manual. The
Coq release v6.3.1, May 2000.

8. S. Ishtiaq and P. W. O’Hearn. BI as an assertion language for mutable data struc-
tures. In Proc. 28th ACM Symposium on Principles of Programming Languages,
pages 14–26, Jan. 2001.

9. B. W. Kernighan and D. M. Ritchie. The C Programming Language (Second
Edition). Prentice Hall, 1988.

10. P. W. O’Hearn. Resources, concurrency and local reasoning. In Proc. 15th Int’l
Conf. on Concurrency Theory (CONCUR’04), volume 3170 of LNCS, pages 49–67,
2004.

11. P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and information hiding.
ACM Trans. Program. Lang. Syst., 31(3):1–50, 2009.

12. M. Raza and P. Gardner. Footprints in local reasoning. Journal of Logical Methods
in Computer Science, 5(2), 2009.

13. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In
Proc. 17th IEEE Symp. on Logic in Computer Science, pages 55–74, July 2002.

14. H. Yang. Relational separation logic. Theor. Comput. Sci., 375(1-3):308–334, 2007.
15. H. Yang and P. W. O’Hearn. A semantic basis for local reasoning. In Proc.

5th Int’l Conf. on Foundations of Software Science and Computation Structures
(FOSSACS’02), volume 2303 of LNCS, pages 402–416. Springer, 2002.

177



Modular Verification of Concurrent Thread
Management

Yu Guo1, Xinyu Feng1, Zhong Shao2, and Peizhi Shi1

1 University of Science and Technology of China
{guoyu,xyfeng}@ustc.edu.cn sea10197@mail.ustc.edu.cn

2 Yale University
zhong.shao@yale.edu

Abstract. Thread management is an essential functionality in OS kernels. How-
ever, verification of thread management remains a challenge, due to two conflict-
ing requirements: on the one hand, a thread manager—operating below the thread
abstraction layer–should hide its implementation details and be verified indepen-
dently from the threads being managed; on the other hand, the thread management
code in many real-world systems is concurrent, which might be executed by the
threads being managed, so it seems inappropriate to abstract threads away in the
verification of thread managers. Previous approaches on kernel verification view
thread managers as sequential code, thus cannot be applied to thread manage-
ment in realistic kernels. In this paper, we propose a novel two-layer framework
to verify concurrent thread management. We choose a lower abstraction level
than the previous approaches, where we abstract away the context switch routine
only, and allow the rest of the thread management code to run concurrently in the
upper level. We also treat thread management data as abstract resources so that
threads in the environment can be specified in assertions and be reasoned about
in a proof system similar to concurrent separation logic.

1 Introduction

Thread scheduling in modern operating systems provides the functionality of virtualiz-
ing processors: when a thread is waiting for an event, it gives the control of the processor
to another thread to create the illusion that each thread has its own processor.

Inside a kernel, a thread manager supervises all threads in the system by manip-
ulating data structures called thread control blocks (TCBs). A TCB is used to record
important information about a thread, such as the machine context (or processor state),
the thread identifier, the status description, the location and size of the stack, the prior-
ity for scheduling, and the entry point of thread code. The TCBs are often implemented
using data structures such as queues for ready and waiting threads. Clearly, modifying
thread queues and TCBs would drastically change the behaviors of threads. Therefore,
a correct implementation of thread management is crucial for guaranteeing the whole
system safety. Unfortunately, modular verification of real-world thread management
code remains a big challenge today.

The challenge comes from two apparently conflicting goals which we want to achieve
at the same time: abstraction (for modular verification) and efficiency (for real-world

178



usability). On the one hand, TCBs, thread queues, and the thread scheduler are specifics
used to implement threads so they should sit at a lower abstraction layer. It is natural to
abstract them away from threads, and to verify threads and the thread scheduler sepa-
rately at different abstraction layers. Previous work has shown it is extremely difficult
to verify them together in one logic system [15]. On the other hand, in many real-world
systems such as Linux-2.6.10 [12] and FreeBSD-5.2 [13], the thread scheduler code
itself is alsoconcurrentin the sense that there may be multiple threads in the system
running the scheduler at the same time. For instance, when a thread invokes a thread
scheduler routine (e.g.,cleaning up dead threads, load balancing, or thread scheduling)
and traverses the thread queue, it may be preempted by other threads who may call
the same routine and traverse the queue too. Also, in some systems [12,1] the thread
scheduling itself is implemented as a separate thread that runs concurrently with other
threads. In these cases, we need to verify thread schedulers in a “multi-threaded” logic,
taking threads into account instead of abstracting them away.

Earlier work on thread scheduling verification fails to achieve the two goals at the
same time. Niet al.[15] verified both the thread switch and the threads in one logic [14],
which treats thread return addresses as first-class code pointers. Although their method
may support concurrent thread schedulers in real systems, it loses the abstraction of
threads completely, and makes the logic and specifications too complex for practical
use. Recent work [3,6] adopts two-layer verification frameworks to verify concurrent
kernels. Kernel code is divided into two layers: sequential code in the lower layer and
concurrent in the upper layer. In their frameworks, they put the code manipulating TCBs
(e.g.,thread schedulers) in the low layer, and hide the TCBs of threads in the upper layer
so that the threads cannot modify them. Then they use sequential program logics to
verify thread management code. However, this approach is not usable for many realistic
kernels where thread managers themselves are concurrent and the threads are allowed
to modify the TCBs. Other work on OS verification [11,9] only supports non-reentrant
kernels,i.e., there is only one thread running in the kernel at any time.

In this paper, we propose a more natural framework to verify concurrent thread man-
agers. Our framework follows the two-layer approach, so concurrent code at the upper
layer can be verified modularly with thread abstractions. However, the abstraction level
of our framework is much lower than previous frameworks [3,6]. The majority of the
code manipulating thread queues and TCBs is put in the upper layer and can be veri-
fied as concurrent code. Our framework successfully achieves both verification goals: it
not only allows abstraction and modular verification, but also supports concurrency in
real-world thread management.

Our work is based on previous work on thread scheduler verification, but makes the
following new contributions:

– We introduce a fine-grained abstraction in our two-layer verification framework.
The abstraction protects only a small part of sensitive data in TCBs, and at the same
time allows multiple threads to modify other part of TCBs safely. Our division of
the two abstraction layers is consistent with many real systems. It is more natural
and can support more realistic thread managers than previous work.

– In the upper layer, we introduce the idea of treatingthreads as resources. The ab-
stract thread resources can be specified explicitly in the assertion language, and

179



A AAB BB S

save
context

load
context

context
switch

find nextscheduling
process

user thread

(I) (II) (III)

Fig. 1. Three patterns of scheduling

their use by concurrent programs can be reasoned about modularly following con-
current separation logic (CSL) [16]. By enforcing the invariant that the abstract
resource is consistent with the concrete thread meta data, we can ensure the safety
of the accesses over TCBs and thread queues inside threads.

– Because of the fine-grained abstraction of our approach, the semantics of thread
scheduling do not have to be hardwired in the logic. Therefore, our framework
can be used to verify various implementation patterns of thread management. We
show how to verify the three common patterns of thread scheduling in realistic OS
kernels (while previous two-layer frameworks [3,6] can only verify one of them).

– In our extended TR [7], we also use our framework to verify thread schedulers with
hardware interrupts, scheduling over multiprocessor with load-balancing, and a set
of other thread management routines such as thread creation, join and termination.

The rest of this paper is organized as follows: we first introduce a simplified abstract
machine model for the higher-layer of our framework in Sec. 3; to show our main idea,
we propose in Sec. 4 our proof system for concurrent thread scheduling code over the
abstract machine. We show how to verify two prototypes of schedulers based on context
switch in Sec. 5. We compare with related work in Sec. 6, and then conclude.

2 Challenges and our approach

In this section, we illustrate the challenges of verifying code of thread scheduling by
showing three patterns of schedulers and discuss the verification issues. Then we infor-
mally explain the basic ideas of our approach.

2.1 Three patterns of thread scheduling

By deciding which thread to run next, the thread scheduler is responsible for best uti-
lizing the system and makes multiple threads run concurrently. The scheduling process
consists of the following steps: selecting which thread to run next in a thread queue by
modifying TCBs, saving the context data of the current thread, and loading the con-
text data of the next thread. Context data is the state of the processor. By saving and
loading context data, the processor can run in multiple control flows,i.e., threads. Usu-
ally, context data can be saved on stacks or TCBs (we assume in this paper that context

180



AA
BB
CC

tcbA

tcbA

tcbB

tcbB

tcbC

tcbC
cswitch thread queue

thread queue

context

scheduler

(a) (b)

Fig. 2. Abstraction in verification framework

data is saved in TCBs for the brevity of presentation). There are various ways to imple-
ment thread schedulers. In Fig. 1 we show three common implementation patterns, all
modeled from real systems.

Pattern (I) is popular among embedded OS kernels (e.g.,FreeRTOS) and some
micro-kernels (e.g.,Minix [8] and Exokernel [2]). The scheduler in this pattern is in-
voked by function calls or interrupts. Thereafter, the scheduling is done in the following
steps: (1) saving the current context data, (2) finding the next thread, and (3) loading the
context data of the next thread (and switching to it implicitly through function return).

In pattern (II), the scheduling process is a function with the following steps: (1)
finding the next thread firstly, (2) performing context switch (saving the current context
data, loading the next one, and jumping to the next thread immediately), (3) and running
the remaining code of the function when the control is switched back from other threads.
This pattern is modeled from some mainstream monolithic kernels (e.g.,Linux [12], and
FreeBSD). Some embedded kernels (e.g.,RTEMS and uClinux) adopt it too. Note that
both the involved threads should be allowed to access the thread queue and TCBs when
calling the scheduler.

Pattern (III) uses a separate thread, calledscheduler thread, to do scheduling. One
thread may perform scheduling by doing context switch to the scheduler thread. The
scheduler thread is a big infinite loop: finding the next thread; performing context switch
to the next thread; and looping after return. This pattern can be seen in the GNU-pth
thread library, MIT-xv6 kernel, L4::Ka,etc.. Similar to pattern (II), all involved threads
in this pattern should be allowed to access the TCB of the scheduler thread and the
thread queue.

2.2 Challenges

As we can see from the patterns in Fig. 1, the control flow in the scheduling process
is very complicated. Threads switch back and forth via manipulating the thread queues
and TCBs. It is very natural to share TCBs and the thread queue among threads in order
to support all these scheduling patterns. On the other hand, it is important to ensure that
the TCBs are accessed in the right way. The system would go wrong if, for instance, a
thread erased the context data of another by mistake, or put a dead thread back into the
ready thread queue.

To guarantee the safety of the scheduling process, we must fulfill two requirements:

(1) No thread can incorrectly modify the context data in TCBs.

181



ThreadA Thread B
{[A] ∗ 〈B〉 ∗ next 7→ }
next = B;

{[A] ∗ 〈B〉 ∗ next 7→ B}
cswitch(A, next);

{[A] ∗ 〈B〉 ∗ next 7→ A}

/* coming back */
{[B] ∗ 〈A〉 ∗ next 7→ B}
next = A;
cswitch(B, next);

{[B] ∗ 〈A〉 ∗ next 7→ }

GINV , {CThrdA ∗ RThrdB}

[A] ∗ 〈B〉 ∗ next 7→ B

〈A〉 ∗ [B] ∗ next 7→ A

Fig. 3. Abstract thread res. vs. concrete thread res.

(2) The scheduler should know the status of each thread in the thread queues and decide
which to run next.

To satisfy the requirement (1), some previous work [3,6] adopts a two-layer-based
approach and protects the TCBs throughabstraction, where the TCBs are simply hid-
den from kernel threads and become inaccessible. This approach can be used to verify
schedulers of pattern (I), for which we show the abstraction line in Fig. 2 (a). Threads
above the line cannot modify TCBs, while the scheduler is below this line and has full
access to them. The lower-layer scheduler provides an abstract interface to the verifi-
cation of concurrent thread code at the upper layer. Since it modifies the TCBs in the
scheduling time only, we can view the scheduler as a sequential function which does not
belong to any thread and can be verified by a conventional Hoare-style logic. However,
this approach cannot verify the other two patterns, nor does it fulfill the requirement (2)
for concurrent schedulers, where the TCBs are manipulated concurrently (not sequen-
tially as in pattern (I)) and should be known by threads. That is, we cannot completely
hide the TCBs from the upper-layer concurrent threads for patterns (II) and (III).

2.3 Our approach

If we inspect the TCB data carefully, we can see that only a small part of the data is
crucial to thread behaviors and cannot be accessed concurrently. It is unnecessary to
access it concurrently either. The data includes the machine context data and the stack
location. We call themsafety-criticalvalues. Some values can be modified concurrently,
but their correctness is still important to the safety of the kernel,e.g., the pointers orga-
nizing thread queues and the status field belong to this kind of values. Other values of
TCBs have nothing to do with the safety of the kernel and can be modified concurrently
definitely,e.g.,the name of a thread or debug information.

Lowering the abstraction level.To protect the safety critical part of TCBs, we lower
the abstraction line, as shown in Fig. 2 (b). In our framework, the safety-critical data of
TCBs is under the abstraction line and hidden from threads. The corresponding oper-
ations such as context saving, loading and switching are abstracted away from threads
too, with only interfaces exposed to the upper layer. The other part of TCBs are lifted
above this line, which can be accessed by concurrent threads.

Building abstract threads.We still need to ensure the concurrent accesses of non-
safety-critical TCB data are correct. For instance, we cannot allow a dead thread to

182



be put onto a ready thread queue. To address this issue, we build abstract threads to
carry information of threads from TCBs to guide modifications by each other. In Fig. 3,
we use the notation[t] to specify the running thread, and the notation〈t〉, for a ready
thread. Heret is the identifier of the thread. With the knowledge about the existence of
a ready threadB pointed bynext (i.e., 〈B〉), we know it is safe to switch to it via the
operationcswitch(A,next). Since abstract threads can be described in specifications,
it allows us to write more intuitive and readable specifications for kernel code.

Treating abstract threads as resources.Like heap resources, abstract thread resources
can be either local or shared. We can doownership transferson thread resources. When
context switches, one thread will transfer some of the abstract thread resources (shared)
along with the shared memory to the next thread. As shown in Fig. 3, when thread A
context switches to thread B, the notation[A] will be changed to〈A〉 after context saving;
〈A〉 and〈B〉 are transferred to the thread B along with the shared memory resourcenext;
then〈B〉 will be changed to[B] after context loading. With transferred thread resources,
threadB will know there is a ready threadA to switch to. Therefore, by treating abstract
threads as resources, we find a simple and natural way to specify and reason about
context switches. We design a proof system similar to CSL for modular verification
with the support of ownership transfers on thread resources.

Defining concrete thread resources.To establish the soundness of our proof system, we
must ensure that the abstract threads can be reified by concrete threads. The concrete
representation of abstract threads, including stack, TCBsetc., can be defined globally. In
Fig. 3, suppose that thread A is running, we ensure that there are two blocks of resources
in the system. One of them is the running threadCThrdA and the other is a ready thread
RThrdB. They correspond to the abstract threads[A] and〈B〉 in the assertions of thread
A. We use the concrete thread resources to specify the global invariant of the machine,
which allows us to prove the soundness of our proof system.

3 Machine model

In this section, we define a two-layer machine model. The physical machine we use is
similar to realistic hardware, where no concept of thread exists. Based on it, we define
an abstract machine with logicalabstract threads, whose meta-data is abstracted into
a thread pool. Moreover, the operation of context switch is abstracted as a primitive
abstract instruction.

Physical machine.The formal definition of the physical machine is shown in Fig. 4
(left side). A machine configurationW consists of a code blockC, a memory blockM,
a register fileR and a program counterpc. The machine has 6 general registers. Some
common instructions are defined to write programs in this paper. Their meanings, as
well as the operational semantics, follow the conventions. For simplicity, we omit many
realistic hardware details,e.g., address alignment and bits-arithmetic.

Abstract machine.The abstract machine is shown in Fig. 4 (right side), where threads
are introduced at this level. It is more intuitive to build a proof system (Sec. 4) to verify
concurrent kernel code at this level. A thread poolP is a partial mapping from thread

183



(PhyMach) W ::= (C,M,R,pc)

(PhyCode) C ::= {f : i}∗

(PhyMem) M ::= {l : w}∗ (l=4n)

(PhyRegFile) R ::= {r : w}∗

(Register) r ::= v0 | a0 | a1 | a2 | sp | ra

(Instruction) i ::= add rd, rs | addi rd, w

| mov rd, rs | movi rd, w

| lw rt , w(rs) | sw rt , w(rs)

| jmp f | call f | ret

| subi rd, w | bz rt , f

(AbsMach) W ::= (C,S,pc)

(State) S ::= (M,R,P)

(AbsCode) C ::= {f : c}∗

(Mem) M ::= {l : w}∗

(RegFile) R ::= {r : w}∗

(TID) t ::= w

(Pool) P ::= {t : T}∗

(Thrd) T ::= run | (rdy,R)

(AbsInstr) c ::= cswitch | i

(TIDList) L ::= t :: L | nil

Fig. 4. Physical and abstract machine models

IDs t to abstract threadsT. Each abstract thread has a tag specifying its status, which is
either running (run) or ready (rdy). Each ready thread has a copy of saved register file
as its machine context data. The abstract instructions include an abstract operation of
context switch (cswitch) and other physical machine instructions defined on the left.
We model the operational semantics using the step transition relationW 7−→W′ defined
in Fig. 5. The abstract instructioncswitch requires two thread IDs passed as arguments
in a0 anda1, one of which is tagged byrun and the other is taged byrdy in the thread
pool. Aftercswitch, the two abstract threads exchange tags, and the control of processor
is passed from the old thread to the new one. The registers of old thread are saved in the
source abstract thread and the registers in the destination thread are loaded into machine
state. Except forcswitch, the state transitions of other instructions are similar to those
of the physical machine.

Machine translation.In our proof system, once a program is proved safe at the abstract
machine level, it should be proved safe as well at the physical machine level. We define
a relation between abstract machine with physical machine (in the TR). The code
block at the abstract machine level is extended with the code of implementation of
context switch, and the abstract instructioncswitch is translated to a call instruction that
invokes the implementation code of context switch. The memory block at the abstract
machine level is translated to physical memory block by being merged with the memory
where context data is stored. By the translation, it can be proved that any safe program
over the abstract machine is safe over the physical machine.

4 Proof system

In this section, we extend the assertion language of CSL to specify the thread resources,
and propose a small proof system supporting verification of concurrent code with mod-
ification of TCBs at the assembly level.

184



((M,R,P),pc)
c

→֒ ((M′,R′,P′),pc′)

if c= then

i ((M,R),pc)
i

→֒ ((M′,R′),pc′) ∧ P=P′

cswitch ∃R′′,P′′ .M=M′ ∧ R′′=R{ra : pc+1} ∧ t=R(a0)
∧ t ′=R(a1) ∧ pc′=R′(ra)

∧P ={t : run, t ′ : (rdy,R′)}⊎P′′

∧P′={t : (rdy,R′′), t ′ : run}⊎P′′

R andR′ is complete.

((M,R),pc)
i

→֒ ((M′,R′),pc′)

if i= then
add rd, rs M′=M ∧ R′=R{rd : R(rd)+R(rs)} ∧ pc′=pc+1

call f M′=M ∧ R′=R{ra : pc+1} ∧ pc′=f

jmp f M′=M ∧ R′=R∧ pc′=f

ret M′=M ∧ R′=R∧ pc′=R(ra)

C(pc)=c (S,pc)
c

→֒ (S′,pc′)

(C,S,pc) 7−→ (C,S′,pc′)

Fig. 5.Operational semantics of abstract machine

4.1 Assertion language and code specification

We usep andq as assertion variables, which are predicates over machine states. The
assertion constructs, adapted from separation logic [17], areshallowly embeddedin the
meta language , as shown in Fig. 6. In our assertion language, there are two special as-
sertion constructs for abstract threads. One of them is〈t〉 specifying a ready thread and
the other is[t] specifying a current running thread. Since threads are explicit resources
in the abstract machine, their machine context data (values in registers) are preserved
across context switch. Hence the resources of registers shouldn’t be shared. We ex-
plicitly mark a pure assertion by♯, which forbids an assertion specifying resources.
An unary notation (⋄ p) mark an assertionp that only specifies shared resources but
no thread local resources (e.g., registers). Registers are also treated as resources, and
r 7→ w specifies a register with the value ofw. The notationr1, . . . ,rn 7→ w1, . . . ,wn is a
compact form for multiple registers.

We borrow the idea from SCAP [4] and use a(p,g) pair to specify instructions at
assembly-level. The pre-conditionp describes the state before the first instruction of
an instruction sequence, while the actiong describes the actions done by the whole in-
struction sequence. In the proof system, each instruction is associated with a(p,g) pair,
whereg describes the actions from this instruction to the end of the current function. For
all instructions inC, their(p,g) pairs are put inΨ, a global mapping from labels to spec-
ifications. The specification form(p,g) is different from the traditional pre-condition
and post-condition, which are both assertions and related by auxiliary variables. We can
still use a notation to specify instructions in the traditional style,

185



true , λ(M,R,P) . True

false , λ(M,R,P) . False

emp , λ(M,R,P) .M={·} ∧ R={·} ∧ P={·}

p ∗ q , λ(M,R,P) .∃M1,M2,R1,R2,P1,P2 .M=M1⊎M2 ∧ R=R1⊎R2 ∧ P=P1⊎P2

∧ p (M1,R1,P1) ∧ q (M2,R2,P2)

p−∗q , λ(M,R,P) .∀M1,R1,P1,M′,R′,P′ .(M′=M1⊎M ∧ R′=R1⊎R∧ P′=P1⊎P)

→ p (M1,R1,P1)→ q (M′,R′,P′)

p∧∧q , λS.(p S) ∧ (q S)

p∨∨q , λS.(p S) ∨ (q S)

∃∃ v. p , λS.∃v. p S

♯p , λ(M,R,P) . p∧ M={·} ∧ R={·} ∧ P={·}

⋄ p , λ(M,R,P) . p (M,R,P) ∧ R={·}

r 7→ w , λ(M,R,P) .R={r : w} ∧ M={·} ∧ P={·}

r →֒ w , λ(M,R,P) .∃R′ .R={r : w}⊎R′

l 7→ w , λ(M,R,P) .M={l : w} ∧ l 6= NULL ∧ R={·} ∧ P={·}

[t] , λ(M,R,P) .P={t : run} ∧ t 6= NULL ∧ M={·} ∧ R={·}

〈t〉 , λ(M,R,P) .P={t : (rdy, )} ∧ t 6= NULL ∧ M={·} ∧ R={·}

Fig. 6. Definition of selected assertion constructs

{

p

q

}(v1,...,vn)

, (λS.∃v1, . . . ,vn .(p(v1, . . . ,vn) ∗ true) S,

λS,S′ .∀ p′ .∀v1, . . . ,vn .(p(v1, . . . ,vn) ∗ p′) S→ (q(v1, . . . ,vn) ∗ p′) S′)

wherep is the pre-condition of instructions,q is the post-condition, andv1, . . . ,vn are
auxiliary variables occurring in the precondition and the postcondition. We define a
binary operator for composing two pairs into one.

(p,g)⊲ (p′,g′) , (λS. p S∧ (∀S′ .g S S′ → p′ S′),

λS,S′′ . p S→ (∃S′ .g S S′ ∧ g′ S′ S′′))

If an instruction sequence satisfies(p,g) and the following instruction sequence satis-
fies (p′,g′), then the composed instruction sequence would satisfy(p,g) ⊲ (p′,g′). The
weakening relation between two pairs is defined as below:

(p,g)⇒ (p′,g′) , ∀S. p S→ p′ S∧ (∀S′ .g′ S S′ → g S S′)

i.e., the preconditionp be stronger thanp′ and the actiong be weaker thang′.

(Assert) p,q ::= true | false | emp | p ∗ q | p−∗q | p∧∧q | p∨∨q | ∃∃ v. p | l 7→ w

| [t] | 〈t〉 | ♯p | ⋄ p | r 7→ w | r →֒ w

(Action) g ∈ State → State → Prop

(Spec) Ψ ::= {f : (p,g)}∗

186



4.2 Invariant for shared resources and inference rules

As mentioned previously, our proof system draws ideas of ownership transfer from
CSL. By defining invariants for shared resources, our proof system ensures safe opera-
tions of TCBs.

Unlike the invariant in concurrent separation logic, the invariant of shared resources
defined in our proof system is parameterized by two thread IDs:I(ts, td). Briefly, the
invariant describes the shared resources before context switch with the direction from
the threadts to td. One of the benefits of parameters is that the invariant is thread-
specific.

Like the abstract invariantI in CSL, the invariantI(ts, td) is abstract and can be in-
stantiated to concrete definitions to verify various programs, as long as the instantiation
satisfies the requirement of beingprecise[17].

Precisely, the invariantI(ts, td) describes the shared resources when the context switch
is invoked from the threadts to the threadtd, but excluding the resources of the two
threads. Since the control flow from one thread to another isdeterministicby context
switch, every two threads may negotiate a particular invariant that is different from pairs
of other threads. We can define different assertions (of shared resources) which depend
on the source and the destination threads of a context switch. This is quite different
from concurrent code at user-level, where a context switch is non-deterministic and the
scheduling algorithm is abstracted away.

The judgment for instructions in our proof system is of the following form:Ψ, I ⊢
{(p,g)} pc : c, whereΨ andI are given as specifications. The judgement states that an
instruction sequence, started withc at the label ofpc and ended with aret, satisfies
specification(p,g) underΨ and I . Some selected inference rules for instructions are
shown in Fig. 7.

In the rule of (ADD) , the premise says that the specification(p,g) implies the action
of theadd instruction composed with the specification of the next instruction,Ψ(pc+1).
The action ofadd instruction is that if the destination registerrd contains the value of
w1, and the source registerrs contains the value ofw2, then after the instruction,rd will
contain the sum ofw1 andw2, while rs will remain unchanged.

Functions are reasoned with the rules of (CALL ) and (RET) . The (CALL ) rule
says that the specification(p,g) implies the action that is composed by (1) the action
of instructioncall, (2) the specification of thefunctioninvokedΨ(f), (3) the action of
instructionret, and (4) the specification of the next instructionΨ(pc+1). The (RET)
rule says that the specification(p,g) implies an empty action, which means the actions
of the current function should be fulfilled.

The most important rule is (CSW) . The precondition ofcswitch requires the fol-
lowing resources: the current thread resource, the registersa0 containing the current
thread IDt anda1 containing the destination thread IDt ′, and the shared resource sat-
isfying the invariant⋄ I(t, t ′). After return from context switch, the current thread will
own the shared resources (satisfying⋄ I(t ′′, t) for somet ′′) again.

4.3 Invariant of global resources and soundness

Each abstract thread corresponds to the part of global resources representing the con-
crete resources allocated for this thread. For example, for an abstract thread〈t〉, there

187



(p,g)⇒

{

(rd 7→ w1) ∗ (rs 7→ w2)

(rd 7→ w1+w2) ∗ (rs 7→ w2)

}(w1,w2)

⊲Ψ(pc+1)

Ψ, I ⊢ {(p,g)} pc : add rd, rs
(ADD)

(p,g)⇒

{

ra 7→

ra 7→ pc+1

}

⊲Ψ(f)⊲

{

ra 7→ pc+1

ra 7→

}

⊲Ψ(pc+1)

Ψ, I ⊢ {(p,g)} pc : call f
(CALL )

(p,g)⇒

{

emp

emp

}

Ψ, I ⊢ {(p,g)} pc : ret
(RET)

(p,g)⇒ Ψ(f)

Ψ, I ⊢ {(p,g)} pc : jmp f
(JMP)

(p,g)⇒

{

[t] ∗ (a0,a1,ra 7→ t, t ′, ) ∗ 〈t ′〉 ∗ ⋄ I(t, t ′)

[t] ∗ (a0,a1,ra 7→ t, t ′, ) ∗ ∃∃ t ′′ .〈t ′′〉 ∗ ⋄ I(t ′′, t)

}(t,t ′)

⊲Ψ(pc+1)

Ψ, I ⊢ {(p,g)} pc : cswitch
(CSW)

Fig. 7. Inference rules (selected)

exist resources of its TCB, stack, and private resources. Therefore, all resources can be
divided into parts and each of them is associated to one thread. The global invariant
GINV, defined in Fig. 8, describes the partition of all resources globally. The invariant
is the key for proving the soundness theorem of our proof system.

First, for each thread, we define a predicateCont to specify its resources and control
flow, i.e. thecontinuationof this thread. The first parametern of this predicate specifies
the number of functions nested in the thread’s control flow. Ifn is equal to zero, it means
that the thread is running in the topmost function, which is required to be an infinite loop
and cannot return. If the numbern is greater than zero, the predicate says that there is
a specification(p,g) in Ψ at pc, such that the resources of the thread satisfiesp; andg
guarantees that the thread will continue to satisfyCont recursively after it returns to the
addressretaddr.

The concrete resources of arunning threadare specified by a continuationCont with
an additional condition, the running thread owns all registers. The parameterpc points
to the next instruction the thread is going to run. Here we use an abbreviation⌊R⌋ to
denote the resources of all registers, except that the value inra is of no interest.

For aready thread(or a runnable thread), its concrete resources are defined by sep-
arating implication−∗ : if given (1) the resources of saved machine context⌊R⌋, (2) the
abstract resource of itself[t], (3) another ready threadt ′ and (4) shared resources speci-
fied by⋄ I(t ′, t), the resources of the ready thread can be transformed into the resources
of a running thread. Its thread ID is specified by the second parameter ofRThrd, and
the third parameter is the machine context data saved in its TCB. Please note that the
program counter of a ready thread is saved into the registerra.

The whole machine state can be partitioned, and each part is owned by one thread,
which is either running or ready. Thus, the global invariantGINV is defined in the form
of separating conjunction byCThrd andRThrd. The structure ofGINV is isomorphic to
the thread poolP: the abstract running thread is mapped to the resource specified by

188



⌊R⌋ , (ra 7→ ) ∗ (v0 7→ R(v0)) ∗ (sp 7→ R(sp))

∗(a0 7→ R(a0)) ∗ (a1 7→ R(a1)) ∗ (a2 7→ R(a2))

Cont(n+1,Ψ,pc) , λS.Ψ(pc)=(p,g) ∧ (p S)

∧(∀S′ .g S S′ → (∃∃ retaddr.(ra →֒ retaddr)∧∧Cont(n,Ψ, retaddr)) S′)

Cont(0,Ψ,pc) , λS.Ψ(pc)=(p,g) ∧ (p S) ∧ (∀S′ .g S S′ → False)

CThrd(Ψ, t,pc) , ∃∃ n.Cont(n,Ψ,pc)∧∧([t] ∗ ∃∃ R.⌊R⌋ ∗ true)

RThrd(Ψ, t,R) , ⌊R⌋ ∗ [t] ∗ ∃∃ t ′ .〈t ′〉 ∗ ⋄ I(t ′, t) −∗CThrd(Ψ, t,R(ra))

GINV(Ψ,P,pc) , CThrd(Ψ, t,pc) ∗ RThrd(Ψ, t0,R0) ∗ · · · ∗ RThrd(Ψ, tn,Rn)

whereP={t : run, t0 : (rdy,R0), . . . , tn : (rdy,Rn)}

Fig. 8.Concrete threads and the global invariant

struct tcb { | void schedule_p2()

struct context ctxt; | {

struct tcb *prev; | struct tcb *old, *new;

struct tcb *next; | old = cur;

}; | new = deq(&rq);

struct queue { | if (new == NULL) return;

struct tcb *head; | enq(&rq, old);

struct tcb *tail; | cur = new;

}; | cswitch(old,new);

struct tcb *cur; | return;

struct queue rq; | }

Fig. 9.Pseudo C code forschedule p2()

CThrd; an abstract ready thread is mapped to a resource specified byRThrd. Note that
GINV requires that there be one and only one running abstract thread, since the physical
machine has only one single processor. Our proof system ensures that the machine state
always satisfies the global invariant, (GINV(Ψ,P,pc) (M,R,P)).

The soundness property of our proof system states that any program that is well-
formed in our proof system will run safely on the abstract machine. The property can
be proved by the global invariantGINV, which always holds through machine execution.
We can first prove that if every machine configuration satisfiesGINV, it can run forward
for one step. And we can also prove that if a machine configuration (satisfyingGINV)
can proceed, the next machine configuration will also satisfyGINV. Hence by the invari-
antGINV, the soundness theorem of our proof system can be proved. The proof of the
soundness theorem has been formalized in Coq [7].

5 Verification cases

In this section, we show how to use the proof system to verify two schedulers of pat-
tern (II) and (III) shown in Fig. 1. We give the code written in pseudo C to explain

189



the programs and their specifications. The corresponding assembly code and selected
assertions of the two schedulers are shown in Fig. 10.

Scheduler as function.The scheduler functionschedule p2() (see Fig. 9) follows the
process discussed in Sec. 2. The functionsdeq() and enq() are used to remove and
insert nodes in thread queues. The main task of the scheduler is to choose a candidate
from the thread queue and then perform context switch from the current thread to the
candidate. There are two global variables,cur andrq. The variablecur points to the
TCB of the running thread;rq points to the thread queue containing TCBs of all other
runnable (ready) threads.

The notationt
field
7−→ w specifies a named field in the structure. The notationptcb(t)

specifies a part of TCB including the fields ofnext andprev. The predicateRQ(q,L)
specifies a doubly linked list as a thread queue pointed to byq, whereL is a list of thread
IDs of the thread queue. We also use〈L〉 as an abbreviation for〈t0〉 ∗ 〈t1〉 ∗ · · · ∗ 〈tn〉, if L
is t0 :: t1 :: · · · :: tn :: nil, and usel 7→ (n) to specifyn continuous memory cells.

l
field
7−→ w , (l+offset of the field in the struct) 7→ w

ptcb(t) , (t
prev
7−→ ) ∗ (t

next
7−→ )

RQseg(pv, tl, t,nil) , (t
prev
7−→ pv) ∗ ∃∃ t ′ .(t

next
7−→ NULL) ∗ ♯(t= tl)

RQseg(pv, tl, t, t ′ :: L′) , (t
prev
7−→ pv) ∗ (t

next
7−→ t ′) ∗ RQseg(t, tl , t ′,L′)

RQ(q,nil) , (q
head
7−→ NULL) ∗ (q

tail
7−→ NULL)

RQ(q, t :: L) , ∃∃ pv.∃∃ tl .(q
head
7−→ t) ∗ (q

tail
7−→ tl) ∗ RQseg(pv, tl, t,L)

K(bp,n,w0 :: w1 :: . . . :: wm :: nil) , ∃∃ sp.(sp 7→ sp) ∗ ♯(sp=bp+4n) ∗ (bp 7→ (n) )

∗(sp 7→ w0) ∗ (sp+4 7→ w1) ∗ · · · ∗ (sp+4m 7→ wm)

K(bp,n) , K(bp,n,nil)

The specification ofschedule p2() is shown below:



















[t] ∗ ptcb(t) ∗ (cur 7→ t) ∗ ∃∃ L .RQ(rq,L) ∗ 〈L〉 ∗ (ra 7→ ret)
∗K(bp,20) ∗ (v0,a0,a1 7→ , , )

[t] ∗ ptcb(t) ∗ (cur 7→ t) ∗ ∃∃ L .RQ(rq,L) ∗ 〈L〉 ∗ (ra 7→ ret)
∗K(bp,20) ∗ (v0,a0,a1 7→ , , )



















(t,ret,bp)

Here we use a notationK(bp,n,w :: w′ :: · · ·) to describe a stack frame. The first parameter
bp is the base address of a stack frame. The second parametern is the size of unused
space (number of words). And the third parameter is a list of words, representing the
values on stack top down, that is, the leftmost value in the list is the topmost value in
the stack frame. If the stack frame is empty, we omit the third parameter.

The abstract invariantI is instantiated to a concrete definition specifying the shared
resourcesbeforeandaftercontext switch for this implementation of scheduler.

I(t, t ′) , ptcb(t ′) ∗ (cur 7→ t ′) ∗ ∃∃ L .RQ(rq, t :: L) ∗ 〈L〉

190



schedule p2:

{[t] ∗ ptcb(t) ∗ (cur 7→ t) ∗ ∃∃ L .RQ(rq,L)
∗〈L〉 ∗ (a0,a1,v0,ra 7→ , , , ret)
∗K(bp,20)}

subi sp, 12

sw ra, 8(sp)

movi a0, cur

lw v0, 0(a0)

sw v0, 0(sp)

{[t] ∗ ptcb(t) ∗ (cur 7→ t) ∗ ∃∃ L .RQ(rq,L)
∗〈L〉 ∗ (a0,a1,v0,ra 7→ cur, , t, )
∗K(bp,17, t :: :: ret :: nil)}

movi a0, rq

call deq

bz v0, Ls ret

{[t] ∗ ptcb(t) ∗ 〈t ′〉 ∗ ptcb(t ′) ∗ ∃∃ L .RQ(rq,L)
∗〈L〉 ∗ (a0,a1,v0,ra 7→ rq, , t ′, )
∗K(bp,17, t :: :: ret :: nil) ∗ (cur 7→ t)}

sw v0, 4(sp)

lw a1, 0(sp)

call enq

{[t] ∗ 〈t ′〉 ∗ ptcb(t ′) ∗ ∃∃ L .RQ(rq, t :: L) ∗ 〈L〉
∗(a0,a1,v0,ra 7→ rq, t,0, )
∗K(bp,17, t :: t ′ :: ret :: nil) ∗ (cur 7→ t)}

lw a1, 4(sp)

movi a0, cur

sw a1, 0(a0)

lw a0, 0(sp)

{[t] ∗ 〈t ′〉 ∗ ∃∃ L .RQ(rq, t :: L) ∗ 〈L〉 ∗ ptcb(t ′)
∗(a0,a1,v0,ra 7→ t, t ′,0, )
∗K(bp,17, t :: t ′ :: ret :: nil) ∗ (cur 7→ t ′)}

cswitch

{[t] ∗ ptcb(t) ∗ ∃∃ t ′′ .〈t ′′〉 ∗ ∃∃ L .RQ(rq, t ′′ :: L)
∗〈L〉 ∗ (a0,a1,v0,ra 7→ t, t ′, , )
∗K(bp,17, t :: :: ret :: nil) ∗ (cur 7→ t)}

Ls ret:

lw ra, 8(sp)

addi sp, 12

{[t] ∗ ptcb(t) ∗ (cur 7→ t) ∗ ∃∃ L .RQ(rq,L)
∗〈L〉 ∗ (a0,a1,v0,ra 7→ , , , ret)
∗K(bp,20)}

ret

schedth:

{[sched] ∗ (cur 7→ ) ∗ ∃∃ L .RQ(rq,L) ∗ 〈L〉
∗(a0,a1,v0,ra 7→ , , , )
∗∃∃ bp.K(bp,10)}

movi a0, rq

call deq

bz v0, schedth

movi a2, cur

sw v0, 0(a2)

mov a1, v0

lw a0, sched

{[sched] ∗ 〈t ′〉 ∗ (cur 7→ t ′) ∗ ptcb(t ′)
∗∃∃ L .RQ(rq,L) ∗ 〈L〉
∗(a0,a1,v0,ra 7→ sched, t ′, , )
∗∃∃ bp.K(bp,10)}

cswitch

{[sched] ∗ ∃∃ t ′′ .〈t ′′〉 ∗ ptcb(t ′′) ∗ (cur 7→ t ′′)
∗∃∃ L .RQ(rq,L) ∗ 〈L〉 ∗ ∃∃ bp.K(bp,10)
∗(a0,a1,v0,ra 7→ sched, , , )}

movi a0, rq

lw a1, 0(a2)

call enq

jmp schedth

schedule p3:

{[t] ∗ ptcb(t) ∗ 〈sched〉 ∗ (cur 7→ t)
∗(a0,a1,ra 7→ , , ret) ∗ K(bp,10)}

subi sp, 4

sw ra, 0(sp)

movi a1, cur

lw a0, 0(a1)

movi a1, sched

{[t] ∗ ptcb(t) ∗ 〈sched〉 ∗ (cur 7→ t)
∗(a0,a1,ra 7→ t,sched, ret) ∗ K(bp,9, ret)}

cswitch

{[t] ∗ ptcb(t) ∗ 〈sched〉 ∗ (cur 7→ t)
∗(a0,a1,ra 7→ , , ret) ∗ K(bp,9, ret)}

lw ra, 0(sp)

addi sp, 4

{[t] ∗ ptcb(t) ∗ 〈sched〉 ∗ (cur 7→ t)
∗(a0,a1,ra 7→ , , ret) ∗ K(bp,10)}

ret

Fig. 10.Verification ofschedule p2(), schedth() andschedule p3()

191



struct tcb sched; | schedth()

struct tcb *cur; | {

struct queue rq; | while(1){

schedule_p3() | cur = deq(&rq);

{ | cswitch(&sched, cur);

cswitch(cur,&sched); | enq(&rq, cur);

return; | }

} | }

Fig. 11.Pseudo C code forschedule p3()

Scheduler as a separated thread.A scheduler in the pattern (III) is implemented as a
separated thread (see Fig. 11), which does scheduling jobs in an infinite loop. A global
variablesched is added to represent the TCB of the scheduler thread. A stub function
schedule p3() can be invoked by other threads to do scheduling. As shown below,
the specification ofschedule p3() function is different from the one ofschedule p2().
The schedule function in this implementation doesn’t own the thread queue, which is
owned by the scheduler thread〈sched〉 instead since all of the operations over the thread
queue are put into the separated thread.







[t] ∗ ptcb(t) ∗ (cur 7→ t) ∗ 〈sched〉 ∗ (a0,a1,ra 7→ , , ret) ∗ K(bp,10)

[t] ∗ ptcb(t) ∗ (cur 7→ t) ∗ 〈sched〉 ∗ (a0,a1,ra 7→ , , ret) ∗ K(bp,10)







(t,bp,ret)

The specification ofschedth() function is shown below:










[sched] ∗ (cur 7→ ) ∗ ∃∃ L .RQ(rq,L) ∗ 〈L〉
∗(a0,a1,a2,v0,ra 7→ , , , , ) ∗ ∃∃ bp.K(bp,10)

false











Since the ready thread queue is only owned by the scheduler thread, it does not need to
be shared by other threads and occur in the invariant for the shared resources,I :

I(t, t ′) , (♯(t ′=sched) ∗ (cur 7→ t) ∗ ptcb(t))∨∨(♯(t=sched) ∗ (cur 7→ t ′) ∗ ptcb(t ′))

The invariantI(t, t ′) is defined by two cases on the direction of context switch: if the
destination thread is the scheduler thread,I(t, t ′) requires that the value incur be equal
to the ID of the source thread,t; or if the source thread is the scheduler thread,I(t, t ′)
requires that the value incur be equal to the ID of the destination thread.

6 Related work and conclusions

Gotsman and Yang [6] proposed a two-layer framework to verify schedulers. The proof
system in the lower-layer is for verifying code manipulating TCBs, while the upper-
layer is for verifying the rest concurrent code of the kernel. Since thread queues and
TCBs are hidden from the upper-layer, one thread could not have any knowledge of the
others, thus their proof system is unable to verify the scheduling pattern of II and III.
Similar to our assertionRThrd(· · ·), they introduced a primitive predicateProcess(G) to

192



relate TCBs in the lower-layer with threads in the upper-layer, but there is no counter-
part of〈t〉 in their framework.

Fenget al. also verified a kernel prototype [3] in a two-layer framework. Code
manipulating TCBs needs to be verified in the lower-layer of their framework. The
TCBs are connected with actual threads in the upper layer by an interpretation function
of their framework. Our use of global invariant is similar to their use of the interpretation
function. In the upper-layer, information of threads is completely hidden. Thus, their
framework also fails to support the verification of the scheduler pattern of II and III.

Ni et al. verified a small thread manager with a logic system [15,14] supporting
modular reasoning about code including embedded code pointers. In their logic, how-
ever, there is no abstraction of threads. Multithreaded programs are seen as sequential
interleaving of pieces of code in low-level continuation passing style. Therefore, TCBs
with embedded code pointers can be treated as normal data. But since the reasoning
level is too low without any abstraction, TCBs have to be specified by over-complicated
logic expressions and then it is very difficult to apply their method to realistic code.

Klein et al. verified a micro-kernel, seL4 [11], where the kernel code runs sequen-
tially. Thus they used a sequential proof system to verify most of the kernel code. The
scheduling pattern of seL4 is similar to our pattern I, but they trusted the code doing
context saving and loading, and left it unverified. Since they do not verify user processes
upon the kernel, they need not relate TCBs in the kernel with actual user processes.

Garganoet al. used a framework CVM [5] to build verified kernels in the Verisoft
project. CVM is a computational model for concurrent user processes, which interleave
through a micro-kernel. Starostin and Tsyban presented a formal approach [18] to rea-
son about context switch between user processes. The context switch code and proofs
are integrated in a framework for building verified kernels (CVM) [10]. Their frame-
work keeps a global invariant,weak consistency, to relate TCBs in the kernel with user
processes outside the kernel. Since the kernel itself is sequential, their process schedul-
ing follows pattern I. The other two patterns cannot be verified.

In this paper, we proposed a novel approach to verify concurrent thread manage-
ment code, which allows multiple threads to modify their own thread control blocks.
The assertions of the code and inference rules of the proof system are straightforward
and easy to follow. Moreover, it can be easily extended to support other kernel features
(e.g., preemptive scheduling, multi-core systems, synchronizations) and to be practi-
cally applied to realistic OS code.

Acknowledgements.We thank anonymous referees for suggestions and comments on
an earlier version of this paper. Yu Guo, Xinyu Feng and Peizhi Shi are supported in
part by grants from National Natural Science Foundation of China (Nos. 61073040,
61202052 and 61229201), the Fundamental Research Funds for the Central Universi-
ties (Nos. WK0110000018 and WK0110000025), and Program for New Century Ex-
cellent Talents in Universities (NCET). Zhong Shao is supported in part by DARPA un-
der agreement numbers FA8750-10-2-0254 and FA8750-12-2-0293, and by NSF grants
CNS-0910670, CNS-0915888, and CNS-1065451. Any opinions, findings, and conclu-
sions contained in this document are those of the authors and do not reflect the views of
these agencies.

193



References

1. R. S. Engelschall. Portable multithreading: the signal stack trick for user-space thread cre-
ation. InProc. of ATEC’00, pages 20–20, Berkeley, CA, USA, 2000. USENIX Association.

2. D. R. Engler, M. F. Kaashoek, and J. O’Toole Jr. Exokernel: an operating system architecture
for application-level resource management. InProceedings of the 15th ACM Symposium on
Operating Systems Principles (SOSP ’95), pages 251–266, Copper Mountain Resort, Col-
orado, December 1995.

3. X. Feng, Z. Shao, Y. Guo, and Y. Dong. Combining domain-specific and foundational logics
to verify complete software systems. InProc. VSTTE’08, pages 54–69, Toronto, Canada,
October 2008.

4. X. Feng, Z. Shao, A. Vaynberg, S. Xiang, and Z. Ni. Modular verification of assembly code
with stack-based control abstractions. InProc. PLDI’06, pages 401–414, June 2006.

5. M. Gargano, M. Hillebrand, D. Leinenbach, and W. Paul. On the correctness of operating
system kernels. In J. Hurd and T. F. Melham, editors,Proc. TPHOLs’05, volume 3603 of
Lecture Notes in Computer Science, pages 1–16. Springer, 2005.

6. A. Gotsman and H. Yang. Modular verification of preemptive os kernels. InProc. ICFP’11,
pages 404–417, Tokyo, Japan, 2011. ACM.

7. Y. Guo, X. Feng, Z. Shao, and P. Shi. Modular verification of concurrent thread management
(technical report and coq proof).http://kyhcs.ustcsz.edu.cn/~guoyu/sched/, June
2012.

8. J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum. Minix 3: a highly reliable,
self-repairing operating system.SIGOPS Oper. Syst. Rev., 40:80–89, July 2006.

9. M. Hohmuth and H. Tews. The vfiasco approach for a verified operating system. InPro-
ceedings of the 2nd ECOOP Workshop on Programming Languages and Operating Systems,
2005.

10. T. In der Rieden and A. Tsyban. CVM – A verified framework for microkernel programmers.
In Proc. SSV’08, volume 217C ofElectronic Notes in Theoretical Computer Science, pages
151–168. Elsevier Science B.V., 2008.

11. G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe, K. En-
gelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4: Formal
verification of an OS kernel. InProc. SOSP’09, pages 207–220, Big Sky, MT, USA, Oct
2009. ACM.

12. R. Love.Linux Kernel Development (2nd Edition) (Novell Press). Novell Press, 2005.
13. M. K. McKusick and G. V. Neville-Neil.The Design and Implementation of the FreeBSD

Operating System. Pearson Education, 2004.
14. Z. Ni and Z. Shao. Certified assembly programming with embedded code pointers. InProc.

POPL’06, pages 320–333, Jan. 2006.
15. Z. Ni, D. Yu, and Z. Shao. Using XCAP to certify realistic systems code: Machine context

management. InProc. TPHOLs’07, volume 4732 ofLecture Notes in Computer Science,
pages 189–206. Springer-Verlag, September 2007.

16. P. W. OHearn. Resources, concurrency, and local reasoning.Theor. Comput. Sci., 375(1-
3):271–307, 2007.

17. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. InLICS ’02:
Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science, pages 55–
74, Washington, DC, USA, 2002. IEEE Computer Society.

18. A. Starostin and A. Tsyban. Verified process-context switch for C-programmed kernels. In
J. Woodcock and N. Shankar, editors,Proc. VSTTE’08, volume 5295 ofLecture Notes in
Computer Science, pages 240–254, Toronto, Canada, Oct. 2008. Springer.

194

http://kyhcs.ustcsz.edu.cn/~guoyu/sched/


Compositional Verification of a Baby Virtual Memory
Manager

Alexander Vaynberg and Zhong Shao

Yale University

Abstract. A virtual memory manager (VMM) is a part of an operating system
that provides the rest of the kernel with an abstract model of memory. Although
small in size, it involves complicated and interdependent invariants that make
monolithic verification of the VMM and the kernel running on top of it difficult.
In this paper, we make the observation that a VMM is constructed in layers: phys-
ical page allocation, page table drivers, address space API, etc., each layer pro-
viding an abstraction that the next layer utilizes. We use this layering to simplify
the verification of individual modules of VMM and then to link them together
by composing a series of small refinements. The compositional verification also
supports function calls from less abstract layers into more abstract ones, allow-
ing us to simplify the verification of initialization functions as well. To facilitate
such compositional verification, we develop a framework that assists in creation
of verification systems for each layer and refinements between the layers. Using
this framework, we have produced a certification of BabyVMM, a small VMM
designed for simplified hardware. The same proof also shows that a certified ker-
nel using BabyVMM’s virtual memory abstraction can be refined following a
similar sequence of refinements, and can then be safely linked with BabyVMM.
Both the verification framework and the entire certification of BabyVMM have
been mechanized in the Coq Proof Assistant.

1 Introduction

Software systems are complex feats of engineering. What makes them possible is the
ability to isolate and abstract modules of the system. In this paper, we consider an op-
erating system kernel that uses virtual memory. The majority of the kernel makes an
assumption that the memory is a large space with virtual addresses and a specific inter-
face that allows the kernel to request access to any particular page in this large space. In
reality, this entire model of memory is in the imagination of the programmer, supported
by a relatively small but important portion of the kernel called the virtual memory man-
ager. The job of the virtual memory manager is to handle all the complexities of the real
machine architecture to provide the primitives that the rest of the kernel can use. This
is exactly how the programmer would reason about this software system.

However, when we consider verification of such code, current approaches are mostly
monolithic in nature. Abstraction is generally limited to abstract data types, but such
abstraction can not capture changes in the semantics of computation. For example, it
is impossible to use abstract data types to make virtual memory appear to work like
physical memory without changing operational semantics. To create such abstraction, a

195



change of computational model is required. In the Verisoft project[11, 18], the abstract
virtual memory is defined by creating the CVM model from VAMP architecture. In
AIM[7], multiple machines are used to define interrupts in the presence of a scheduler.

These transitions to more abstract models of computation tend to be quite rare,
and when present tend to be complex. The previously mentioned VAMP-CVM jump
in Verisoft abstracts most of kernel functionality in one step. In our opinion, it would
be better to have more abstract computation models, with smaller jumps in abstrac-
tion. First, it is easier to verify code in the most abstract computational model possible.
Second, smaller abstractions tend to be easier to prove and to maintain, while larger
abstractions can be still achieved by composing the smaller ones. Third, more abstrac-
tions means more modularity; changes in the internals of one module will not have
global effects.

However, we do not commonly see Hoare-logic verification that encourages multi-
ple models. The likely reason is that creating abstract models and linking across them
is seen as ad-hoc and tedious additional work. In this paper we show how to reduce
the effort required to define models and linking, so that code verification using multi-
ple abstractions becomes an effective approach. More precisely, our paper makes the
following contributions:

– We present a framework for quickly defining multiple abstract computational mod-
els and their verification systems.

– We show how our framework can be used to define safe cross-abstraction linking.
– We show how to modularize a virtual memory manager and define abstract compu-

tational models for each layer of VMM.
– We show a complete verification of a small proof-of-concept virtual memory man-

ager using the Coq Proof Assistant.

The rest of this paper is organized as follows. In Section 2, we give an informal
overview of our work. In Section 3, we discuss the formal details of our verification
and refinement framework. In Section 4, we specialize the framework for a simple C-
like language. In Section 5, we certify BabyVMM, our small virtual memory manager.
Section 6 discusses the Coq proof, and Section 7 presents related work and concludes.

2 Overview and Plan for Certification

We begin the overview by explaining the design of BabyVMM, our small virtual mem-
ory manager. First, consider the model of memory present in simplified hardware (left
side of Figure 1). The memory is a storage system, which contains cells that can be
read from or written to by the software. These cells are indexed by addresses. However,
to facilitate indirection, the hardware includes a system called address translation (AT),
which, when enabled, will cause all requests for specific addresses from the software
to be translated. The AT system adds special registers to the memory system - one to
enable or disable AT, and the other to point where the software-managed AT tables are
located in memory. The fact that these tables are stored in memory is one of the sources
of complexity in the AT system - updating AT tables requires updating in-memory ta-
bles, a process which goes through AT as well.

196



Fig. 1. Hardware (HW) and Address Space (AS) Models of Memory

Fig. 2. Allocated (ALE) and Page Map (PMAP) Models of Memory

Because AT is such a complicated, machine-dependent, and general mechanism,
BabyVMM creates an abstraction that defines specific restrictions on how AT will be
used, and presents a simpler view of AT to the kernel. Although the abstract models of
memory may differ depending on the features that the kernel may require, BabyVMM
defines a very basic model, to which we refer as the address space (AS) model of mem-
ory (right side of Figure 1). The AS model replaces the small physical memory with
a larger virtual address space with allocatable pages and no address translation. The
space is divided into high and low areas, where the low area is actually a window into
physical memory (a pattern common in many kernels). Because of this distinction, the
memory model has two sets of allocation functions, one for the “high” memory area
where the programmer requests a specific page for allocation, and one for the “low”
memory area, where the programmer can not pick which page to allocate.

However, creating an abstraction that makes the jump from the HW model directly
to AS model is complex. As a result, we create two more intermediate models, which
slowly build up the abstraction. The first model is ALE (left side of Figure 2), which
incorporates allocation information into the hardware memory, requiring that programs
only access memory locations that are marked allocated. The model adds primitives
in the form of mem alloc and mem free, with semantics same as the ones in the AS

197



Fig. 3. Complete Plan for VMM Certification

model. Although this is not shown on the diagram, the ALE model still maintains the
hardware’s AT mechanism.

The second intermediate level, which we call PMAP (right side of Figure 2) is
designed to replace the hardware’s AT mechanism with an abstract one. The model
features a page map that exists outside the normal memory space, unlike the lower level
models. The page map maps virtual page numbers to physical page numbers, with a 0
value meaning invalid. In our particular design, the pagemap is always identity for the
lower addresses, creating a window into physical memory from within the virtual space.
The model still contains allocation primitives, and adds two more primitives, pt set

and pt lookup, which update and lookup values in the pagemap.
Using these abstract memory models, we can construct the BabyVMM verification

plan (Figure 3). The light-yellow boxes in the kernel represent the actual functions
(actual code is given in Appendix A of TR[19]). The darker green boxes represent
computational models with primitives labeled. The diagram shows how each module of
BabyVMM will be certified in the model best suited for it. For example, the high-level
kernel is certified in the AS model, meaning that it does not see underlying physical
memory at all. The implementation of as request and as release are defined over

198



(State) S ∈ Σ

(Operation) ι ∈ ∆

(Cond) b ∈ β

(CondInterp) Υ ∈ β→ Σ→ Prop

(State Predicate) p ∈ Σ→ Prop
(State Relation) g ∈ Σ→ Σ→ Prop

(Operational Semantics) OS ∈ {ι{ (p,g)}∗

(Language / Machine) M ∈ (Σ,∆,β,Υ,OS)

whereM(ι) ,M.OS(ι) andM(b) ,M.Υ(b)

Fig. 4. Abstract State Machine

id , (λS.True, λS.λS′.S′ = S)
fail , (λS.False, λS.λS′.False)
loop , (λS.True, λS.λS′.False)
(p,g)◦ (p′,g′) , (λS.p S∧∀S′.g S S′→ p′ S′, λS.λS′′.∃S′.g S S′∧g′ S′ S′′)
(p,g)⊕

c
(p′,g′) , (λS. (p S∧ c S)∨ (p′ S∧¬c S),λS.λS′. (c S∧g S S′)∨ (¬c S∧g′ S S′))

(p,g) ⊇ (p′,g′) , ∀S.p S→ p′ S∧∀S,S′.g′ S S′→ g S S′

Fig. 5. Combinators and Properties of Actions

(Meta-program) P ::= (C, I)
(Proc) I ::= nil | ι | [l] | I1; I2

| (b? I1+I2)
(Proc Heap) C ::= {l{ I}∗

(Labels) l ::= n (nat numbers)
(Spec Heap) Ψ,L ::= {l{ (p,g)}∗

~C,a�0
M

:= loop
~C,nil�n

M
:= id

~C, ι�n
M

:= (M(ι))
~C, [l]�n

M
:= ~C,C(l)�n−1

M�
C, I; I′

�n
M

:= ~C, I�n
M
◦~C, I�n

M

~C, (b? I1+I2)�n
M

:= ~C, I1�nM ⊕
M(b)
~C, I2�

n
M

Fig. 6. Syntax and Semantics of the Meta-Language

an abstract page map, and thus do not have to know how the hardware deals with page
tables, and so on. The plan also indicates which primitives are implemented by which
code (lines with circles). When we certify the code, these will be the cross-abstraction
links we will have to prove. Lastly, the plan also indicates the stubs in the initialization,
which are needed to certify calls from init to functions defined over higher abstraction.
The PE and PD models are restrictions on HW model, where AT is always on, and
always off respectively. ALD is an analogue of ALE, where AT is off.

On boot, the AT is off, and init is called. The init then calls mem init to initialize
the allocation table and pt init to initialize the page tables. Then, init uses the HW
primitives to enable AT, and jumps into the high-level kernel by calling kernel init.

We will now focus on the technical details to put this plan in action.

3 Certifying with Refinement

Our framework for multi-machine certification is defined in two parts. First, we create
a machine-independent verification framework that will allow us to define quickly and
easily as many machines for verification as we need. Second, we will develop our notion
of refinements which will allow us to link all the separate machines together.

199



∀l ∈ dom(C).M,Ψ ∪L ` C(l) : Ψ (l)
M,L ` C : Ψ

(code)
M,Ψ ` I : (p′,g′) (p,g) ⊇ (p′,g′)

M,Ψ ` I : (p,g)
(weak)

M,Ψ ` I′ : (p′,g′) M,Ψ ` I′′ : (p′′,g′′)
M,Ψ `

(
b? I′+I′′

)
: (p′,g′) ⊕

M(b)
(p′′,g′′)

(split) M,Ψ ` I′ : (p′,g′) M,Ψ ` I′′ : (p′′,g′′)
M,Ψ ` I′; I′′ : ((p′,g′)◦ (p′′,g′′))

(seq)

M,Ψ ` ι :M(ι)
(perf)

M,Ψ ` [l] : Ψ (l)
(call)

M,Ψ ` nil : id
(nil)

Fig. 7. Static Semantics of the Meta-Language

3.1 A Machine-Independent Certification Framework

Our Hoare-logic based framework is parametric over the definition of operational se-
mantics of the machine, and is sound no matter what machine semantics it is param-
eterized with. To begin defining such a framework, we first need to understand what
exactly is a machine on which we can certify code. The definition that we use is given
in Figure 4. Our notion of the machine consists of the following parts:

– State type (Σ). Define the set of all possible states in a machine.
– Operations (∆). This is a set of names of all operations that the machine supports.

The set can be infinite, and defined parametrically.
– Conditionals (β). Defines a type of expressions that are used for branching.
– Conditional Interpreter (Υ). Converts conditionals into state predicates.
– The operational semantics OS. This is the main portion of the machine definition. It

is a set of actions (p,g) named by all operations in the machine.

The most important bit of information in the machine are the semantics (OS). The
semantics of operations are defined by a precondition (p), which shows when the op-
eration is safe to execute, and by a state relation (g) that defines the set of possible
states that the operation may result in. We will refer to the pair of (p,g) as an action
of the operation. Later we will also use actions to define the specification of programs.
Because the type of actions is somewhat complex, we define action combinators in Fig-
ure 5, including composition and branching. The same figure also shows the weaker
than relation between actions.

Although, at this point we have defined our machines, it does not have any notion of
computation. To make use of the machine, we will need to define a concept of programs,
as well as what it means for the particular program to execute.

The definition of the program is given in Figure 6. The most important definition
in that figure is that of the procedure, I. The procedure is a bit of program logic that
sequences together calls to the operations of a machine (ι), or to other procedures [l]
(loops are implemented as recursive calls). Procedures also include a way to branch on
a condition. The procedures can be given a name, and placed in the procedure heap C,
where they can be referenced from other procedures through the [l] constructor. The
procedure heap together with a program rest (the currently executing procedure) makes
up the program that can be executed.

The meaning of executing a program is given by the indexed denotational semantics
shown on the right side of Figure 6. The meaning of the program is an action that is

200



constructed by sequencing operations. As programs can be infinite, the semantics are
indexed by the depth of procedure inclusion.

We use the static semantics (Figure 7) to approximate the action of a procedure.
These semantics are similar to the denotational semantics of the meta-language, except
that the specifications of called procedure are looked up in the table (Ψ ). This means
that the static semantics works by the programmer approximating the actions of (speci-
fying) the program, and then making sure that the actual action of the program is within
the specifications. These well-formed procedures are then grouped into a well-formed
module using the code rule, which forms the concept of a certified moduleM,L`C :Ψ ,
where every procedure in C is well-formed under specification in Ψ . The module also
defines a library (L) which is a set of specifications of stubs, i.e. procedures that are
used by the module, but are not in the module. These stubs can then be eliminated
by providing procedures that match the stubs (see Section 3.2). For a program to be
completely certified, all stubs must either be considered valid primitives or eliminated.

For a proof of partial correctness, please see the TR.

3.2 Linking

When we certify using modules, it will be very common that the module will require
stubs for the procedures of another module. Linking two modules together should re-
place the stubs in both modules for the actual procedures that are now present in the
linked code. The general way to accomplish this is by the following linking lemma:

Theorem 1 (Linking).

M,L1 ` C1 :Ψ1 M,L2 ` C2 :Ψ2 C1 ⊥ C2 L1 ⊥ Ψ2 L2 ⊥ Ψ1 L1 ⊥ L2

M, ((L1∪L2) \ (Ψ1∪Ψ2)) ` C1∪C2 :Ψ1∪Ψ2
(link)

where Ψ1 ⊥ Ψ2 , ∀l ∈ dom(Ψ1). (l < dom(Ψ2) ∨ Ψ1(l) = Ψ2(l)).

However, the above rule does not always apply immediately. When the two modules
are developed independently, it is possible that the stubs of one module are weaker than
the specifications of the procedures that will replace the stubs, which breaks the linking
lemma. To fix this, we strengthen the library.

Theorem 2 (Stub Strengthening).
IfM,L ` C : Ψ , then for any L′ s.t. ∀l ∈ dom(L).L(l) ⊇ L′(l) and dom(L′)∩ dom(Ψ ) = ∅, the
following holds:M,L′ ` C : Ψ .

This theorem allows us to strengthen the stubs to match the specs of procedures, en-
abling the linking lemma. Of course, if the specs of the real procedures are not stronger
than the specs of the stubs, then the procedures do not correctly implement what the
module expects, and linking is not possible.

3.3 The Refinement Framework

Up to this point, we have only considered what happens to the code that is certified over
a single machine. However, the purpose of our framework is to facilitate multi-machine

201



verification. For this purpose, we construct the refinement framework that will allow
us to refine certified modules in one machine to certified modules in another. The most
general notion of refinement in our framework can be defined by the following:

Definition 1 (Certified Refinement).
A certified refinement from machine MA to machine MC is a pair of relations (TC,TΨ ) and a
predicate over the abstract certified module Acc, such that for all CA,Ψ

′
A,ΨA, the following holds

MA,Ψ
′
A ` CA :ΨA Acc

(
MA,Ψ

′
A ` CA :ΨA

)
MC ,TΨ (Ψ ′A) ` TC(CA) :TΨ (ΨA)

refine

This definition is not a rule, but a template for other definitions. To define a refine-
ment, one has to provide the particular TC, TΨ , Acc together with the proof that the rule
holds. However, instead of trying to define these translations directly, we will automat-
ically generate them from the relations between the particular pairs of machines.

Representation Refinement The only automatic refinement we will discuss in this
paper is the representation refinement. The representation refinement can be generated
for an abstract (MA) and a concrete machine (MC), where both use the same operations
and condtionals (e.g.MA.∆ =MC .∆ andMA.β =MC .β) by defining a relation (repr :
MA.Σ →MC .Σ → Prop) between the states of the two machines. Using repr, we can
define our specification translation function:

TA−C(p,g) ,
(λSC .∃SA.repr SA SC ∧p SA,

λSC .λS
′
C .∀SA.repr SA SC →∀S

′
A.g SA S

′
A→ repr S′A S

′
C)

This operation creates an concrete action from an abstract action. Informally it
works as follows. There must be at least one abstract state related to the starting con-
crete state for which the abstract action applies. The action starting from state SC results
in set containing S′C , only if for all related abstract states for which the abstract action
is valid result in sets of abstract states that contain a state related to S′C . Essentially, the
resulting concrete action is an intersection of all abstract actions that do not fail.

To make this approach work, we require several properties over the machines and
the repr. First, the refined semantics of abstraction operations have to be weaker than
the semantics of their concrete counterparts, e.g. ∀ιA ∈MA.TA−C(MA(ιA)) ⊇MC(ιA).

Second, the refinement must preserve the branch choice, e.g. if the refined program
chooses left branch, then abstract program had to choose the left branch in all states
related by repr as well. This property is ensured by requiring the following:

∀b.∀S,S′.
(
∃SC .repr(S,SC)∧repr(S′,SC)

)
→

(
M(b) S↔M(b) S′

)
With these properties, we can define a valid refinement by the following lemma:

Lemma 1 (repr-refinement valid).
Given repr with proofs of the two properties above, the following is valid:

MA,LA ` C : ΨA

MC ,TΨ (LA) ` C : TΨ (ΨA)

where TΨ (Ψ ) := {TA−C(Ψ (l)) | l ∈ dom(Ψ ))

202



This refinement is interesting in that it preserves the code of the program, and per-
forming point-wise refinement on specifications. Our actual work defines several other
refinement generators. One of these, code-preserving refinement, is included in the TR,
and is used as a stepping stone for proof of Lemma 1. Coq implementation features
more general versions of refinements presented, as well as several others.

4 Certifying C Code

Since BabyVMM is written in C, we define a formal specification of a tiny subset of
the C language using our framework. This C machine will be parameterized by the
specific semantics of the memory model, as our plan required. We will also utilize the
C machine to further speed up the creation of refinements.

4.1 The Semantics of C

To define our C machine in terms of our verification framework, we need to give it
a state type, a list of operations, and the semantics of those operations expressed as
actions. All of these are given in Figure 8.

The state of the C machine includes two components, the stack and the memory.
The stack is an abstract C stack that consists of a list of frames, which include call,
data, and return frames. In the current version, the stack is independent from memory
(one can think of it existing within a statically defined part of the loaded kernel). The
memory model is a parameter in the C machine, meaning that it can make use of any
memory model as long as it defines load and store operations. The syntax of the C
machine is different from the usual definition, in that it relies on the meta-machine for
its control flow by using the meta-machines call and branch. Our definition of C adds
atomic operations that perform state updates. Thus the operations include two types
assignments - one to stack and one to memory, and 4 operations to manipulate stack for
call and return, which push and pop the frames.

Because control flow is provided by a standard machine, the code has to be modi-
fied slightly. For example, a function call of the form r = f (x) will split into a sequence
of three operations: f call([x]); [ f ];readret([r]), the first setting up a call frame, the
second making the call, and the third doing the cleanup. Similarly, the body of the func-
tion f (x){body;return(0); }will become args([x]);body;ret(0), as the function must first
move the arguments from the call frame into a data frame. Loops have to be desugared
into recursive procedures with branches. These modifications are entirely mechanical,
and hence we can claim that our machine supports desugared linearized C code.

4.2 Refinement in C machines

C machines at different abstraction layers differ only in their memory models, with
the stack being the same. We can use this fact to generate refinements between the C
machines using only the representation relation between memory models. This relation
(M1 � M2) can be completely arbitrary as long as these conditions hold:

∀l,v. load(M1, l) = v→ load(M2, l) = v
∀l,v,M′1.

(
M′1 = (store(M1, l,v))

)
→

(
M′1 � (store(M2, l,v))

)

203



(State) S ::= (M,S)
(Memory) M ::= (any type over which load(M,l) and store(M,l,w) are defined)

(Stack) S ::= nil | Call(list w) :: S | Data({v{ w} :: S) | Ret(w) :: S
(Expressions) e ::= se | ∗(e)

(StackExpr, Cond) se,b ::= w | v | binop(bop,e1,e2)
(Binary Operators) bop ::= + | − | ∗ | / | % | == | < | <= | >= | > | ! = | && | ||

(Variables) v ::= (a decidable set of names)
(Words) w ::= n (integers)

(Operation) ι ::= v := e | ∗(eloc) := e | fcall(list e) | ret(e) | args(list v) | readret(v)

Operation (ι) = Action (M(ι)) =

v := e

(λS.∃S′,F,w.S.S = Data(F) :: S′∧ eval(e,S) = w,
λS,S′.∃S′,F,w.S.S = Data(F) :: S′∧ eval(e,S) = w∧

S′.M = S.M∧S′.S = Data(F{v{ w}) :: S′)

∗(eloc) := e

(λS.∃l,w.eval(e,S) = w∧ eval(eloc,S) = l∧∃M′.M′ = store(M, l,w),
λS,S′.∃l,w.eval(e,S) = w∧ eval(eloc,S) = l∧

S′.M = store(S.M, l,w)∧S′.S = S.S)

fcall([e1, . . . ,en])
(λS.∃v1, . . . ,vn.eval(e1,S) = v1∧ . . .∧ eval(en,S) = vn,

λS,S′.∃v1, . . . ,vn.eval(e1,S) = v1∧ . . .∧ eval(en,S) = vn∧

S′.M = S.M∧S′.S = Call([v1, . . . ,vn]) :: S.S)

args([v1, . . . ,vn])
(λS.∃w1, . . . ,wn,S′.S.S = Call([w1, . . . ,wn]) :: S′,
λS,S′.∃w1, . . . ,wn,S′.S.S = Call([w1, . . . ,wn]) :: S′∧
S′.M = S.M∧S′.S = Data({v1{ w1, . . . ,vn{ wn}) :: S′)

readret(v)
(λS.∃S′,w.S.S = Ret(w) :: Data(D) :: S′,
λS,S′.∃S′,w.S.S = Ret(w) :: Data(D) :: S′∧

S′.M = S.M∧S′.S = Data(D{v{ w}) :: S′)
ret(e) (λS.∃w.eval(e,S) = w, λS,S′.S′.M = S.M∧S′.S = Ret(eval(e,S)) :: S.S)

eval(e,S) ::=


w if e = w
S.S(v) if e = v

load(S.M,eval(e1,S)) if e = (∗e1)
b(eval(e1,S),eval(e2,S)) if e = binop(b,e1,e2)

Υ(b) ::= λS.eval(b,S) , 0

Fig. 8. Primitive C-like machine

The above properties make sure that the load and store operations of memory behave
in a similar way. We construct the repr between C machine as follows:

repr := λSA,SC . (SA.S = SC .S) ∧ (SA.M � SC .M)

Using the properties of load and store, we show properties needed for repr-refinement
to work: that for every operation ι in the C machine TM1−M2(MM1(ι)) ⊇MM2(ι), and
that repr preserves branching. For details, please see the TR. Now we can define the
actual refinement rule for C machines:

Corollary 1 (C Refinement).
For any two memory models M1 and M2, s.t. M1 � M2, the following refinement works for C

204



Definition Value Description
PGSIZE 4096 Number of bytes per page
NPAGES unspecified Number of phys. pages in memory
VPAGES unspecified Maximum page number of a virtual address
Pg(addr) addr/PGSIZE gets page of address
Off(addr) addr%PGSIZE offset into page of address
LowPg(pg) 0 ≤ pg < NPAGES valid page in low memory area
HighPg(pg) NPAGES ≤ pg < VPAGES valid page in high memory area

Fig. 9. Page Definitions

machines instantiated with M1 and M2.

MM1,L ` C : Ψ
MM2,TM1−M2(L) ` C : TM1−M2(Ψ ) M1−M2

Thus we know that if we have two C-machines that have related memory models,
then we have a working refinement between the two machines. Our next step is the to
show the relations between all the memory models shown in our plan (in Figure 3).

5 Virtual Memory Manager

At this point, we have all the machinery necessary to start building our certified memory
manager according to the plan. The first step is to formally define and give relations
between the memory models that we will use in our certification. Then we will certify
the code of the modules that make up the VMM. These modules will then be refined
and linked together, resulting in the conclusion that the entire BabyVMM is certified.

5.1 The Memory Models

Because of the space limit, we will only formally present the PMAP memory model
(Figures 9 and 10). For the definitions of others, please see the TR.

The state of the PMAP memory has three components, the actual memory store D,
the allocation table A, and the first-class pagemap PM. The memory store contains the
actual data in memory, indexed by physical addresses. The allocation table A, keeps
track of which pages are allocated and which are not. This allocation information is
abstract - it does not have to correspond to the actual allocation table used within the
VMM. For example, the hardware page tables, which this model abstracts, are still in
memory, but are hidden by the allocation table. The page map is the abstract mapping
of virtual pages to physical pages, which purposefully skips all addresses mappable to
physical memory. This mapping is used in loads and stores of the memory model, which
use the trans predicate to translate addresses by looking up mappings in the PM.

The PMAP model relies on the stub library (LPMAP) for updating auxiliary data
structures. There are two stubs for memory allocation, mem alloc and mem free. Their
specs show how they modify the allocation table, and how allocating a page is non-
deterministic and may potentially return any free page. The other two stubs, pt set

and pt lookup update and look up page map entries; their specs are straightforward.

205



(Global Storage System) M ::= (D,A,PM)
(Allocatable Memory) D ::= {addr{ w | LowPg(Pg(addr))∧addr%8 = 0}∗

(Page Allocation Table) A ::= {pg{ bool | LowPg(pg)}∗

(Page Map) PM ::= {pg{ pg′ | HighPg(pg)}∗

Notation Definition
load(M,va) M.D(trans(M,va)) if M.A(Pg(trans(M,va))) = true
store(M,va,w) (M.D{trans(M,va){ w},M.A,M.PM) if M.A(Pg(trans(M,va))) = true

trans(M,va) :=

M.PM(Pg(va))∗PGSIZE+ Off(va) if HighPg(Pg(va))
va otherwise

Label Specification

mem alloc

(λS.∃S′.S.S = Call([]) :: S′,
λS,S′.∃S′.

(
S.S = Call([]) :: S′

)
∧ ((S′.S = Ret(0) :: S′∧S′.M = S.M)∨

(∃pg.S′.S = Ret(pg) :: S′∧S′.M.A = S.M.A{pg{ true}∧S′.M.PM = S.M.PM∧
∧S.M.A(pg) = f alse∧∀l.S.M.A(Pg(l)) = true→ (S′.M.D(l) = S.M.D(l))))

mem free
(λS.∃S′, pg.S.S = Call([pg]) :: S′∧S.M.A(pg) = true,
λS,S′.∃S′, pg.S.S = Call([pg]) :: S′∧S′.S = Ret(0) :: S′∧S′.M.PM = S.M.PM∧
S′.M.A = S.M.A{pg{ f alse}∧∀l.S′.M.A(Pg(l)) = true→ S′.M.D(l) = S.M.D(l))

pt set
(λS. .∃S′,vp, pp.S.S = Call([vp, pp]) :: S′∧HighPg(vp)∧LowPg(pp)
λS,S′.∃S′,vp, pp.S.S = Call([vp, pp]) :: S′∧S′.S = Ret(0) :: S′∧S′.M.A = S.M.A∧
S′.M.PM = S.M.PM{vp{ pp}∧∀l.S′.M.A(Pg(l)) = true→ S′.M.D(l) = S.M.D(l))

pt lookup
(λS.∃S′,vp.S.S = Call([vp]) :: S′∧HighPg(vp),
λS,S′.∃S′,vp.S.S = Call([vp]) :: S′∧S′.S = Ret(S.M.PM(vp)) :: S′∧S′.M = S.M)

Fig. 10. PMAP Memory Model (MPMAP) and Library (LPMAP)

5.2 Relation between Memory Models

Our plan calls for creation of the refinements between the memory models. In Sec-
tion 4.2, we have shown that we can generate a valid refinement by creating a relation
between the memory states, and then showing that abstract loads and stores are pre-
served by this relation. These relations and proofs of preserving the memory operations
are fairly lengthy and quite technical, and thus we leave the mathematical detail to our
Coq implementation, opting for a visual description shown in Figure 11.

On the right is a state of the hardware memory, whose operational semantics gives
little protection from accessing data. Some areas of memory are dangerous, some are
empty, others contain data, including the allocation tables and page tables. This memory
relates to the ALE memory model by abstracting out the memory allocation table. This
allocation table now offers protection for accessing both the unallocated space, and the
space that seems unallocated, but dangerous to use (marked by wavy lines). An example
of such area is the allocation table itself - the ALE model hides the table, making it
appear to be unusable. The ALE mem alloc primitive will never allocate pages from
these wavy areas, protecting them without complicating the memory model.

The relation between the PMAP and ALE models shows that the abstract pagemap
of PMAP model is actually contained within the specific area of the ALE model. The
relation makes sure that the mappings contained in the PMAP’s pagemap are the same
as the translation results of the ALE’s page table structures. To protect the in memory

206



Fig. 11. Relation between Memory Models

page tables, the relation hides the page table memory area from the PMAP model, using
the same trick as the one used to protect the allocation tables in the ALE model.

The relation between the AS and PMAP models collapses PMAP’s memory and the
page maps into a single memory like structure in the AS model. This is mostly accom-
plished by chaining the translation mechanism with the storage mechanism. However,
to make this work, it is imperative that the relation ensures that no two pages of the
AS model ever map to the same physical page in the PMAP model. This means that
all physical pages that are mapped from the high-addresses become hidden in the AS
model. We will not go into detail about the preservation of load and stores, as these
proofs are mostly straightforward, given the relations.

5.3 Certification and Linking of BabyVMM

We have verified all the functions of the virtual memory on the appropriate memory
models. This means that we have defined appropriate specifications for our functions,
and certified our code. We also make an assumption that a kernel is certified in the AS
model. The result is the following certified modules:

MPE ,LPE ` C
mem : Ψmem

PE MALE ,LPMAP ` C
as : Ψas

PMAP MPD,LPD ` C
meminit : Ψmeminit

PD

MALE ,LALE ` C
pt : Ψ pt

ALE MAS ,LAS ` C
kernel : Ψ kernel

AS MALD,LALD ` C
ptinit : Ψ ptinit

ALD

However, the init function makes calls to other procedures that are certified in
more abstract machines. Thus to certify init over theMHW machine, we will need to

207



create stubs for these procedures, which have to be carefully crafted to be valid for the
refined specifications of the actual procedures. Thus, the specification of init results
in the following:

MHW ,LHW ∪
{
kernel init{ akernel−init

HW , mem init{ ameminit
HW , pt init{ a

ptinit
HW

}
` Cinit : Ψ init

HW

With all the modules verified, we proceed to link them together. The first step is to
refine the kernel. We use our AS-PMAP refinement rule to get the refined module:

MPMAP,TAS−PMAP(LAS ) ` Ckernel : TAS−PMAP(Ψ kernel
AS )

Then we show that the specs of functions and the primitives of the PMAP machine are
proper implementation of the refined specs of LAS , more formally, TAS−PMAP(LAS ) ⊇
LPMAP ∪Ψ

as
PMAP. Using library strengthening and the linking lemma, we produce a cer-

tified module that is the union of the refined kernel and address space library:

MPMAP,LPMAP ` C
kernel∪Cas : TAS−PMAP(Ψ kernel

AS )∪Ψas
PMAP

Applying this process to all the modules over all refinements, we link all parts of the
code, except init certified overMHW . For readability, we hide chains of refinements.
For example, TAS−HW is actually TAS−PMAP ◦TPMAP−ALE ◦TALE−PE ◦TPE−HW .

MHW ,LHW ` C
kernel∪Cas∪Cpt ∪Cmem∪Cmeminit ∪Cptinit :

TAS−HW (Ψ kernel
AS ) ∪ TPMAP−HW (Ψas

PMAP) ∪ TALE−HW (Ψ pt
ALE) ∪

TPE−HW (Ψmem
PE ) ∪ TPD−HW (Ψmeminit

PD ) ∪ TALD−HW (Ψ ptinit
ALD )

To get the initialization to link with the refined module, we must make sure that the
stubs that we have developed for init are compatible with the refined specifications of
the actual functions. This means that we prove the following:

akernel−init
HW ⊇ TAS−HW (Ψ kernel

AS )(kernel-init)

ameminit
HW ⊇ TPD−HW (Ψmeminit

PD )(mem-init) a
ptinit
HW ⊇ TALD−HW (Ψ ptinit

ALD )(pt-init)

Using these properties, we apply stub strengthening to the init module:

MHW ,LHW ∪TAS−HW (Ψ kernel
AS ) ∪TPD−HW (Ψmeminit

PD ) ∪TALD−HW (Ψ ptinit
ALD ) ` Cinit : Ψ init

HW

This certification is now linkable to the rest of the VMM and kernel, to produce the
final result that we need:

MHW ,LHW ` C
kernel∪Cas∪Cpt ∪Cmem∪Cmeminit ∪Cptinit ∪Cinit :

TAS−HW (Ψ kernel
AS ) ∪ TPMAP−HW (Ψas

PMAP) ∪ TALE−HW (Ψ pt
ALE) ∪

TPE−HW (Ψmem
PE ) ∪ TPD−HW (Ψmeminit

PD ) ∪ TALD−HW (Ψ ptinit
ALD ) ∪ Ψ init

HW

This result means that given a certified kernel in the AS model, we can refine it to
the HW model of memory by linking it with VMM implementation. Furthermore, it is
safe to start this kernel by calling the init function, which will perform the setup, and
then call the kernel-init function, the entry point of the high-level kernel.

208



6 Coq Implementation

All portions of this system have been implemented in the Coq Proof Assistant[5]. The
portions of the implementation directly related to the BabyVMM verification, including
C machines, refinements, specs, and related proofs (excluding frameworks) took about
3 person-months to verify. The approximate line counts for unoptimized proof are:

– Verification and refinement framework - 3000 lines
– Memory models - 200-400 lines each
– repr and compatibility between models - 200-400 lines each
– Compatibility of stubs and implementation - 200-400 lines per procedure
– Code verification - less than 200 lines per procedure (half of it boilerplate).

7 Related Work and Conclusion

The work presented here is a continuation of the work on Hoare-logic frameworks for
verification of system software. The verification framework evolved from SCAP[8] and
GCAP[3]. Although our framework does not mention separation logic[17], information
hiding[16], and local action[4] explicitly, these methods had great influence on the de-
sign of the meta-language and the refinements. The definition of repr generalizes the
work on certified garbage collector[15] to fit our concept of refinement. The project’s
motivation is the modular and reusable certification of the CertiKOS kernel[10].

The well-known work in OS verification is L4.verified[12, 6], which has shown a
complete verification of an OS kernel. Their methodology is different, but they have
considered verification of virtual memory[13, 14]. However, their current kernel verifi-
cation does not abstract virtual memory, maintaining only the invariant that allows the
kernel to function, and leaving the details to the user level.

The Verisoft project [9, 2, 1, 11, 18] is the work that is closest to ours. We both aim
for pervasive verification of OS by doing foundational verification of all components.
Both works utilize multiple machines, and require linking. As both projects aim for
certification of a kernel, both have to handle virtual memory. Although Verisoft uses
multiple machine models, they use them sparingly. For example, the entire microkernel,
excluding assembly code, is specified in a single layer, with correctness shown as a
single simulation theorem between the concurrent user thread model (CVM) and the
instruction set. The authors mention that the proof of correctness is a more complex
part of Verisoft. Such monolithic approach is susceptible to local modifications, where
a small change in one part of microkernel may require changes to the entire proof.

Our method for verification defines many more layers, with smaller refinement
proofs between them, and composes them to produce larger abstractions, ensuring that
the verification is more reusable and modular. Our new framework enables us to create
abstraction layers with less overhead, reducing the biggest obstacle to our approach. We
have demonstrated the practicality of our approach by certifying BabyVMM, a small
virtual memory manager running on simplified hardware, using a new layer for every
non-trivial abstraction we could find.

209



Acknowledgements. We thank anonymous referees for suggestions and comments on an
earlier version of this paper. This research is based on work supported in part by DARPA
grants FA8750-10-2-0254 and FA8750-12-2-0293, ONR grant N000141210478, and
NSF grants 0910670 and 1065451. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding any copyright notation
thereon. Any opinions, findings, and conclusions contained in this document are those
of the authors and do not reflect the views of these agencies.

References
1. E. Alkassar, M. A. Hillebrand, D. C. Leinenbach, N. W. Schirmer, A. Starostin, and A. Tsy-

ban. Balancing the load: Leveraging a semantics stack for systems verification. Journal of
Automated Reasoning: OS Verification, 42:389–454, 2009.

2. E. Alkassar, N. Schirmer, and A. Starostin. Formal pervasive verification of a paging mech-
anism. Proc. TACAS’08, pages 109–123, 2008.

3. H. Cai, Z. Shao, and A. Vaynberg. Certified self-modifying code. In Proc. PLDI’07, pages
66–77, New York, NY, USA, 2007. ACM.

4. C. Calcagno, P. O’Hearn, and H. Yang. Local action and abstract separation logic. In Proc.
LICS’07, pages 366–378, July 2007.

5. Coq Development Team. The Coq proof assistant reference manual. The Coq release v8.0,
Oct. 2005.

6. K. Elphinstone, G. Klein, P. Derrin, T. Roscoe, and G. Heiser. Towards a practical, verified
kernel. In Proc. HoTOS’07, San Diego, CA, USA, May 2007.

7. X. Feng, Z. Shao, Y. Dong, and Y. Guo. Certifying low-level programs with hardware inter-
rupts and preemptive threads. In Proc. PLDI’08, pages 170–182. ACM, 2008.

8. X. Feng, Z. Shao, A. Vaynberg, S. Xiang, and Z. Ni. Modular verification of assembly code
with stack-based control abstractions. In PLDI’06, pages 401–414, June 2006.

9. M. Gargano, M. A. Hillebrand, D. Leinenbach, and W. J. Paul. On the correctness of operat-
ing system kernels. In TPHOLs’05, 2005.

10. L. Gu, A. Vaynberg, B. Ford, Z. Shao, and D. Costanzo. Certikos: A certified kernel for
secure cloud computing. In Proc. APSys’11. ACM, 2011.

11. T. In der Rieden. Verified Linking for Modular Kernel Verification. PhD thesis, Saarland
University, Computer Science Department, Nov. 2009.

12. G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe, K. En-
gelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4: formal veri-
fication of an OS kernel. In Proc. SOSP’09, pages 207–220, 2009.

13. G. Klein and H. Tuch. Towards verified virtual memory in l4. In TPHOLs Emerging Trends
’04, Park City, Utah, USA, Sept. 2004.

14. R. Kolanski and G. Klein. Mapped separation logic. In Proc. VSTTE’08, pages 15–29, 2008.
15. A. McCreight, Z. Shao, C. Lin, and L. Li. A general framework for certifying garbage

collectors and their mutators. In Proc. PLDI’07, pages 468–479, 2007.
16. P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and information hiding. In POPL’04,

pages 268–280, Jan. 2004.
17. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In Proc.

LICS’02, pages 55–74, July 2002.
18. A. Starostin. Formal Verification of Demand Paging. PhD thesis, Saarland University, Com-

puter Science Department, Mar. 2010.
19. A. Vaynberg and Z. Shao. Compositional verification of BabyVMM (extended version

and Coq proof). Technical Report YALEU/DCS/TR-1463, Yale University, Oct. 2012.
http://flint.cs.yale.edu/publications/babyvmm.html.

210



Quantitative Reasoning for Proving Lock-Freedom
Jan Hoffmann
Yale University

Michael Marmar
Yale University

Zhong Shao
Yale University

Abstract—This article describes a novel quantitative proof
technique for the modular and local verification of lock-freedom.
In contrast to proofs based on temporal rely-guarantee require-
ments, this new quantitative reasoning method can be directly
integrated in modern program logics that are designed for the
verification of safety properties. Using a single formalism for
verifying memory safety and lock-freedom allows a combined
correctness proof that verifies both properties simultaneously.

This article presents one possible formalization of this quan-
titative proof technique by developing a variant of concurrent
separation logic (CSL) for total correctness. To enable quantita-
tive reasoning, CSL is extended with a predicate for affine tokens
to account for, and provide an upper bound on the number of
loop iterations in a program. Lock-freedom is then reduced to
total-correctness proofs. Quantitative reasoning is demonstrated
in detail, both informally and formally, by verifying the lock-
freedom of Treiber’s non-blocking stack. Furthermore, it is shown
how the technique is used to verify the lock-freedom of more
advanced shared-memory data structures that use elimination-
backoff schemes and hazard-pointers.

I. INTRODUCTION
The efficient use of multicore and multiprocessor systems

requires high performance shared-memory data structures.
Performance issues with traditional lock-based synchronization
has generated increasing interest in non-blocking shared-
memory data structures. In many scenarios, non-blocking data
structures outperform their lock-based counterparts [1], [2].
However, their optimistic approach to concurrency complicates
reasoning about their correctness.

A non-blocking data structure should guarantee that any
sequence of concurrent operations that modify or access the
data structure do so in a consistent way. Such a guarantee is a
safety property which is implied by linearizability [3]. Addi-
tionally, a non-blocking data structure should guarantee certain
liveness properties, which ensure that desired events eventually
occur when the program is executed, independent of thread
contention or the whims of the scheduler. These properties are
ensured by progress conditions such as obstruction-freedom,
lock-freedom, and wait-freedom [4], [5] (see §II). In general,
it is easier to implement the data structure efficiently if the
progress guarantees it makes are weaker. Lock-freedom has
proven to be a sweet spot that provides a strong progress
guarantee and allows for elegant and efficient implementations
in practice [6], [7], [8], [9].

The formal verification of practical lock-free data structures
is an interesting problem because of their relevance and the
challenges they bear for current verification techniques: They
employ fine-grained concurrency, shared-memory pointer-based
data structures, pointer manipulation, and control flow that
depends on shared state.

Classically, verification of lock-freedom is reduced to model-
checking liveness properties on whole-program execution
traces [10], [11], [12]. Recently, Gotsman et al. [13] have
argued that lock-freedom can be reduced to modular, thread-
local termination proofs of concurrent programs in which
each thread only executes a single data-structure operation.
Termination is then proven using a combination of concurrent
separation logic (CSL) [14] and temporal trace-based rely-
guarantee reasoning. In this way, proving lock-freedom is
reduced to a finite number of termination proofs which can be
automatically found. However, as we show in §II, this method
is not intended to be applied to some lock-free data structures
that are used in practice.

These temporal-logic based proofs of lock-freedom are quite
different from informal lock-freedom proofs of shared data
structures in the systems literature (e.g., [7], [9]). The informal
argument is that the failure to make progress by a thread is
always caused by successful progress in an operation executed
by another thread. In this article, we show that this intuitive
reasoning can be turned into a formal proof of lock-freedom.
To this end, we introduce a quantitative compensation scheme
in which a thread that successfully makes progress in an
operation has to logically provide resources to other threads
to compensate for possible interference it may have caused.
Proving that all operations of a data structure adhere to such
a compensation scheme is a safety property which can be
formalized using minor extensions of modern program logics
for fine-grained concurrent programs [14], [15], [16], [17].

We formalize one such extension in this article using
CSL. We chose CSL because it has a relatively simple meta-
theory and can elegantly deal with many challenges arising in
the verification of concurrent, pointer-manipulating programs.
Parkinson et al. [18] have shown that CSL can be used to
derive modular and local safety proofs of non-blocking data
structures. The key to these proofs is the identification of a
global resource invariant on the shared-data structure that is
maintained by each atomic command. However, this technique
only applies to safety properties and the authors state that they
are “investigating adding liveness rules to separation logic to
capture properties such as obstruction/lock/wait-freedom”.

We show that it is not necessary to add “liveness rules” to
CSL to verify lock-freedom. As in Atkey’s separation logic for
quantitative reasoning [19] we extend CSL with a predicate
for affine tokens to account for, and provide an upper bound
on the number of loop iterations in a program. In this way,
we obtain the first separation logic for total correctness of
concurrent programs.

211



Strengthening the result of Gotsman et al. [13], we first
show that lock-freedom can be reduced to the total correctness
of concurrent programs in which each thread executes a finite
number of data-structure operations. We then prove the total
correctness of these programs using our new quantitative
reasoning technique and a quantitative resource invariant in
the sense of CSL. Thus the proof of the liveness property of
being lock-free is reduced to the proof of a stronger safety
property. The resulting proofs are simple extensions of memory-
safety proofs in CSL and only use standard techniques such
as auxiliary variables [20] and read permissions [21].

We demonstrate the practicality of our compensation-based
quantitative method by verifying the lock-freedom of Treiber’s
non-blocking stack (§VI). We further show that the technique
applies to many lock-free data structures by discussing the
verification of more complex shared-memory data structures
such as Michael and Scott’s non-blocking queue [7], Hendler
et al.’s non-blocking stack with elimination backoff [9], and
Michael’s non-blocking hazard-pointer data structures [8]
(§VII).

Our method is a clean and intuitive modular verification
technique that works correctly for shared-memory data struc-
tures that have access to thread IDs or the total number of
threads in the system (see §II for details). It can not only be
applied to verify total correctness but also to directly prove
liveness properties or to verify termination-sensitive contextual
refinement. Automation of proofs in concurrent separation logic
is an orthogonal issue which is out of the scope of this paper.
It would require the automatic generation of loop invariants
and resource invariants. Assuming that they are in place, the
automation of the proofs can rely on backward reasoning and
linear programming as described by Atkey [19].

In summary, we make the following contributions.
1) We introduce a new compensation-based quantitative

reasoning technique for proving lock-freedom of non-
blocking data structures. (§III and §V)

2) We formalize our technique using an novel extension of
CSL for total correctness and prove the soundness of
this logic. (§IV, §V, and §VI)

3) We demonstrate the effectiveness of our approach by
verifying the lock-freedom of Treiber’s non-blocking
stack (§VI), Michael and Scott’s lock-free queue, Hendler
et al.’s lock-free stack with elimination backoff, and
Michael’s lock-free hazard-pointer stack.

In §VII, we discuss how quantitative reasoning can verify
the lock-freedom of data structures such as maps and sets,
that contain loops that depend on the size of data structures.
Finally, in §IX, we discuss other possible applications of
quantitative reasoning for proving liveness properties including
wait-freedom and starvation-freedom. Appendix II of this article
contains all rules of the logic, the semantics, and the full
soundness proof.

II. NON-BLOCKING SYNCHRONIZATION
Recent years have seen increasing interest in non-blocking

data structures [1], [2]: shared-memory data structures that

provide operations that are synchronized without using locks
and mutual exclusion in favor of performance. A non-blocking
data structure is often considered to be correct if its operations
are linearizable [3]. Alternatively, correctness can be ensured
by an invariant that is maintained by each instruction of the
operations. Such an invariant is a safety property that can
be proved by modern separation logics for reasoning about
concurrent programs [18].

Progress Properties: In this article, we focus on com-
plementary liveness properties that guarantee the progress of
the operations of the data structure. There are three different
progress properties for non-blocking data structures considered
in literature. To define these, assume there is a fixed but arbitrary
number of threads that are (repeatedly) accessing a shared-
memory data structure exclusively via the operations it provides.
Choose now a point in the execution in which one or more
operations has started.
• A wait-free implementation guarantees that every thread

can complete any started operation of the data structure
in a finite number of steps [4].

• A lock-free implementation guarantees that some thread
will complete an operation in a finite number of steps [4].

• An obstruction-free implementation guarantees progress
for any thread that eventually executes in isolation [5]
(i.e., without other active threads in the system).

Note that these definitions do not make any assumptions on the
scheduler. We assume however that any code that is executed
between the data-structure operations terminates. If a data
structure is wait-free then it is also lock-free [4]. Similarly,
lock-freedom implies obstruction-freedom [5]. Wait-free data
structures are desirable because they guarantee the absence of
live-locks and starvation. However, wait-free data structures
are often complex and inefficient. Lock-free data structures,
on the other hand, often perform more efficiently in practice.
They also ensure the absence of live-locks but allow starvation.
Since starvation is an unlikely event in many cases, lock-free
data structures are predominant in practice and we focus on
them in this paper. However, our techniques apply in principle
also to wait-free data structures (see §IX).

Treiber’s Stack: As a concrete example we consider
Treiber’s non-blocking stack [6], a classic lock-free data
structure. The shared data structure is a pointer S to a linked
list and the operations are push and pop as given in Figure 1.

The operation push(v) creates a pointer x to a new list node
containing the data v. Then it stores the current stack pointer
S in a local variable t and sets the next pointer of the new
node x to t. Finally it attempts an atomic compare and swap
operation CAS(&S,t,x) to swing S to point to the new node x.
If the stack pointer S still contains t then S is updated and
CAS returns true. In this case, the do-while loop terminates
and the operation is complete. If however, the stack pointer
S has been updated by another thread so that it no longer
contains t then CAS returns false and leaves S unchanged.
The do-while loop then does another iteration, updating the
new list node to a new value of S. The operation pop works
similarly to push(v). If the stack is empty (t == NULL ) then

212



struct Node {
value_t data;
Node *next;

};

Node *S;

void init()
{S = NULL;}

void push(value_t v) {
Node *t, *x;
x = new Node();
x->data = v;
do { t = S;
x->next = t;

} while(!CAS(&S,t,x));
}

value_t pop() {
Node *t, *x;
do { t = S;
if (t == NULL)
{return EMPTY;}

x = t->next;
} while(!CAS(&S,t,x));
return t->data;

}

Fig. 1. An implementation of Treiber’s lock-free stack as given by Gotsman et al. [13].

I := -1; //initialization

ping() , if I == TID then { while (true) do {} }
else { I := TID }

Fig. 2. A shared data structure that shows a limitation of the method of
proving lock-freedom that has been introduced by Gotsman et al. [13]. For
every n, the parallel execution of n ping operations terminates. However, the
data structure is not lock-free. (It is based on an idea from James Aspnes.)

pop returns EMPTY. Otherwise it repeatedly tries to update
the stack pointer with the successor of the top node using a
do-while loop guarded by a CAS.

Treiber’s stack is lock-free but not wait-free. If other threads
execute infinitely many operations they could prevent the oper-
ation of a single thread from finishing. The starvation of one
thread is nevertheless only possible if infinitely many operations
from other threads succeed by performing a successful CAS.
The use of do-while loops that are guarded by CAS operations
is characteristic for lock-free data structures.

Lock-Freedom and Termination: Before we verify
Treiber’s stack, we consider lock-freedom in general. Following
an approach proposed by Gotsman et al. [13], we reduce the
problem of proving lock-freedom to proving termination of a
certain class of programs. Let D be any shared-memory data
structure with k operations π1, . . . , πk. It has been argued [13]
that D is lock-free if and only if the following program termi-
nates for every n ∈ N and every op1, . . . , opn ∈ {π1, . . . πk}:
On =

f
i=1,...,n opi . However, this reduction does not apply

to all shared-memory data structures. Many non-blocking data
structures have operations that can distinguish different callers,
for instance by accessing their thread ID. A simple example
is described in Figure 2. The shared data structure consists of
an integer I and a single operation ping. If ping is executed
twice by the same thread without interference from another
thread then the second execution of ping will not terminate.
Otherwise, each call of ping immediately returns. As a result,
the program

f
i=1,...,n ping terminates for every n but the data

structure is not lock-free.
We are also aware of a similar example that uses the total

number of threads in the system instead of thread IDs. It is
in general very common to use these system properties in
non-blocking data structures. Three of the five examples in
our paper use thread IDs (the hazard pointer stack, the hazard
pointer queue, and the elimination-backoff stack).

Consequently, we have to prove a stronger termination
property to prove that a data structure is lock-free. Instead
of assuming that each client only executes one operation, we
assume that each client can execute finitely many operations.

To this end, we define a set of programs Sn that sequentially
execute n operations.

Sn = {op1; . . . ; opn | ∀i : opi ∈ {π1, . . . , πk}}
Let S =

⋃
n∈N Sn. We now define the set of programs Pm

that execute m programs in S in parallel.

Pm = {
n

i=1,...,m

si | ∀i : si ∈ S}

Finally, we set P =
⋃
m∈N Pm. For proving lock-freedom, we

rely on the following theorem. By allowing a fixed but arbitrary
number of operations per thread we avoid the limitations of
the previous approach.

Theorem 1. The data structure D with operations π1, . . . , πk
is lock-free if and only if every program P ∈ P terminates.

Proof. Assume first that D is lock-free. Let P ∈ P . We prove
that P terminates by induction on the number of incomplete
operations in P , that is, operations that have not yet been
started or operations that have been started but have not yet
completed. If no operation is incomplete then P immediately
terminates. If n operations are incomplete then the scheduler
has already or will start an operation by executing one of the
threads. By the definition of lock-freedom, some operation will
complete independently of the choices of the scheduler. So
after a finite number of steps, we reach a point in which only
n−1 incomplete operations are left. The termination argument
follows by induction.

To prove the other direction, assume now that every program
P ∈ P terminates. Furthermore, assume for the sake of
contradiction that D is not lock-free. Then there exists
some concurrent program P∞ that only executes operations
op ∈ {π1, . . . , πk} and an execution trace T of P∞ in which
some operations have started but no operation ever completes.
It follows that P∞ diverges and T is therefore infinite. Let n
be the number of threads in P∞ and let si be the sequential
program that consists of all operations that have been started
by thread i in the execution trace T in their temporal order.
Then program

f
i=1,...,n si ∈ Pn can be scheduled to produce

the infinite execution trace T . This contradicts the assumption
that every program in P terminates.

III. QUANTITATIVE REASONING TO PROVE
LOCK-FREEDOM

A key insight of our work is that for many lock-free data
structures, it is possible to give an upper bound on the total
number of loop iterations in the programs in P (§II).

To see why, note that most non-blocking operations are
based on the same optimistic approach to concurrency. They

213



repeatedly try to access or modify a shared-memory data
structure until they can complete their operation without
interference by another thread. However, lock-freedom ensures
that such interference is only possible if another operation
successfully makes progress:

In an operation of a lock-free data structure, the failure of
a thread to make progress is always caused by successful
progress in an operation executed by another thread.

This property is the basis of a novel reasoning technique that
we call a quantitative compensation scheme. It ensures that a
thread is compensated for loop iterations that are caused by
progress—often the successful completion of an operation—in
another thread. In return, when a thread makes progress (e.g.,
completes an operation), it compensates the other threads. In
this way, every thread is able to “pay” for its loop iterations
without being aware of the other threads or the scheduler.

Consider for example Treiber’s stack and a program Pn in
which every thread only executes one operation, that is, Pn =f
i=1,...,n si and si∈{push, pop}. An execution of Pn never

performs more than n2 loop iterations. Using a compensation
scheme, this bound can be verified in a local and modular
way. Assume that each of the threads has a number of tokens
at its disposal and that each loop iteration in the program
costs one token. After paying for the loop iteration, the token
disappears from the system. Because it is not possible to create
or duplicate tokens—tokens are an affine resource—the number
of tokens that are initially present in the system is an upper
bound on the total number of loop iterations executed.

Unfortunately, the maximum number of loop iterations
performed by a thread depends on the choices of the scheduler
as well as the number of operations that are performed by
the other threads. To still make possible local and modular
reasoning, we define a compensation scheme that enables the
threads to exchange tokens. Since each loop iteration in Pn is
guarded by a CAS operation this compensation scheme can
be conveniently integrated into the specification of CAS. To
this end, we require that (logically) n−1 tokens have to be
available to execute a CAS.

(a) If the CAS is successful then it returns true and
(logically) 0 tokens. Thus, the executing thread loses
n−1 tokens.

(b) If the CAS is unsuccessful then it returns false and
(logically) n tokens. Thus, the executing thread gains a
token that it can use to pay for its next loop iteration.

The idea behind this compensation scheme is that every thread
needs n tokens to perform a data structure operation. One
token is used to pay for the first loop iteration and n−1 tokens
are available during the loop as the loop invariant. If the CAS
operation of a thread A is successful (case (a)) then this can
cause at most n−1 CAS operations in the other threads to fail.
These n−1 failed CAS operations need to return one token
more than they had prior to their execution (case (b)). On the
other hand, the successful thread A does not need its tokens
anymore since it will exit the do-while loop. Therefore the n−1
tokens belonging to A are passed to the other n−1 threads to

pay for the worst-case scenario in which this update causes
n−1 more loop iterations.

If the CAS operation of a thread A fails (case (b)), then some
other thread successfully updated the stack (case (a)) and thus
provided a token for thread A. Since A had n−1 tokens before
the execution of the CAS, it has n tokens after the execution.
So thread A can pay a token for the next loop iteration and
maintain its loop invariant of n−1 available tokens.

In our example program Pn, there are n2 many tokens in the
system at the beginning of the execution. So the number of loop
iterations is bounded by n2 and the program terminates.1 More
generally, we can use the same local and modular reasoning
to prove that every program with n threads such that thread i
executes mi operations performs at most

∑
1≤i≤nmi · n loop

iterations. Thread i then starts with mi · n tokens.
We will show in the following that this quantitative reasoning

can be directly incorporated in total correctness proofs for these
programs. We use the exact same techniques (for proving safety
properties [18]) to prove liveness properties; namely concurrent
separation logic, auxiliary variables, and read permissions. The
only thing we add to separation logic is the notion of a token
or a resource following Atkey [19].

IV. PRELIMINARY EXPLANATIONS
Before we formalize the proof outlined in §III, we give a

short introduction to separation logic, quantitative reasoning,
and concurrent separation logic. For the reader unfamiliar with
the separation logic extensions of permissions and auxiliary
variables, see Appendix I and the relevant literature [20], [21].
Our full logic is defined in Appendix II.

Separation Logic: Separation logic [22], [23] is an
extension of Hoare logic [24] that simplifies reasoning about
shared mutable data structures and pointers. As in Hoare logic,
programs are annotated with Hoare triples using predicates
P,Q, . . . over program states (heap and stack). A Hoare triple
[P ]C [Q] for a program C is a total-correctness specification of
C that expresses the following. If C is executed in a program
state that satisfies P then C safely terminates and the execution
results in a state that satisfies Q.

In addition to the traditional logical connectives, predicates of
separation logic are formed by logical connectives that enable
local and modular reasoning about the heap. The separating
conjunction P ∗Q is satisfied by a program state if the heap
of that state can be split in two disjoint parts such that one
sub-heap satisfies P and one sub-heap satisfies Q. It enables
the safe use of the frame rule

[P ]C [Q]

[P ∗R]C [Q ∗R]
(FRAME)

With the frame rule it is possible to specify only the part of
the heap that is modified by the program C (using predicates
P and Q). This specification can then be embedded in a larger
proof to state that other parts of the heap are not changed
(predicate R).

1In fact there are at most
(n
2

)
loop iterations in the worst case. However,

the n2 bound is sufficient to prove termination.

214



Quantitative Reasoning: Being based on the logic of
bunched implications [25], separation logic treats heap cells as
linear resources in the sense of linear logic. It is technically
unproblematic to extend separation logic to reason about
affine consumable resources too [19]. To this end, the logic is
equipped with a special predicate ♦, which states the availability
of one consumable resource, or token. The predicate is affine
because it is satisfied by every state in which one or more
tokens are available. This in contrast to a linear predicate like
E 7→ F that is only satisfied by heaps H with |dom(H)| = 1.

Using the separating conjunction ♦ ∗P , it is straightforward
to state that two or more tokens are available. We define ♦n to
be an abbreviation for n tokens ♦ ∗ . . . ∗ ♦ that are connected
by the separating conjunction ∗.

Since we use consumable resources to model the terminating
behavior of programs, the semantics of the while command are
extended such that a single token is consumed, if available, at
the beginning of each iteration. Correspondingly, the derivation
rule for while commands ensures that a single token is available
for consumption on each loop iteration and thus that the loop
will execute safely:

P ∧B =⇒ P ′ ∗ ♦ I ` [P ′]C [P ]

I ` [P ]while B do C [P ∧ ¬B]
(WHILE)

The loop body C must preserve the loop invariant P under the
weakened precondition P ′. C is then able to execute under the
assumption that one token has been consumed and still restore
the invariant P , thus making a token available for possible
future loop iterations.

The tokens ♦ can be freely mixed with other predicates
using the usual connectives of separation logic. For instance,
the formula x 7→ 10∨ (x 7→ ∗♦) expresses that the heap-cell
referred to by the variable x points to 10, or the heap-cell
points to an arbitrary value and a token is available. Together
with the frame rule, the tokens enable modular reasoning about
quantitative resource usage.

Concurrent Separation Logic: Concurrent separation
logic (CSL) is an extension of separation logic that is used to
reason about concurrent programs [14]. The idea is that shared
memory regions are associated with a resource invariant. Each
atomic block that modifies the shared region can assume that
the invariant holds at the beginning of its execution and must
ensure that the invariant holds at the end of the atomic block.

The original presentation of CSL [14] uses conditional
critical regions (CCRs) for shared variables. In this article,
we follow Parkinson et al. [18] and assume a global shared
region with one invariant so as to simplify the syntax and the
logic. An extension to CCRs is possible. For predicates I ,P ,
and Q, the judgment I ` [P ]C [Q] states that under the global
resource invariant I , in a state where P holds, the execution
of the concurrent program C is safe and terminates in a state
that satisfies Q.

Concurrent execution of programs C1 and C2 is written as
C1 ‖ C2. We assume that shared variables are only accessed
within atomic regions using the command atomic(C) and that
atomic blocks are not nested. An interpretation of the resource

invariant I is that it specifies a part of the heap owned by the
shared region. The logical rule ATOM for the command atomic
transfers the ownership of this heap region to the executing
thread.

emp ` [P ∗ I]C [Q ∗ I]
I ` [P ] atomic{C} [Q]

(ATOM)

Because the atomic construct ensures mutual exclusion, it is
safe to share I between two programs that run in parallel.
Pre- and post-conditions of concurrent programs are however
combined by use of the separating conjunction2:

I ` [P1]C1 [Q1] I ` [P2]C2 [Q2]

I ` [P1 ∗ P2]C1 ‖ C2 [Q1 ∗Q2]
(PAR)

Most of the other rules of sequential separation logic can be
used in CSL by just adding the (unmodified) resource invariant
I to the rules. The invariant is only used in the rule ATOM.

A technical detail that is crucial for the soundness of the
classic rule for conjunction [24] is that we require the resource
invariant I to be precise [14] with respect to the heap [26].
This means that, for a given heap H and stack V , there is at
most one sub-heap H ′ ⊆ H such that the sate (H ′, V ) satisfies
I . All invariants we use in this article are precise. Note that
precision with respect to the resource tokens ♦ is not required
since they are affine and not linear entities.

V. FORMALIZED QUANTITATIVE REASONING
In the following, we show how quantitative concurrent

separation logic can be used to formalize the quantitative
compensation scheme that we exemplified with Treiber’s non-
blocking stack in §III. The most important rules of this logic
are described in §IV. The logic is formally defined and proved
sound in Appendix II.

Before we verify realistic non-blocking data structures, we
describe the formalized quantitative reasoning for a simple
producer and consumer example.

Producer and Consumer Example: In the example in
Figure 3, we have a heap location B that is shared between a
number of producer and consumer threads. A producer checks
whether B contains the integer 0 (i.e., B is empty). If so
then it updates B with a newly produced value and terminates.
Otherwise, it leaves B unchanged and terminates. A consumer
checks whether B contains a non-zero integer (i.e, B is non-
empty). If so then it consumes the integer, sets the contents of
B to zero, and loops to check if B contains a new value to
consume. If B contains 0 then the consumer terminates.

If we verify this program using our quantitative separation
logic then we prove that the number of tokens specified by
the precondition is an upper bound on the number of loop
iterations of the program. Since the number of specified tokens
is always finite, we have thus proved termination.

The challenge in the proof is that the loop iterations of
the operation Consumer depend on the scheduler and on the
number of Producer operations that are executed in parallel.
However, it is the case that a program that uses n Consumer

2We omit the variable side-conditions here for clarity. They are included in
the full set of derivation rules in Appendix II.

215



Consumer() ,
[♦]
x := 1
[♦ ∨ x = 0] // loop inv.
while x != 0 do {
//While rule antecedent:
//(♦ ∨ x = 0) ∧ ¬(x = 0)⇒ emp ∗ ♦
[emp]
atomic {
[B 7→ u ∗ (u = 0 ∨ ♦)] //atomic
x := [B]
if x != 0 then {
[B 7→ x ∗ (x = 0 ∨ ♦) ∧ ¬(x = 0)]
[B 7→ x ∗ ♦]
[B] := 0
[B 7→ 0]
[I ∗ ♦]
[I ∗ (♦ ∨ x = 0)]

} else {
skip
[B 7→ u ∗ (u = 0 ∨ ♦)]
[I ∗ (♦ ∨ x = 0)]

} } [(♦ ∨ x = 0)] // end atom. block
}[(♦ ∨ x = 0) ∧ (x = 0)] //end while
[emp]

Producer(y) ,
[♦]
atomic {
[♦ ∗ I] // atom. block
if [B] = 0 then {
[♦ ∗ B 7→ u ∗ (u = 0 ∨ ♦)]
[B] := y
[♦ ∗ B 7→ y]
[(♦ ∨ y = 0) ∗ B 7→ y]
[I]

} else {
skip
[I]

}
}[emp] // end atom. block

Fig. 3. A lock-free data structure B with the operations Consumer and
Producer. The operation Consumer terminates if finitely many Producer
operations are executed in parallel. The verification of lock-freedom and
memory safety uses a compensation scheme and quantitative concurrent
separation logic.

operations and m Producer operations performs at most n+m
loop iterations. We can prove this claim using our quantitative
separation logic by deriving the following specifications.

I ` [♦]Consumer() [emp] and I ` [♦]Producer(y) [emp]

However, the modular and local specifications of these op-
erations only hold in an environment in which all programs
adhere to a certain policy. This policy can be expressed as
a resource invariant I in the sense of concurrent separation
logic. Intuitively, I states that the shared memory location B is
read-writable, and either is empty (B = 0) or there is a token
♦ available. We define

I , ∃u. B 7→ u ∗ (u = 0 ∨ ♦) .
Now we can read the specifications of Consumer and Producer
as follows. The token ♦ in the precondition of Consumer is
used to pay for the first loop iteration. More loop iterations
are only possible if some producer updated the contents of
heap location B to a non-zero integer v before the execution
of the atomic block of Consumer. We then rely on the fact
that the producer respected the resource invariant I . If B 7→ u
and u 6= 0 then the only possibility of maintaining I is by
providing a token ♦. The operation Consumer then updates B
to zero and can thus establish the invariant I without using a
token. So the token in the invariant becomes available to pay
for the next loop iteration. Figure 3 contains an outline of the
proof for Producer and Consumer. Note that our proof also
verifies memory safety.

From Local Proofs to Lock-Freedom: Using the derived
specifications of the operations and the frame rule, we induc-
tively prove I ` [♦k] op1; . . . ; opk [emp] where each opi is
a Consumer or Producer operation. In other words, we have
then proved [♦k] s [emp] for all s ∈ Sk (recall the definition
from §II). Let now si ∈ Smi for 1 ≤ i ≤ n. Using the rule

PAR, we can then prove for m =
∑
i=1,...,nmi that

I ` [♦m]
n

i=1,...,n

si [emp] .

This shows that the program
f
i=1,...,n si performs at most

m+1 loop iterations (one token can be present in the resource
invariant I) when it is executed. Following the discussion in
§II, this proves that every program p ∈ P terminates and that
(B;Producer,Consumer) is a lock-free data structure.

Similarly, we can in general derive a termination proof for
every program in P from such specifications of the operations
of a data structure. Assume that a shared-memory data structure
(S;π1, . . . , πk) is given. Assume furthermore that we have
verified for all 1 ≤ i ≤ k the specification I(n) ` [♦f(n) ∗
P ]πi [P ] . The notations I(n) and f(n) indicate that the proof
can use a meta-variable n which ranges over N. However, the
proof is uniform for all n. Additionally, P might contain a
variable tid for the thread ID. From this specification follows
already the lock-freedom of S. To see why, we can argue
as in the producer-consumer example. First, it follows for
every n and s ∈ Sm that I(n) ` [♦m·f(n) ∗ P ] s [P ] . Second,
a loop bound for p =

f
i=1,...,n si ∈ Pn with si ∈ Smi is

derived as follows. We use the rule PAR to prove for m =∑
i=1,...,nmi · f(n) that

I(n) ` [♦m ∗ ~
0≤tid<n

P (tid)] p [ ~
0≤tid<n

P (tid)] .

Thus every p ∈ P terminates and according to the proof in §II,
the data structure (S;π1, . . . , πk) is lock-free.

VI. LOCK-FREEDOM OF TREIBER’S STACK
We now formalize the informal proof of the lock-freedom

of Treiber’s stack that we described in §III. In Appendix III,
we outline how the proof can be easily extended to also verify
memory safety. Figure 4 shows the implementation of Treiber’s
stack in the while language we use in this article.

Each thread that executes push or pop operations can be
in one of two states. It either has some expectation on the
contents of the shared data structure S (critical state) or it does
not have any expectation (non-critical state). More concretely,
a thread is in a critical state if and only if it is executing a
push or pop operation and is in between the two atomic blocks
in the while loop. The thread then expects that t = [S]. The
resource invariant that we will formalize in quantitative CSL
can be described as follows.

For each thread T in the system one of the following holds.
(1) The thread T is in a critical state and its expectation
on the shared data structure is true. (2) The thread T is
in a critical state and some other thread provided T with
a token. (3) The thread T is in a non-critical state.

To formalize this invariant, we have to expose the local
assumption of the threads (t = [S]) to the global state. This is
why we use auxiliary array A. If the thread with the thread
ID tid is in a critical state then A[tid ] contains the value of
its local variable t. Otherwise A[tid ] contains 0. Similarly, we
have a second auxiliary array C such that C[tid ] contains a
non-zero integer if and only if the thread with ID tid is in a
critical state. As shown in Figure 4, the arrays A and C are

216



S := alloc(1); [S] := 0;
A := alloc(max_tid); C := alloc(max_tid);

push(v) ,
pushed := false;
x := alloc(2);
[x] := v;
[(pushed ∨ ♦n) ∗ γr(tid, _, _)] // loop invariant
while ( !pushed ) do {
//While rule antecedent:
((pushed ∨ ♦n) ∗ γr(tid, _, _)) ∧ !pushed ⇒ ♦n−1 ∗ γr(tid, _, _) ∗ ♦
[♦n−1 ∗ γr(tid, _, _)]
atomic {

[♦n−1 ∗ γr(tid, _, _) ∗ S 7→ u ∗ α(tid, u) ∗ I′(tid, u)] // atom block

[♦n−1 ∗ γ(tid, _, _) ∗ S 7→ u ∗ I′(tid, u)] // impl. & read perm.
t := [S];

[♦n−1 ∗ γ(tid, _, _) ∗ (S 7→ u ∧ t = u) ∗ I′(tid, u)] // read & frame
C[tid] := 1

[♦n−1 ∗ γ(tid, _, 1) ∗ (S 7→ u ∧ t = u) ∗ I′(tid, u)] // assignment
A[tid] := t

[♦n−1 ∗ (A[tid] 7→ t ∧ t = u) ∗ C[tid] 7→ 1 ∗ S 7→ u ∗ I′(tid, u)]
[♦n−1 ∗ γr(tid, t, 1) ∗ S 7→ u ∗ α(tid, u) ∗ I′(tid, u)] // perm.

[♦n−1 ∗ γr(tid, t, 1) ∗ I] // exist. intro & (3)
};

[♦n−1 ∗ γr(tid, t, 1)] // atomic block & frame
// [x+1] := t; this is not essential for lock-freedom
atomic {

[♦n−1 ∗ γr(tid, t, 1) ∗ I] // atomic block

[♦n−1 ∗ γr(tid, t, 1) ∗ S 7→ u ∗~1≤i≤n α(i, u)] // exist. elim.
s := [S]; if s == t then {

[♦n−1 ∗ γ(tid, _, _) ∗ S 7→ t ∗~{1,...,n}\{tid}(γ(i, _, _))]
[S] := x;
[γ(tid, _, _) ∗ S 7→ x ∗ I′(tid, x)] // permissions & (4)
pushed := true
[(pushed ∨ ♦n) ∗ γ(tid, _, _) ∗ ∃u. S 7→ u ∗ I′(tid, u)]
} else {

[♦n−1 ∗ t 6= u ∧ γr(tid, t, 1) ∗ α(tid, u) ∗ S 7→ u ∗ I′(tid, u)]
[♦n ∗ γ(tid, t, 1) ∗ S 7→ u ∗ I′(tid, u)] // impl. using (5)
skip
[(pushed ∨ ♦n) ∗ γ(tid, _, _) ∗ ∃u. S 7→ u ∗ I′(tid, u)]
};
C[tid] := 0
[(pushed ∨ ♦n) ∗ γ(tid, _, 0) ∗ S 7→ u ∗ I′(tid, u)]
// write & exist. elim (above) and permissions & impl.
[(pushed ∨ ♦n) ∗ γr(tid, _, _) ∗ α(tid, u) ∗ S 7→ u ∗ I′(tid, u)]
[(pushed ∨ ♦n) ∗ γr(tid, _, _) ∗ I] // exist. intro
};
[(pushed ∨ ♦n) ∗ γr(tid, _, _)] // atomic block end
}

Fig. 4. An implementation of the push operation of Treiber’s lock-free stack
in our language and the verification of the while loop. The CAS operation
is implemented using an atomic block that updates the local variable pushed.
The auxiliary array A contains in A[tid] the value of the local variable t of
the thread with ID tid or zero if the thread does not assume t = [S]. The loop
invariant pushed ∨ ♦n states that either the new element x has been pushed
to the stack S or there are n tokens available. The predicates γ and γr are
defined in (1).

never used on the right-hand side of an assignment and are
only updated in the two atomic blocks of each operation.

Let n be the number of threads in the system. We define
I , ∃u. S 7→ u ∗ ~

0≤i<n
α(i, u)

α(i, u) , ∃a, c. C[i] 7→r c ∗A[i] 7→r a ∗ (c = 0 ∨ a = u ∨ ♦)
The resource invariant I states that the shared region has a
full permission for the heap location S that points to the value
u. Additionally, the predicate α(i, u) states for each thread i
that the shared region has read permissions for C[i] and A[i];
and that thread i is in a non-critical section (c = 0), that the
local variable t contains the value [S] (a = u), or that there is

a token ♦ available.
We use read permissions since threads need access to the

local predicate A[tid ] 7→r t at some point to infer that A[tid ]
contains the value of the local variable t. This relation of the
local variable t with the array A is the only technical difficulty
in the proof. Just as in safety proofs, we can now use the rules
of our quantitative concurrent separation logic to verify the
following Hoare triples.

I ` [γr(tid , , ) ∗ ♦n] push(v) [γr(tid , , )]

I ` [γr(tid , , ) ∗ ♦n] pop() [γr(tid , , )]

Where γ and γr are defined as:
γ(t, a, c) , A[t] 7→ a ∗ C[t] 7→ c (1)

γr(t, a, c) , A[t] 7→r a ∗ C[t] 7→r c (2)
Thus, the execution of any operation requires n tokens and
read permission to the heap locations A[tid ] and C[tid ]. After
execution, the tokens are consumed and we are left with the
read permissions. Figure 4 contains a proof outline for the
while loop of push. We use the following abbreviation for parts
of the invariant I that are not needed in the local proof.

I ′(j, u) , ~
i∈{0,...,n−1}\{j}

α(i, u)

We have for all values u and j ∈ {0, . . . , n−1} that
I = ∃u. S 7→ u ∗ α(j, u) ∗ I ′(j, u) (3)

♦n−1 ~
i∈{0,...,n−1}\{j}

(γr(i, , )) =⇒ I ′(j, u) (4)

t 6= u ∧ γr(j, t, 1) ∗ α(j, u) =⇒ ♦ ∗ γ(j, t, 1) (5)
Using these assertions, the verification of push and pop is a
straightforward application of the rules of our logic. Figure 4
describes the main part—the while loop—of the proof of push.
The loop invariant pushed ∨ ♦n states that either the new
element x has been pushed onto the stack S or there are
n tokens available. In the first atomic block we leave the
assumptions I ′(tid , u) of the other thread untouched and just
establish A[tid ] 7→r t ∗ C[tid ] 7→r 1.

The key aspect of the proof is the second atomic block which
corresponds to the CAS operation in the original code. In the
if case, we possibly break the assumptions of the other threads
([S] := x). Then we have to use n− 1 tokens and implication
(4) to re-establish I ′(tid , u). Since the variable pushed is set
to true, we can maintain the loop invariant without using
another token. In the else case we use the inequality t 6= u
and implication (5) to derive the loop invariant. Finally, we
re-establish α(tid , u) using C[tid ] 7→ 0.

The verification of the while loop of pop is similar. By
applying the proof from the end of §V to the specifications
of push and pop, we have then proved the lock-freedom of
Treiber’s stack.

An interesting aspect of the proof is that it is not essential for
a thread to know the entire resource invariant I . The only part
that is needed is the implication S 7→ ∗♦n ∗~0≤i<nA[i] 7→r

=⇒ I . This can be used to make the assumptions
A(i) of the threads on the global data structure abstract.
The implication S 7→ ∗ ♦n ∗ ~0≤i<nA[i] 7→r =⇒

217



∃u. S 7→ ∗~0≤i<n((A[i] 7→r ∗ ♦) ∨ A(i, u)) holds for all
predicates A(i, u). A natural candidate for such an abstraction
is (concurrent) abstract predicates [27], [28]. However, such an
abstraction is not needed for our goal of verifying non-blocking
data structures in this paper.

VII. ADVANCED LOCK-FREE DATA STRUCTURES
In this section we investigate to what extent our quantitative

proof technique can be used to prove the lock-freedom of more
complex shared-memory data structures.

In many cases, it is possible to derive a bound on the total
number of loop iterations like we do for Treiber’s stack. Table 5
gives an overview of our findings. It describes for several
different non-blocking data structures the number t(n) of tokens
that are needed per operation in a system with n threads. The
derived loop bound on a system with n threads that executes m
operations is then t(n)∗m. In the hazard-pointer data structures,
the natural number ` is a fixed global parameter of the data
structure. The details are discussed in the following.

Michael and Scott’s Non-Blocking Queue: Michael and
Scott’s non-blocking queue [7] implements a FIFO queue using
a linked list with two pointers to the head and the tail of the
list. New nodes are inserted at the tail and nodes are removed
from the head.

To implement the queue in a lock-free way, the insert oper-
ation can leave the data structure in an apparently inconsistent
state: The new node is inserted at the tail using a CAS-guarded
loop, similar to Treiber’s stack. The pointer to the tail is then
updated by a second CAS operation, allowing other threads to
access the data structure with an inaccurate tail pointer.

To deal with this problem, the operations of the queue
maintain the invariant that the tail pointer points to the last or
second-to-last node during the execution and to the last node
after the execution of the operation. To maintain this invariant,
each CAS-guarded loop checks if the tail pointer points to a
node whose next pointer is Null. In this case, the tail pointer
is up to date and the current iteration of the while loop can
continue. Otherwise, the tail pointer is updated to point to the
last node of the list and the while loop is restarted.

To prove the lock-freedom of Michael and Scott’s queue,
we extend the invariant I that we used in the verification of
Treiber’s stack with an additional condition: The next pointer
of the node pointed to by the tail pointer is Null or there is a
token that can be used to pay for an additional loop iteration.

∃u, t, w.heap 7→ u ∗ tail 7→ t ∗ tail + 1 7→ w∗
~

0≤i<n
β(i, u, t) ∗ (w = nil ∨ ♦)

The formulas β(i, u, t) are analogous to the formulas α(i, u)
in the invariant that we used for the verification of Treiber’s
stack. With this invariant in a system with n threads, we can
verify the operations of the queue using n+ 1 tokens in the
respective preconditions.

Hazard Pointers: A limitation of Treiber’s non-blocking
stack is that it is only sound in the presence of garbage
collection. This is due to the ABA problem (see for instance [8])
which appears in many algorithms that use compare-and-swap

Data Structure Tokens per Operation

Treiber’s Stack [6] n

Michael and Scott’s Queue [7] n+ 1

Hazard-Pointer Stack [8] n+ (` · n)
Hazard-Pointer Queue [8] (n+ 1) + (` · n)
Elimination-Backoff Stack [9] n(n+ 1)

Fig. 5. Quantitative reasoning for popular non-blocking data structures. The
table shows the number t(n) of tokens that are needed per operation in a
system with n threads. The derived loop bound on a system with n threads
that executes m operations is then t(n) ∗m. ` is a fixed global parameter of
the data structure.

operations: Assume that a shared location which contains A
is read by a thread t1. Then thread t2 gets activated by the
scheduler, modifies the shared location to B, and then back
to A. Now thread t1 gets activated again, falsely assumes that
the shared data has not been changed, and continues with its
operation. The result can be a corrupted shared data structure,
invalid memory access or an incorrect return value.

Michael [8] proposes hazard pointers to enable the safe
reclamation of memory while maintaining the lock-freedom
of non-blocking data structures. The idea is to introduce a
global array that contains for each thread a number of hazard
pointers3 to data nodes that are currently in use by the thread.
Additionally, each thread stores a local list of pointers that it
wants to remove from the shared data structure (for instance
by using pop in the case of a stack). After each successful
removal of a node a thread checks if this local list has reached
a fixed length threshold. If so, it checks the hazard pointers
of each other thread to ensure that the pointers are not in use
before reclaiming the space.

The use of hazard pointers does not affect the global resource
invariants that we use in our quantitative verification technique.
The reason is that hazard pointers only affect parts of the
operations that are outside the loops that are guarded by CAS
operations. Moreover, the worst-case number of loop iterations
in this additional code can be easily determined: It is the
maximal length ` of the local list multiplied with the maximal
number of threads in the system.

For Treiber’s stack with hazard pointers, the specifications
of push and pop are:

I ` [γr(tid , , ) ∗ ♦n] push(v) [γr(tid , , )]

I ` [γr(tid , , ) ∗ ♦n+(`∗n)] pop() [γr(tid , , )]

Where γr is defined as in (1). The resource invariant I is
the same as in the specification of the version without hazard
pointers.

Elimination Backoff: To improve the performance of
Treiber’s non-blocking stack in the presence of high contention,
one can use an elimination backoff scheme [9]. The idea is
based on the observation that a push operation followed by a
pop results in a stack that is identical to the initial stack. In this
case, the two operations can be eliminated without accessing
the stack at all: The two threads use a different shared-memory

3In most cases, this set is just a singleton.

218



cell to transfer the stack element.
Our method can also be used to prove that Hendler et al’s

elimination-backoff stack [9] is lock-free. The main challenge
in the proof is that the push and pop operations consist of two
nested loops that are guarded by CAS operations. Assume again
a system with n threads. The inner loop can be just treated as in
Treiber’s stack using n tokens in the precondition and 0 tokens
in the postcondition. As a result, the number of tokens needed
for an iteration of the outer loop is n+ 1. That means that a
successful thread needs to transfer (n− 1) · (n+ 1) = n2 − 1
tokens to the other threads to account for additional loop
iterations in the other threads. Given this, we can verify the
elimination-backoff stack using n2 tokens in the precondition.

More details on the verification can be found in Appendix IV.
Non-Blocking Maps and Sets: Quantitative compensation

schemes can also be used to prove the lock-freedom of non-
blocking maps and sets (e.g., [29], [30]).

As in other lock-free data structures, interference in the map
and set operations is only caused if the operation of another
thread makes progress. For example, in the case of Harris’ non-
blocking linked list [29], a thread will only make an additional
traversal (of the list) if there is interference caused by another
thread that makes a successful traversal. The number of these
additional unsuccessful traversals can be bounded using the
same quantitative compensation scheme as in our previous
examples.

The number of loop iterations within each list traversal
depends however on the length of the list. Nevertheless,
it is possible to prove an upper bound on the number of
loop iterations executed by programs in P . The reason is
that each of the n threads executes a fixed number mi of
operations. Thus the total number of operations is bounded
by m =

∑
i=1,...,nmi. In many important shared-memory

data structures, such as lists or maps, m (or a function of
m) constitutes an upper bound on the size of the shared data
structure. One can then use this bound to prove an upper bound
on the number of loop iterations by introducing ♦m in the
global resource invariant. Like Atkey [19] we can use ideas
from amortized resource analysis [31] to deal with variable-
size data structures. By assigning tokens to each element of
a data structure we derive bounds that depend on the size of
the data structure without explicitly referring to its size. For
instance, an inductive list-predicate that states that k · |`| tokens
are available, where ` is the list pointed to by u can be defined
as follows.
LSeg ′(x, y, k)⇔(x = y ∧ emp)∨

(∃v, z x 7→ v ∗ x+ 1 7→ z ∗ LSeg ′(z, y, k) ∗ ♦k)

VIII. RELATED WORK
There is a large body of research on verifying safety proper-

ties and partial correctness of non-blocking data structures. See
for instance [18], [32], [33] and the references therein. This
work deals however with the verification of the complementary
liveness property of being lock-free, which in comparison has
received little attention.

Colvin and Dongol [10], [34] use manually-derived global
well-founded orderings and temporal logic to prove the lock-
freedom of Treiber’s stack [6], Michael and Scott’s queue [7],
and a bounded array-based queue. Their technique is not
modular but rather a whole program analysis of the most
general client of the data structure. It is unclear whether the
approach applies to data-structure operations with nested loops.
In contrast, our method is modular, can deal with nested loops,
and does not require temporal logic.

Petrank et al. [11] attempt to reduce lock-freedom to a safety
property by introducing the more restrictive concept of bounded
lock-freedom. It states that, in a concurrent program, there has
to be progress after at most k steps, where k can depend on
the input size of the program but not on the number of threads
in the system. They verify bounded lock-freedom with a whole
program analysis using temporal logic and the model checker
Chess. The technique is demonstrated by verifying a simple
concurrent program that uses Treiber’s stack. Our compensation-
based quantitative reasoning does not provide such an explicit
bound on the steps between successful operations but rather a
global bound on the number of loop iterations in the system.
Additionally, our bound depends on the number of threads
in the system and not on the size of the input. A conceptual
difference of our work is that we prove the lock-freedom of a
given data structure as opposed to the verification of a specific
program. Moreover, our proofs are local and modular, and not a
whole program analysis. We also show that compensation-based
reasoning works for many advanced lock-free data structures.

Gotsman et al. [13] reduce lock-freedom proofs to termina-
tion proofs of programs that execute n single data structure
operations in parallel. They then prove termination using
separation logic and temporal rely-guarantee reasoning by
layering liveness reasoning on top of a circular safety proof.
Using several tools and manually formulating appropriate
proof obligations, they are able to automatically verify the
lock-freedom of involved algorithms such as Hendler et al.’s
non-blocking stack with elimination backoff [9]. While these
automation results are very impressive, the used reduction
to termination is not intended to be applied to shared data
structures that use thread IDs or other system information (see
§II for details). In comparison, our compensation reasoning
does not restrict the use of thread IDs or other system
information. However, the termination proofs of [13] would
also work for a modification of the reduction that we introduced
in this paper.

Tofan et al. [12] describe a fully-mechanized technique based
on temporal logic and rely-guarantee reasoning that is similar
to the work of Gotsman et al. However, they assume weak
fairness of the scheduler while we do not pose any restriction
on the scheduler. Kobayashi and Sangiorgi [35] propose a type
system that proves lock-freedom for programs written in the
π-calculus. The target language and examples seem however
to be quite different from the programs we prove lock-free in
this article.

219



IX. CONCLUSION

We have shown that lock-freedom proofs of shared-memory
data structures can be reduced to safety proofs in concurrent
separation logic (CSL). To this end, we proposed a novel
quantitative compensation scheme which can be formalized
in CSL using a predicate ♦ for affine tokens. While similar
logics have been used to verify the resource consumption of
sequential programs [19], this is the first time that a quantitative
reasoning method has been used to verify liveness properties
of concurrent programs.

In the future, we plan to investigate the extent to which
quantitative reasoning can be applied to other liveness proper-
ties of concurrent programs. The quantitative verification of
wait-freedom seems to be similar to the verification of lock-
freedom if we require that tokens cannot be transferred among
the threads. Obstruction-freedom might require the creation of
tokens in case of a conflict. We also plan to adapt our method
to locking data structures, such as fairness and starvation-
freedom. These properties are more challenging to verify with
our quantitative method since they rely on a fair scheduler,
whereas non-blocking algorithms do not. To enable such proofs,
we plan to extend our compensation scheme to include the
behavior of the scheduler.

Ultimately, we envision integrating our compensation-based
proofs into a logic for termination-sensitive contextual re-
finement. We are currently developing such a logic but its
description is beyond the scope of this work.

ACKNOWLEDGMENTS

We thank James Aspnes and Alexey Gotsman for helpful
discussions. This research is based on work supported in part
by DARPA grants FA8750-10-2-0254 and FA8750-12-2-0293,
ONR grant N000141210478, and NSF grants 0910670 and
0915888 and 1065451. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. Any opinions,
findings, and conclusions contained in this document are those
of the authors and do not reflect the views of these agencies.

REFERENCES

[1] W. N. Scherer III, D. Lea, and M. L. Scott, “Scalable Synchronous
Queues,” Commun. ACM, vol. 52, no. 5, pp. 100–111, 2009.

[2] N. Shavit, “Data Structures in the Multicore Age,” Commun. ACM,
vol. 54, no. 3, pp. 76–84, 2011.

[3] M. P. Herlihy and J. M. Wing, “Linearizability: A Correctness Condition
for Concurrent Objects,” ACM Trans. Program. Lang. Syst., vol. 12,
no. 3, pp. 463–492, 1990.

[4] M. Herlihy, “Wait-Free Synchronization,” ACM Trans. Program. Lang.
Syst., vol. 13, no. 1, pp. 124–149, 1991.

[5] M. Herlihy, V. Luchangco, and M. Moir, “Obstruction-Free Synchro-
nization: Double-Ended Queues as an Example,” in 23rd Int. Conf. on
Distributed Comp. Systems (ICDCS’03), 2003.

[6] R. K. Treiber, “Systems Programming: Coping with Parallelism,” IBM
Almaden Research Center, Tech. Rep. RJ 5118, 1986.

[7] M. M. Michael and M. L. Scott, “Simple, Fast, and Practical Non-
Blocking and Blocking Concurrent Queue Algorithms,” in 15th Symp.
on Principles of Distributed Computing (PODC’96), 1996, pp. 267–275.

[8] M. M. Michael, “Hazard Pointers: Safe Memory Reclamation for Lock-
Free Objects,” IEEE Trans. Parallel Distrib. Syst., vol. 15, no. 6, pp.
491–504, 2004.

[9] D. Hendler, N. Shavit, and L. Yerushalmi, “A Scalable Lock-Free Stack
Algorithm,” in 16th ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA’04), 2004, pp. 206–215.

[10] R. Colvin and B. Dongol, “Verifying Lock-Freedom Using Well-Founded
Orders,” in Theoretical Aspects of Computing - 4th International
Colloquium (ICTAC’07), 2007, pp. 124–138.

[11] E. Petrank, M. Musuvathi, and B. Steesngaard, “Progress Guarantee for
Parallel Programs via Bounded Lock-Freedom,” in Conf. on Prog. Lang.
Design and Impl. (PLDI’09), 2009, pp. 144–154.

[12] B. Tofan, S. Bäumler, G. Schellhorn, and W. Reif, “Temporal Logic
Verification of Lock-Freedom,” in Mathematics of Prog. Construction,
10th Int. Conf., (MPC’10), 2010, pp. 377–396.

[13] A. Gotsman, B. Cook, M. Parkinson, and V. Vafeiadis, “Proving that
Non-Blocking Algorithms Don’t Block,” in 36th Symp. on Principles of
Prog. Lang. (POPL’09), 2009, pp. 16–28.

[14] P. W. O’Hearn, “Resources, concurrency, and local reasoning,” Theor.
Comput. Sci., vol. 375, no. 1-3, pp. 271–307, 2007.

[15] V. Vafeiadis and M. J. Parkinson, “A Marriage of Rely/Guarantee
and Separation Logic,” in Concurrency Theory, 18th Int. Conference
(CONCUR’07), 2007, pp. 256–271.

[16] X. Feng, “Local Rely-Guarantee Reasoning,” in 36th Symp. on Principles
of Prog. Langs. (POPL’09), 2009, pp. 315–327.

[17] T. Dinsdale-Young, M. Dodds, P. Gardner, M. J. Parkinson, and
V. Vafeiadis, “Concurrent Abstract Predicates,” in Object-Oriented
Programming, 24th European Conf. (ECOOP’10), 2010, pp. 504–528.

[18] M. Parkinson, R. Bornat, and P. O’Hearn, “Modular Verification of
a Non-Blocking Stack,” in 34th Symp. on Principles of Prog. Lang.
(POPL’07), 2007, pp. 297–302.

[19] R. Atkey, “Amortised Resource Analysis with Separation Logic,” in 19th
European Symposium on Programming (ESOP’10), 2010, pp. 85–103.

[20] S. S. Owicki and D. Gries, “Verifying Properties of Parallel Programs:
An Axiomatic Approach,” Commun. ACM, vol. 19, no. 5, pp. 279–285,
1976.

[21] R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson, “Permission
Accounting in Separation Logic,” in 32nd Symp. on Principles of Prog.
Lang. (POPL’05), 2005, pp. 259–270.

[22] S. S. Ishtiaq and P. W. O’Hearn, “BI as an Assertion Language for
Mutable Data Structures,” in 28th Symp. on Principles of Prog. Lang.
(POPL’01), 2001, pp. 14–26.

[23] J. C. Reynolds, “Separation Logic: A Logic for Shared Mutable Data
Structures,” in 17th IEEE Symp on Logic in Computer Science (LICS’02),
2002, pp. 55–74.

[24] C. A. R. Hoare, “An Axiomatic Basis for Computer Programming,”
Commun. ACM, vol. 12, no. 10, pp. 576–580, 1969.

[25] P. W. O’Hearn and D. J. Pym, “The Logic of Bunched Implications,”
Bulletin of Symbolic Logic, vol. 5, no. 2, pp. 215–244, 1999.

[26] V. Vafeiadis, “Concurrent Separation Logic and Operational Semantics,”
Electr. Notes Theor. Comput. Sci., vol. 276, pp. 335–351, 2011.

[27] M. J. Parkinson and G. M. Bierman, “Separation Logic and Abstraction,”
in 32nd Symp. on Principles of Prog. Lang. (POPL’05), 2005, pp. 247–
258.

[28] T. Dinsdale-Young, M. Dodds, P. Gardner, M. J. Parkinson, and
V. Vafeiadis, “Concurrent Abstract Predicates,” in Object-Oriented
Programming, 24th European Conf. (ECOOP’10), 2010, pp. 504–528.

[29] T. L. Harris, “A Pragmatic Implementation of Non-blocking Linked-
Lists,” in 15th International Conf. on Distributed Computing (DISC’01),
2001, pp. 300–314.

[30] M. Greenwald, “Non-blocking Synchronization and System Design,”
Ph.D. dissertation, Stanford University, 1999, tR STAN-CS-TR-99-1624.

[31] M. Hofmann and S. Jost, “Static Prediction of Heap Space Usage for
First-Order Functional Programs,” in 30th Symp. on Principles of Prog.
Lang. (POPL’03), 2003, pp. 185–197.

[32] V. Vafeiadis, “Modular Fine-Grained Concurrency Verification,” Ph.D.
dissertation, University of Cambridge, 2007, tR UCAM-CL-TR-726.

[33] M. Fu, Y. Li, X. Feng, Z. Shao, and Y. Zhang, “Reasoning about Opti-
mistic Concurrency Using a Program Logic for History,” in Concurrency
Theory, 21th Int. Conference (CONCUR’10), 2010, pp. 388–402.

[34] R. Colvin and B. Dongol, “A General Technique for Proving Lock-
Freedom,” Sci. Comput. Program., vol. 74, no. 3, pp. 143–165, 2009.

[35] N. Kobayashi and D. Sangiorgi, “A Hybrid Type System for Lock-
Freedom of Mobile Processes,” ACM Trans. Program. Lang. Syst., vol. 32,
no. 5, 2010.

220



[36] S. D. Brookes, “A Semantics for Concurrent Separation Logic,” in
Concurrency Theory, 15th Int. Conference (CONCUR’04), 2004, pp.
16–34.

[37] P. W. O’Hearn, H. Yang, and J. C. Reynolds, “Separation and information
hiding,” in 31st Symp. on Principles of Prog. Lang. (POPL’04), 2004,
pp. 268–280.

APPENDIX

I. FURTHER PRELIMINARY EXPLANATIONS

Permissions: It is sometimes necessary to share informa-
tion in the form of a predicate between the invariant and a
local assertion. This can be achieved in CSL by the use of
permissions [21].

The predicate E 7→ F expresses that the heap location
denoted by E contains the value that F denotes. Another
natural reading of the predicate in the context of separation
logic is that E 7→ F grants the permissions of reading from
and writing to the heap location denoted by E (permission
reading). Building upon this interpretation, read permissions
state that a full read/write permission E 7→ F can be shared
by two threads if the heap location denoted by E will not be
modified. A full permission and two read permissions can be
interchanged using the following equivalence.4

E 7→ F ⇔ E 7→r F ∗ E 7→r F

The two read permissions can then be shared between two
threads. To write into a location, a thread needs a full
permission and to read a location it only needs a read
permission.

[x 7→ ] [x] := E [x 7→ E] (WRITE)

[E 7→r F ]x := [E] [E 7→r F ∧ x=F ] (READ)

The remaining rules of the concurrent separation logic can
remain unchanged in the presence of permissions.

Auxiliary Variables: If the rules of (concurrent) separation
logic are not sufficient to prove a property of a program then
we sometimes have to use auxiliary variables [20]. These
are variables that we add to the program to monitor but not
influence the computation of the original program. Thus, if we
prove a property about a program using auxiliary variables then
this property also holds for the program without the auxiliary
variables.

More formally, we say a set Aux of variables is auxiliary
for a program P if the following holds. If x := E is an
assignment in P and E contains a variable in Aux then x ∈
Aux . Additionally, auxiliary variables must not occur in loop
or conditional tests.

II. FORMAL DEVELOPMENT AND SOUNDNESS

In the following, we give the formalization and soundness
proof of our quantitative concurrent separation logic for total
correctness. The proof is inspired by Vafeiadis’ soundness
proof [26] of concurrent separation logic and Atkey’s soundness
proof of his (sequential) quantitative separation logic [19]. How-
ever, we not only prove memory safety but also termination.

First, we address the syntax and semantics of our language
and logic in detail. See Figure 8 for the full operational
semantics of our language and Figure 9 for the Hoare-style
derivation rules of the logic. The semantics are standard with

4A read permission is equivalent to a fractional permission with the fraction
0.5.

221



E ::= x | n | E + E | E − E | . . .
B ::= E = E | E < E | ¬B | B ∨B | . . .
C ::= skip | x := E | x := [E] | [E] := E | x := alloc(n)

| dispose(E) | C;C | C ‖ C | if B then C else C
| while B do C | atomic C | {C}

Fig. 6. A basic while language with concurrency and dynamic allocation.

the exception of the WHILE-LOOP, WHILE-SKIP, and WHILE-
ABORT rules, which deal with safe and unsafe loops in a
program. Similarly, the derivation rules include an extended
WHILE rule that provides a logical specification that ensures
that while loops are terminating.

Language: We use a basic while language with concur-
rency as commonly used in the context of concurrent separation
logic [36], [14], [26]. As defined in Figure 6, it is built from
integer expressions E, boolean expressions B, and commands
C. As in Parkinson et al. [18], we assume a global shared
heap region. An extension to conditional critical regions [14]
is possible but omitted in favor of clarity. We assume that each
built-in function terminates. For simplicity, we do not include
procedure calls in the language. This is an orthogonal issue
that is dealt with elsewhere [27].

Semantics: Formulas and programs are interpreted with
respect to a program state using a small-step operational
semantics. Since the logic includes a consumable resource
predicate, a program state consists not only of a heap and
a stack but also of a natural number t which represents the
number of consumable resources that are currently available
to the program. To execute the body of a while loop there
has to be at least 1 resource available, that is t > 0. After the
execution of the loop body, there are t− 1 resources left.

Let Stack = Var → Val be the set of stacks and Heap =
Loc →fin Val be the set of heaps. Then, the set of program
states is State = Heap × Stack × N. The last component
describes the number of available tokens.

The rules of the semantics are defined in Figure 8. They
define an evaluation judgment of the forms

C, σ → C ′, σ′ or C, σ → ⊥

where C and C ′ are commands and σ, σ′ ∈ State . Intuitively,
this judgment states the following. If we execute the command
C in the state σ then the next computational step results in an
error (C, σ → ⊥), or it transforms the program state to σ′ and
execution continues with command C ′. A deviation from the
standard rules is in the semantics for a while loop. They ensure
that a token is consumed if the body of the loop is executed. If
the loop condition is satisfied and no token is available (t = 0)
in the current state, then the result is an error.

An interesting feature of our semantics is that it does
not admit infinite chains of execution steps. We prove this
by defining a well-founded order ≺ on program states and
commands. To this end, we first define the size |C| of a
command C as follows.

Definition 1 (Size of Commands). Let C be a command. |C|
is inductively defined as follows.

|skip| = 0

|C1;C2| = |C1|+ |C2|+ 1

|C1 ‖ C2| = |C1|+ |C2|+ 1

|if B then C1 else C2| = max(|C1|, |C2|) + 1

|while B do C| = |C|+ 1

|atomic C| = |C|+ 1

|{C}| = |C|
|C| = 1 otherwise

Definition 2 (Well-Founded Order). Let σ = (H,V, t), σ′ =
(H ′, V ′, t′) be program states and let C,C ′ be commands. We
define (C ′, σ′) ≺ (C, σ) iff t′ < t or (t′ = t and |C ′| < |C|).

Proposition 1. The relation ≺ is a well-founded order on
program states.

Lemma 1. If C, σ → C ′, σ′ then (C ′, σ′) ≺ (C, σ).

Proof. By inspection of the operational semantics rules.

As a consequence of Lemma 1 and the well-foundedness of
< on the natural numbers, there are no infinite chains of the
form C1, σ1 → C2, σ2 → · · · .

Theorem 2. There exist no infinite chains of the form C1, σ1 →
C2, σ2 → · · · .

Definition 3. For a program state σ and a command C we
write C, σ ⇓ σ′ if C, σ →∗ skip, σ′. Similarly, we write C, σ ⇓
⊥ if C, σ →∗ ⊥.

An inspection of the rules of the operational semantics shows
that each terminal state has the form skip, σ.

Definition 4 (Termination). We say that a program C termi-
nates from an initial state σ if not C, σ ⇓ ⊥.

Because our semantics do not allow infinite evaluation chains,
we relate this definition to a usual small-step semantics without
tokens. Since this relation is not important for the formal
development we keep the discussion short. This semantic
judgement is of the form C, τ ⇒ C ′, τ ′ or C, τ ⇒ ⊥, where
C,C ′ are commands and τ, τ ′ ∈ Heap×Stack . The rules of the
semantics are identical to the rules of our quantitative semantics
with the token component removed. The only exceptions are
the rules for while loops which are replaced by the following
rules.

JBK(V )

{while B do C}, (H,V )⇒ {C;while B do C}, (H,V )
(W-LOOP)

¬JBK(V )

{while B do C}, τ ⇒ skip, τ
(W-SKIP)

Theorem 3. Let C be a command and let σ = (H,V, t)
by a state. If not C, σ ⇓ ⊥ then there is no infinite chain
of the form C, (H,V ) ⇒ C1, τ1 ⇒ C2, τ2 ⇒ · · · and not
C, (H,V )⇒∗ ⊥.

222



σ |= ♦⇔ t > 0 ∧ dom(H) = ∅
σ |= P ∗Q⇔ ∃H1, H2, t1, t2. H = H1 ⊕H2∧

t = t1 + t2 ∧ (H1, V, t1) |= P∧
(H2, V, t2) |= Q

σ |= P −∗ Q⇔ ∀H ′, t′. if H ⊕H ′ defined ∧ (H ′, V, t′) |= P

then (H ⊕H ′, V, t+ t′) |= Q

σ |= E 7→ F ⇔ dom(H) = JEK(V )

∧H(JEK(V )) = (JF K(V ),>)
σ |= E 7→r F ⇔ dom(H) = JEK(V )

∧H(JEK(V )) = (JF K(V ), r)

Fig. 7. A sample of the semantics of assertions over a state σ = (H,V, t).
The semantics of the other connectives and predicates are standard.

To prove the theorem, we first prove for every t ∈ N and
every program state τ = (H,V ) that if C, τ ⇒ C ′, (H ′, V ′)
then either C, (H,V, t) → C ′, (H ′, V ′, t′) for some t′ or
C, (H,V, t)→ ⊥. This follows immediately by an inspection
of the rules. The only interesting case is the treatment of while
loops for which the property is easily verified.

Given this, we see that the notion of termination C, σ ⇓ σ′
corresponds exactly to the standard notion of termination under
a semantics without a resource component.

Concurrent Separation Logic with Quantitative Reasoning:
Following the presentation of Atkey [19], we define the
predicates of quantitative separation logic as follows. Since we
only deal with one resource at a time we write ♦ instead of
Atkey’s R.
P ::= B | P ∨ P | P ∧ P | ¬P | P ⇒ P | ∀x.P | ∃x.P

| ♦ | emp | E 7→ E | E 7→r E | P ∗ P | P −∗ Q | ~
i∈I

P

Following previous work [21], [26], we model assertions in the
logic with permission heaps. Heap locations are instrumented
with a permission in {r,>} where r is read-only and > is
full permission. Permission heaps can be added using the ⊕
operator, which adds permissions where they overlap (and
are both r), and takes the disjoint union elsewhere. The
operational semantics is independent of the permissions. So
we define it for heaps without permissions, which can be
derived from permission heaps by deleting the permission
component. Figure 7 contains the semantics of the most
interesting connectives and predicates.

The rules of the program logic are given in Figure 9
Soundness: In keeping with the presentation given in [26],

we define satisfaction of Hoare triples according to the
inductively defined predicate safen(C, σ, I,Q) which states
that command C will execute safely for up to n steps starting
in state σ under resource invariant I and if it terminates, the
resulting state will satisfy Q.

Definition 5 (Safety). For any state σ = (H,V, t), command
C, and predicates I,Q:

• safe0(C, σ, I,Q) holds.
• safen+1(C, σ, I,Q) holds when all of the following are

true:

1) If C = skip then σ |= Q.
2) For all tI ∈ N and all HI , HF ∈ Heap such that

(HI , V, tI) |= I and H ⊕ HI ⊕ HF is defined,
C, (H ⊕HI ⊕HF , V, t+ tI) 6→ ⊥.

3) For all tI , t′ ∈ N, HI , HF , H
′ ∈ Heap, and V ′ ∈

Stack such that (HI , V, tI) |= I and H ⊕ HI ⊕
HF is defined, if C, (H ⊕HI ⊕HF , V, t + tI) →
C ′, (H ′, V ′, t′), then there exist H ′′, H ′I and t′′ such
that H ′ = H ′′⊕H ′I⊕HF , t′′ ≤ t′, (H ′I , V ′, t′′) |= I
and safen(C

′, (H ′′, V ′, t′ − t′′), I, Q).

When n > 0, the first condition specifies that if the execution
is in a terminal state, then that state satisfies the postcondition Q.
The second condition states that the execution will not go wrong.
The third condition ensures that each step preserves the resource
invariant I , and that after executing one step, the resulting
program is safe for another n−1 steps. In the second and third
conditions, HI and tI represent the resources required to satisfy
the global invariant I . HF represents additional heap cells
which may be needed by other parts of the program. Note that
we do not include a frame tF of consumable resources. Since
predicate satisfaction is monotonic with respect to consumable
resources, we do not need to distinguish between consumable
resources in the shared region (tI ) and those in the frame.
Also, since the operational semantics only work on concrete
heaps, in condition (3) HF will necessarily contain any heap
locations that an executing thread has read permission to. By
using the same HF before and after an execution step we thus
ensure that a thread cannot modify a heap location unless it
has full permission at that location.

Given this, we say that a Hoare triple [P ]C [Q] is satisfiable
under an invariant I if and only if for all n ∈ N and
all states σ |= P , safen(C, σ, I,Q) holds. For a discussion
of the motivations behind this particular characterisation of
satisfaction, see [26].

Before we present the proof of soundness of the logic, we
need to consider two aspects of the logic and how they interact
with consumable resources: Permission Heaps [21] and Precise
Assertions [14].

Permission Heaps: Let Perm = {r,>} be a permissions
set, with r indicating read-only permission and > indicating
full permission. Then, let PHeap = Loc →fin Val ×Perm be
the set of permission heaps. A permission heap H ∈ PHeap
is a finite mapping from locations to pairs of values and
permissions. Perm is equipped with a commutative partial
operator ⊕ defined as r ⊕ r = >, and undefined otherwise.

We extend the permission operator ⊕ to value-permission
pairs as follows:

(v1, p1)⊕(v2, p2) =

{
(v1,>) if v1 = v2 and p1 = p2 = r

undefined otherwise

223



{x := E}, (H,V, t)→ skip, (H,V |x=JEK(V ), t)
(ASSIGN)

` = JEK(V ) ` ∈ dom(H)

{x := [E]}, (H,V, t)→ skip, (H,V |x=H(`), t)
(LOOKUP)

JEK(V ) 6∈ dom(H)

{x := [E]}, (H,V, t)→ ⊥
(LOOKUP-ABORT)

` = JEK(V ) ` ∈ dom(H)

{[E] := F}, (H,V, t)→ skip, (H |`=JF K(V ), V, t)
(MUTATE)

JEK(V ) 6∈ dom(H)

{[E] := F}, (H,V, t)→ ⊥
(MUTATE-ABORT)

∀i ∈ {0, . . . , n− 1} . `+ i 6∈ dom(H)

{x := alloc(n)}, (H,V, t)→ skip, (H |`+0,...,`+n−1=0, V |x=`, t)
(ALLOC)

` = JEK(V ) ` ∈ dom(H)

dispose(E), (H,V, t)→ skip, (H\`, V, t)
(DISPOSE)

JEK(V ) 6∈ dom(H)

dispose(E), (H,V, t)→ ⊥
(DISPOSE-ABORT)

C1, σ → C′1, σ
′

{C1;C2}, σ → {C′1;C2}, σ′
(SEQ1)

{skip;C2}, σ → C2, σ
(SEQ2)

C1, σ → ⊥
{C1;C2}, σ → ⊥

(SEQ-ABORT)

C1, σ → C′1, σ
′

{C1 ‖ C2}, σ → {C′1 ‖ C2}, σ′
(PAR1)

C2, σ → C′2, σ
′

{C1 ‖ C2}, σ → {C1 ‖ C′2}, σ′
(PAR2)

{skip ‖ skip}, σ → skip, σ
(PAR3)

C1, σ → ⊥
{C1 ‖ C2}, σ → ⊥

(PAR-ABORT1)
C2, σ → ⊥

{C1 ‖ C2}, σ → ⊥
(PAR-ABORT2)

JBK(V )

{if B then Ct else Cf}, (H,V, t)→ Ct, (H,V, t)
(IF-TRUE)

¬JBK(V )

{if B then Ct else Cf}, (H,V, t)→ Cf , (H,V, t)
(IF-FALSE)

JBK(V ) t > 0

{while B do C}, (H,V, t)→ {C;while B do C}, (H,V, t− 1)
(WHILE-LOOP)

¬JBK(V )

{while B do C}, σ → skip, σ
(WHILE-SKIP)

JBK(V ) t = 0

{while B do C}, σ → ⊥
(WHILE-ABORT)

C, σ →∗ skip, σ′

{atomic C}, σ → skip, σ′
(ATOM)

C, σ →∗ ⊥
{atomic C}, σ → ⊥

(ATOM-ABORT)

Fig. 8. Small-step operational semantics

I ` [P ] skip [P ]
(SKIP)

x 6∈ fv(I)

I ` [P [E/x]]x := E [P ]
(ASSIGN)

x 6∈ fv(I, E, F )

I ` [E 7→r F ]x := [E] [E 7→r F ∧ x = F ]
(LOOKUP)

I ` [E 7→ ] [E] := F [E 7→ F ]
(MUTATE)

x 6∈ fv(I)

I ` [emp]x := alloc(n) [x+ 0 7→ 0 ∧ . . . ∧ x+ n− 1 7→ 0]
(ALLOC)

I ` [E 7→ ] dispose(E) [emp]
(DISPOSE)

I ` [P ]C1 [Q] I ` [Q]C2 [R]

I ` [P ]C1;C2 [R]
(SEQ)

I ` [P1]C1 [Q1] I ` [P2]C2 [Q2]
fv(I, P1, C1, Q1) ∩ wr(C2) = ∅ fv(I, P2, C2, Q2) ∩ wr(C1) = ∅

I ` [P1 ∗ P2]C1 ‖ C2 [Q1 ∗Q2]
(PAR)

I ` [P ∧B]Ct [Q] I ` [P ∧ ¬B]Cf [Q]

I ` [P ] if B then Ct else Cf [Q]
(IF)

P ∧B =⇒ P ′ ∗ ♦ I ` [P ′]C [P ]

I ` [P ]while B do C [P ∧ ¬B]
(WHILE)

emp ` [P ∗ I]C [Q ∗ I]
I ` [P ] atomic C [Q]

(ATOM)
I ∗ J ` [P ]C [Q]

I ` [P ∗ J ]C [Q ∗ J ] (SHARE)

I ` [P ]C [Q] fv(R) ∩ wr(C) = ∅
I ` [P ∗R]C [Q ∗R] (FRAME)

I ` [P ]C [Q] P ′ ⇒ P Q⇒ Q′

I ` [P ′]C [Q′]
(CONSEQUENCE)

I ` [P1]C [Q] I ` [P2]C [Q]

I ` [P1 ∨ P2]C [Q]
(DISJUNCTION)

I ` [P ]C [Q] x 6∈ fv(C)

I ` [∃x.P ]C [∃x.Q]
(EXISTENTIAL)

I ` [P ]C [Q1] I ` [P ]C [Q2] I precise
I ` [P ]C [Q1 ∧Q2]

(CONJUNCTION)

Fig. 9. Derivation rules. fv gives the set of free variables in a command or predicate. wr gives the set of variables which are modified by a command.

224



We further extend ⊕ to permission heaps H1 and H2 that agree
on the values at overlapping locations:

(H1⊕H2)(`) =


H1(`)⊕H2(`) if ` ∈ dom(H1) ∩ dom(H2)

H1(`) if ` ∈ dom(H1) \ dom(H2)

H2(`) otherwise
Given this, we model assertions in the logic with permission

heaps (see Figure 7). As in Vafeiadis [26], assertions are
modeled with permission heaps but the operational semantics
act on concrete heaps. To reconcile this, we consider regular
heaps as a subset of permission heaps where the permission is
always >

Heap = Loc →fin Val × {>}
Then, for any permission heap H there exists a complementary
permission heap H ′ for which H ⊕ H ′ is a concrete heap.
Specifically, H ′ must contain the sub-heap of H that includes
all the locations at which H has read permission. Define
read(H) to be such a sub-heap:

read(H) , {(v, p) | (v, p) ∈ H ∧ p = r}
Then,

∀H ∈ PHeap. H ⊕ read(H) ∈ Heap

Now consider Definition 5 of safen(C, σ, I,Q). In the defini-
tion, every time the small-step judgement → is invoked, the
heap is H⊕HI⊕HF , which includes the universally quantified
HF . Thus, HF will always include read(H)⊕read(HI). This
means that H ⊕HI ⊕HF is a concrete heap, so the definition
makes sense. Furthermore, since HF is not modified by the
step in condition (3), C cannot modify locations in the heap
to which H has only read access.

Precise Assertions: As shown in [14], [26], in order for
the logic to be sound, we require that the global resource
invariant be precise in the CONJUNCTION rule. We define
precise assertions [37], [14], [26] as follows. An assertion P
is precise when it is satisfied by exactly one sub-heap of any
heap.

Definition 6 (Precise Assertions). Let V ∈ Stack , t ∈ N
and let P be an assertion. P is precise if and only if for all
H1, H2, H

′
1, H

′
2 ∈ PHeap such that H1 ⊕H2 is defined and

H1 ⊕H2 = H ′1 ⊕H ′2, if (H1, V, t) |= P and (H ′1, V, t) |= P ,
then H1 = H ′1.

This definition does not consider our consumable resources.
Since the assertion ♦k is satisfiable by any set of at least k
resources, it is impossible for a predicate to specify an exact
set of resources. Regardless, since the tokens are affine entities
as we see in the following proof, the soundness of the logic is
unaffected.

Before we prove the soundness of the rules, we have to
prove two additional lemmas that are needed in the case of
the rule WHILE.

Lemma 2. Let σ = (H,V, t) be a program state, I,Q,R
predicates, C1;C2 a command, and n a natural number. If
safen(C1, σ, I,Q) and for all m ≤ n and σ′ with σ′ |= Q,
safem(C2, σ

′, I, R) then safen(C1;C2, σ, I, R).

The proof of Lemma 2 is identical to the proof of the same
lemma in (the formalized proof of) [26].

Lemma 3. Let σ = (H,V, t) be a program state,
while B do C a command, and I, P, P ′ predicates such that
P ∧ B =⇒ P ′ ∗ ♦. If [P ′]C [P ] is satisfiable under I and
σ |= P then for all n, safen(while B do C, σ, I, P ∧ ¬B).

Proof. We prove the lemma by induction on n. The base case
for n = 0 follows directly from the definition of safe0.

Assume now that safen(while B do C, σ, I, P ∧ ¬B) holds.
To show safen+1(while B do C, σ, I, P ∧ ¬B), we show that
all three conditions in Definition 5 are satisfied:

1) We have while B do C 6= skip, so this condition holds
vacuously.

2) The only rule in the operational semantics which can
derive {while B do C}, σ → ⊥ is WHILE-ABORT. The
premises of the rule are JBK(V ) and t = 0. We show that
from JBK(V ) it follows that t > 0. Therefore WHILE-
ABORT does not apply. Assume JBK(V ). Since σ |= P
we have then σ |= P ∧B, and thus it follows from the
premises that σ |= P ′ ∗ ♦. From the semantics of ♦ we
derive t ≥ 1. This confirms condition (2).

3) Let tI , t′ ∈ N, HI , HF ∈ PHeap, H ′ ∈ Heap and
V ′ ∈ Stack such that (HI , V, tI) |= I and H ⊕ HI ⊕
HF is defined, and C, (H ⊕ HI ⊕ HF , V, t + tI) →
C ′, (H ′, V ′, t′). Then the rules WHILE-LOOP or WHILE-
SKIP have been applied. Since non of these rules modifies
the heap (nor stack), H ′ = H⊕HI⊕HF , so let H ′′ = H
and H ′I = HI .
In the case of the rule WHILE-LOOP, we have C ′ =
C;while B do C and t′ = t + tI − 1. Let now t′′ =
tI . Then t ≥ 1 (premise of WHILE-LOOP) and we
have t − 1 ≥ 0, so t′′ ≤ t′. It follows by construction,
(H ′I , V

′, t′′) = (HI , V, tI), which satisfies I . Moreover
(H ′′, V ′, t′ − t′′) |= P ′. Since [P ′]C [P ] is satisfiable
under I , we have safen(C, (H

′′, V ′, t′ − t′′), I, P ). By
induction we have safem(while B do C, σ′, I, P ∧ ¬B)
for all m ≤ n and all σ′ with σ′ |= P . Therefore we
derive safen(C

′, (H ′′, V ′, t′ − t′′), I, P ) with Lemma 2.
In the case of the rule WHILE-SKIP, we have C ′ = skip
and t′ = t+ tI . Let again t′′ = tI . Then t′′ ≤ t′ and it
follows that (H ′I , V

′, t′′) = (HI , V, tI) satisfies I . Fur-
thermore, (H ′′, V ′, t′−t′′) |= P and from the premise of
the WHILE-SKIP we obtain (H ′′, V ′, t′− t′′) |= P ∧¬B.
Thus safen(skip, (H ′′, V ′, t′−t′′), I, P∧¬B). (Condition
(1) follows from the aforesaid and Conditions (2) and
(3) by inspection of the evaluation rules.)

Theorem 4 (Partial Correctness). For any propositions I, P,Q
and any command C, if I ` [P ]C [Q], then [P ]C [Q] is
satisfiable under I .

Proof. The proof is by structural induction over the derivation
rules given in Figure 9. Since the only command which accesses
the resource component of program state is the while loop, the

225



proof of every rule is essentially the same as in Vafeiadis [26]
except for the rule WHILE. For all of the following, let σ =
(H,V, t) ∈ State , C be a command, and I, P,Q be predicates.

While: Follows directly from Lemma 3.
Conjunction: To see that the definition of precise asser-

tions is sufficient, we consider the CONJUNCTION rule. Let
I be a precise assertion, Q1, Q2 be any assertions, and let
C be a command. We show by induction that for any state
σ = (H,V, t) and any n ∈ N, if safen+1(C, σ, I,Q1) and
safen+1(C, σ, I,Q2) then safen+1(C, σ, I,Q1 ∧ Q2). Again,
we confirm each condition:

1) if C = skip, then σ |= Q1 and σ |= Q2. Thus, σ |=
Q1 ∧Q2.

2) Since this condition does not depend on the post-
condition, it is already verified by the assumption
safen+1(C, σ, I,Q1).

3) Let tI , t′ ∈ N, HI , HF ∈ PHeap, H ′ ∈ Heap and
V ′ ∈ Stack such that (HI , V, tI) |= I and H⊕HI⊕HF

is defined, and assume that C, (H⊕HI⊕HF , V, t+tI)→
C ′, (H ′, V ′, t′).
By our assumption, there exist H ′′1, H ′1I and t′′1 such
that H ′ = H ′′1⊕H ′1I ⊕HF , t′′1 ≤ t′, (H ′1I , V ′, t′′1) |= I
and safen(C

′, (H ′′1, V ′, t′ − t′′1), I, Q1). Likewise for
H ′′2, H ′2I , t′′2 and Q2.
This implies that H ′′1 ⊕ H ′1I = H ′′2 ⊕ H ′2I . Since
I is precise, we know that H ′1I = H ′2I , and thus
H ′′1 = H ′′2. Finally, let t′′ = min(t′′1, t′′2). Then, t′−t′′
will be at least as large as both t′ − t′′1 and t′ − t′′2
and will thus be sufficient to ensure that both Q1 and
Q2 hold if the execution terminates. We conclude that
safen(C

′, (H ′′1, V ′, t′ − t′′1), I, Q1 ∧Q2).

The total correctness of the logic is a direct consequence of
Theorem 4 and Theorem 2.

Theorem 5 (Total Correctness). Let I, P,Q be propositions,
C be a command, and σ be a program state. If σ |= P ∗ I
and I ` [P ]C [Q] then every evaluation of C from the initial
state σ terminates in state σ′ with σ′ |= Q ∗ I .

III. MEMORY SAFETY OF TREIBER’S STACK

To additionally verify memory safety, we have to add
some auxiliary state and extend our resource invariant. The
verification is then similar to the proofs in related work on
verification of safety properties [32], [33]. However, there are
synergies between the lock-freedom and the memory safety
proof.

See Figure 10 for the full implementation of Treiber’s stack
in our while language. The crucial point in the verification
of memory safety are the assignments x := [t+1] and ret val
:= [t] in the method pop. Our goal is to ensure, using the
resource invariant, that these locations are owned by the shared
region. At the evaluation of each assignment there are two
possible cases: Either the memory location that is read is still
part of the stack S or it has been removed from the stack by
another thread. To keep track of the memory locations that

are pointed to by the stack, we introduce an inductive list
predicate to describe the list pointed to by S. To keep track
of the locations that have been removed from the stack we
introduce an auxiliary variable that points to a second stack G
that contains all the locations that have been removed from S.
To this end, we push a node onto G after it is removed from
S. That is, we replace the last atomic block in pop with the
following code.

atomic { // popped := CAS(S,t,x)
s := [S];
if s == t then {
[S] := x;
popped := true;
g := [G]; // push t onto G
[t+1] := g;
[G] := t

} else skip;
C[tid] := false

}

The invariant I is then extended as follows where n is again
the total number of threads and α(i, u) is defined as before.

I ′ , ∃u. S 7→ u ∗ ~
0≤i<n

α(i, u) ∗G 7→ v

∗(∃u′, v′ LSeg(u, u′) ∗ LSeg(v, v′)) ∧∧
0≤i<n

β(i, u, v)

β(i, u, v) , ∃a, c. C[i] 7→r c ∗A[i] 7→r a

∗(c = 0 ∨ LSeg(u, a) ∨ LSeg(v, a))

The inductive list predicate LSeg is defined as usual [22] by
LSeg(x, y)⇔(x = y ∧ emp)∨

(∃v, z x 7→ v ∗ x+ 1 7→ z ∗ LSeg(z, y))
The invariant ensures for each thread which is in the critical
section that the local variable t points to a location that is used
by the lists pointed to by S and G. Note that we can reuse the
axillary arrays A and C in the formulas β(i, u, v).

IV. VERIFICATION OF HENDLER ET AL’S
ELIMINATION-BACKOFF STACK

To improve the performance of Treiber’s non-blocking stack
in the presence of high contention, one can use an elimination
backoff scheme [9]. The idea is based on the observation that
a push operation followed by a pop results in a stack that
is identical to the initial stack. So, if a stack operation fails
because of the interference of another thread then the executing
thread does not immediately retry the operation. Instead, it
checks if there is another thread that is trying to perform
a complementary operation. In this case, the two operations
can be eliminated without accessing the stack at all: The two
threads use a different shared-memory cell to transfer the stack
element.

Our method can also be used to prove that Hendler et al’s
elimination-backoff stack [9] is lock-free. The main challenge
in the proof is that the push and pop operations consist of two
nested loops that are guarded by CAS operations. Assume again
a system with n threads. The inner loop can be just treated as in
Treiber’s stack using n tokens in the precondition and 0 tokens
in the postcondition. As a result, the number of tokens needed

226



S := alloc(1); // initialization
[S] := 0;
A := alloc(max_tid); // auxiliary arrays
C := alloc(max_tid); // initialized to 0

push(v) ,
pushed := false;
x := alloc(2);
[x] := v;
while ( !pushed ) do {
atomic {
t := [S]; // expect t = [S]
C[tid] := 1 // critical state starts
A[tid] := t

};
[x+1] := t;
atomic { // pushed := CAS(S,t,x)
s := [S];
if s == t then {
[S] := x;
pushed := true;

} else skip;
C[tid] := 0 // critical state ends

};
consume(1)

}

pop() ,
popped := false;
while ( !popped ) do {
atomic {
t := [S]; // assume t = [S]
C[tid] := 1 // critical state starts
A[tid] := t

};
if t == 0 then { //empty stack
ret_val := 0;
popped := true

} else {
x = [t+1];
ret_val := [t];
atomic { // popped := CAS(S,t,x)
s := [S];
if s == t then {
[S] := x;
popped := true;

} else skip;
C[tid] := false // critical state ends

};
consume(1)

}
};
return := ret_val;

Fig. 10. A full implementation of Treiber’s lock-free stack in our while language.

for an iteration of the outer loop is n+ 1. That means that a
successful thread needs to transfer (n− 1) · (n+ 1) = n2 − 1
tokens to the other threads to account for additional loop
iterations in the other threads. Given this, we can verify the
elimination-backoff stack using n2 tokens in the precondition.
Technically, we need an invariant of the form I ∗ J , where I
is an invariant like in Treiber’s stack (for the inner loop) and
J is like I but with every token ♦ replaced by ♦n.

To make this reasoning more concrete, Figure 11 shows the
loop structures of the push operation of Hendler et al’s stack
with elimination scheme in our while language. The auxiliary
arrays A1 and C1 have the same purpose as in Treiber’s stack:
C1[tid ] indicates if thread tid is making an assumption on the
value of the stack pointer S and A1[tid ] contains the value
of the local variable t. They will be used to formulate the
part of the global invariant that is crucial to maintain the loop
invariant of the outer while loop. The inner while loop has the
same structure as the outer loop since it is also guarded by a
CAS operation. However, the address on which the CAS is
performed is not fixed. Thus we need three additional auxiliary
arrays to formulate part of the global invariant that is needed for
the inner loop: C2[tid ] indicates whether thread tid is making
an assumption on the shared state that is stored in otherT. The
array B2 stores the memory address that is affected by this
assumption and the array A2 stores what the assumption is.

The global invariant I can then be defined as follows.
I , ∃u, v1, . . . , vn. S 7→ u ∗ ~

0≤i<n
(δ(i, u) ∗ ζ(i))

∗ ( ~
0≤j<m

col [j] 7→ ∗ ~
0≤i<n

B2[i] 7→r ∧∧
0≤i<n

φ(i))

δ(i, u) , ∃a, c. C1[i] 7→r c ∗A1[i] 7→r a ∗ (c=0 ∨ a=u ∨ ♦n)
ζ(i) , ∃a, c. C2[i] 7→r c ∗A2[i] 7→r a ∗ (c=0 ∨ a=vi ∨ ♦)
φ(i) , ∃b. 0 ≤ b < m ∗B2[i] 7→r b ∗ col [b] 7→ vi

The formulas δ(i, u) are similar to the formulas α(i, u) in the
invariant that we used to verify Treiber’s stack. However, the
single token ♦ is replaced by n tokens ♦n. The formulas ζ(i)
are based on the same idea but are a bit more complicated since
it is dynamically decided to which memory cell the assumption
of thread i applies (namely, col [b] contains the value that is
stored in the thread-local variable otherT ). The formulas φ(i)
form an invariant that relates the variables vi to the value stored
in col [B2[i]]. The loop invariant of the outer loop is

(pushed ∨ ♦n·n) ∗A1[tid ] 7→r ∗ C1[tid ] 7→r

∗A2[tid ] 7→r ∗B2[tid ] 7→r ∗ C2[tid ] 7→r

The loop invariant of the inner loop is
(matched ∨♦n) ∗A2[tid ] 7→r ∗B2[tid ] 7→r ∗C2[tid ] 7→r .

The proof is similar to the proof of Treiber’s stack.

227



S := alloc(1); // initialization
[S] := 0;
col := alloc(...); // elimination array

A1 := alloc(max_tid); // auxiliary arrays
C1 := alloc(max_tid); // initialized to 0
A2 := alloc(max_tid);
B2 := alloc(max_tid);
C2 := alloc(max_tid);

push(v) ,
pushed := false;
// ...
while ( !pushed ) do {
atomic {
t := [S]; // expect t = [S]
C1[tid] := 1; // critical state 1 starts
A1[tid] := t

};
// ...
atomic { // pushed := CAS(S,t,x)
s := [S]; if s == t then {
[S] := x;
pushed := true;

} else skip;
C1[tid] := 0 // critical state 1 ends

};
if !pushed then { // elimination scheme

// ...
atomic {
pos = GetPosition(...);
B2[tid] := pos;

}
matched := false;
while ( !matched ) do {
atomic {
otherT := col[pos]; // expectation
C2[tid] := 1; // critical state 2 starts
A2[tid] := otherT

};
// ...
atomic {

// pushed := CAS(col+pos,otherT,tid)
c := col[pos]; if c == otherT then {
col[pos] := tid;
matched := true;

} else skip;
C2[tid] := 0 // critical state 2 ends

};
}
// ... } }

Fig. 11. The loop-structure of the push operation of Hendler et al’s stack
with elimination backoff scheme [9].

228



Characterizing Progress Properties of

Concurrent Objects via Contextual Refinements

Hongjin Liang1,2, Jan Hoffmann2, Xinyu Feng1, and Zhong Shao2

1 University of Science and Technology of China
2 Yale University

Abstract. Implementations of concurrent objects should guarantee lin-
earizability and a progress property such as wait-freedom, lock-freedom,
obstruction-freedom, starvation-freedom, or deadlock-freedom. Conven-
tional informal or semi-formal definitions of these progress properties
describe conditions under which a method call is guaranteed to com-
plete, but it is unclear how these definitions can be utilized to formally
verify system software in a layered and modular way.
In this paper, we propose a unified framework based on contextual re-
finements to show exactly how progress properties affect the behaviors
of client programs. We give formal operational definitions of all common
progress properties and prove that for linearizable objects, each progress
property is equivalent to a specific type of contextual refinement that
preserves termination. The equivalence ensures that verification of such
a contextual refinement for a concurrent object guarantees both lineariz-
ability and the corresponding progress property. Contextual refinement
also enables us to verify safety and liveness properties of client programs
at a high abstraction level by soundly replacing concrete method imple-
mentations with abstract atomic operations.

1 Introduction

A concurrent object consists of shared data and a set of methods that provide
an interface for client threads to manipulate and access the shared data. The
synchronization of simultaneous data access within the object affects the progress
of the execution of the client threads in the system.

Various progress properties have been proposed for concurrent objects. The
most important ones are wait-freedom, lock-freedom and obstruction-freedom for
non-blocking implementations, and starvation-freedom and deadlock-freedom for
lock-based implementations. These properties describe conditions under which
method calls are guaranteed to successfully complete in an execution. For exam-
ple, lock-freedom guarantees that “infinitely often some method call finishes in
a finite number of steps” [9].

Nevertheless, the common informal or semi-formal definitions of the progress
properties are difficult to use in a modular and layered program verification be-
cause they fail to describe how the progress properties affect clients. In a modular
verification of client threads, the concrete implementation Π of the object meth-
ods should be replaced by an abstraction (or specification) ΠA that consists of

229



equivalent atomic methods. The progress properties should then characterize
whether and how the behaviors of a client program will be affected if a client
uses Π instead of ΠA. In particular, we are interested in systematically study-
ing whether the termination of a client using the abstract methods ΠA will be
preserved when using an implementation Π with some progress guarantee.

Previous work on verifying the safety of concurrent objects (e.g., [4, 12]) has
shown that linearizability—a standard safety criterion for concurrent objects—
and contextual refinement are equivalent. Informally, an implementation Π is
a contextual refinement of a (more abstract) implementation ΠA, if every ob-
servable behavior of any client program using Π can also be observed when the
client uses ΠA instead. To obtain equivalence to linearizability, the observable
behaviors include I/O events but not divergence (i.e., non-termination). Re-
cently, Gotsman and Yang [6] showed that a client program that diverges using
a linearizable and lock-free object must also diverge when using the abstract
operations instead. Their work reveals a connection between lock-freedom and
a form of contextual refinement which preserves termination as well as safety
properties. It is unclear how other progress guarantees affect termination of
client programs and how they are related to contextual refinements.

This paper studies all five commonly used progress properties and their re-
lationships to contextual refinements. We propose a unified framework in which
a certain type of termination-sensitive contextual refinement is equivalent to
linearizability together with one of the progress properties. The idea is to iden-
tify different observable behaviors for different progress properties. For example,
for the contextual refinement for lock-freedom we observe the divergence of the
whole program, while for wait-freedom we also need to observe which threads in
the program diverge. For lock-based progress properties, e.g., starvation-freedom
and deadlock-freedom, we have to take fair schedulers into account.

Our paper makes the following new contributions:

– We formalize the definitions of the five most common progress properties:
wait-freedom, lock-freedom, obstruction-freedom, starvation-freedom, and
deadlock-freedom. Our formulation is based on possibly infinite event traces
that are operationally generated by any client using the object.

– Based on our formalization, we prove relationships between the progress
properties. For example, wait-freedom implies lock-freedom and starvation-
freedom implies deadlock-freedom. These relationships form a lattice shown
in Figure 1 (where the arrows represent implications). We close the lattice
with a bottom element that we call sequential termination, a progress prop-
erty in the sequential setting. It is weaker than any other progress property.

– We develop a unified framework to characterize progress properties via con-
textual refinements. With linearizability, each progress property is proved
equivalent to a contextual refinement which takes into account divergence of
programs. A companion TR [14] contains the formal proofs of our results.

By extending earlier equivalence results on linearizability [4], our contextual
refinement framework can serve as a new alternative definition for the full cor-
rectness properties of concurrent objects. The contextual refinement implied by

230



Wait-freedom

Lock-freedom Starvation-freedom

Obstruction-freedom Deadlock-freedom

Sequential termination

Fig. 1: Relationships between Progress Properties

linearizability and a progress guarantee precisely characterizes the properties at
the abstract level that are preserved by the object implementation. When prov-
ing these properties of a client of the object, we can soundly replace the concrete
method implementations by its abstract operations. On the other hand, since the
contextual refinement also implies linearizability and the progress property, we
can potentially borrow ideas from existing proof methods for contextual refine-
ments, such as simulations (e.g., [13]) and logical relations (e.g., [2]), to verify
linearizability and the progress guarantee together.

In the remainder of this paper, we first informally explain our framework
in Section 2. We then introduce the formal setting in Section 3; including the
definition of linearizability as the safety criterion of objects. We formulate the
progress properties in Section 4 and the contextual refinement framework in
Section 5. We discuss related work and conclude in Section 6.

2 Informal Account

In this section, we informally describe our results. We first give an overview of
linearizability and its equivalence to the basic contextual refinement. Then we
explain the progress properties and summarize our new equivalence results.

Linearizability and Contextual Refinement. Linearizability is a standard
safety criterion for concurrent objects [9]. Intuitively, linearizability describes
atomic behaviors of object implementations. It requires that each method call
should appear to take effect instantaneously at some moment between its invo-
cation and return.

Linearizability intuitively establishes a correspondence between the object
implementation Π and the intended atomic operationsΠA. This correspondence
can also be understood as a contextual refinement. Informally, we say that Π is a
contextual refinement of ΠA, Π ⊑ ΠA, if substituting Π for ΠA in any context
(i.e., in a client program) does not add observable behaviors. External observers
cannot tell that ΠA has been replaced by Π from monitoring the behaviors of
the client program.

It has been proved [4, 12] that linearizability is equivalent to a contextual
refinement in which the observable behaviors are finite traces of I/O events. Thus

231



this basic contextual refinement can be used to distinguish linearizable objects
from non-linearizable ones. But it cannot characterize progress properties of
objects.

Progress Properties. Figure 2 shows several implementations of a counter
with different progress guarantees that we study in this paper. A counter object
provides the two methods inc and dec for incrementing and decrementing a
shared variable x. The implementations given here are not intended to be prac-
tical but merely to demonstrate the meanings of the progress properties. We
assume that every command is executed atomically.

Informally, an object implementation is wait-free, if it guarantees that every
thread can complete any started operation of the data structure in a finite num-
ber of steps [7]. Figure 2(a) shows an ideal wait-free implementation in which the
increment and the decrement are done atomically. This implementation is obvi-
ously wait-free since it guarantees termination of every method call regardless of
interference from other threads. Note that realistic implementations of wait-free
counters are more complex and involve arrays and atomic snapshots [1].

Lock-freedom is similar to wait-freedom but only guarantees that some thread
will complete an operation in a finite number of steps [7]. Typical lock-free imple-
mentations (such as the well-known Treiber stack, HSY elimination-backoff stack
and Harris-Michael lock-free list) use the atomic compare-and-swap instruction
cas in a loop to repeatedly attempt an update until it succeeds. Figure 2(b)
shows such an implementation of the counter object. It is lock-free, because
whenever inc and dec operations are executed concurrently, there always exists
some successful update. Note that this object is not wait-free. For the following
program (2.1), the cas instruction in the method called by the left thread may
continuously fail due to the continuous updates of x made by the right thread.

inc(); ∥ while(true) inc(); (2.1)

Herlihy et al. [8] propose obstruction-freedom which “guarantees progress
for any thread that eventually executes in isolation” (i.e., without other active
threads in the system). They present two double-ended queues as examples. In
Figure 2(c) we show an obstruction-free counter that may look contrived but
nevertheless illustrates the idea of the progress property.

The implementation introduces a variable i, and lets inc perform the atomic
increment after increasing i to 10 and dec do the atomic decrement after decreas-
ing i to 0. Whenever a method is executed in isolation (i.e., without interference
from other threads), it will complete. Thus the object is obstruction-free. It is
not lock-free, because for the client

inc(); ∥ dec(); (2.2)

which executes an increment and a decrement concurrently, it is possible that
neither of the method calls returns. For instance, under a specific schedule, every
increment over i made by the left thread is immediately followed by a decrement
from the right thread.

232



1 inc() { x := x + 1; }
2 dec() { x := x - 1; }

(a) Wait-Free (Ideal) Impl.

1 inc() {

2 local t, b;
3 do {
4 t := x;

5 b := cas(&x,t,t+1);
6 } while(!b);
7 }

(b) Lock-Free Impl.

1 inc() {
2 while (i < 10) {

3 i := i + 1;
4 }
5 x := x + 1;

6 }

7 dec() {

8 while (i > 0) {
9 i := i - 1;
10 }

11 x := x - 1;
12 }

(c) Obstruction-Free Impl.

1 inc() {
2 TestAndSet_lock();

3 x := x + 1;
4 TestAndSet_unlock();
5 }

(d) Deadlock-Free Impl.

1 inc() {
2 Bakery_lock();
3 x := x + 1;

4 Bakery_unlock();
5 }

(e) Starvation-Free Impl.

Fig. 2: Counter Objects with Methods inc and dec

Wait-freedom, lock-freedom, and obstruction-freedom are progress properties
for non-blocking implementations, where a delay of a thread cannot prevent other
threads from making progress. In contrast, deadlock-freedom and starvation-
freedom are progress properties for lock-based implementations. A delay of a
thread holding a lock will block other threads which request the lock.

Deadlock-freedom and starvation-freedom are often defined in terms of locks
and critical sections. Deadlock-freedom guarantees that some thread will succeed
in acquiring the lock, and starvation-freedom states that every thread attempting
to acquire the lock will eventually succeed [9]. For example, a test-and-set spin
lock is deadlock-free but not starvation-free. In a concurrent access, some thread
will successfully set the bit and get the lock, but there might be a thread that
is continuously failing to get the lock. Lamport’s bakery lock is starvation-free.
It ensures that threads can acquire locks in the order of their requests.

However, as noted by Herlihy and Shavit [10], the above definitions based on
locks are unsatisfactory, because it is often difficult to identify a particular field
in the object as a lock. Instead, they suggest defining them in terms of method
calls. They also notice that the above definitions implicitly assume that every
thread acquiring the lock will eventually release it. This assumption requires fair
scheduling, i.e., every thread gets eventually executed.

Following Herlihy and Shavit [10], we say an object is deadlock-free, if in
each fair execution there always exists some method call that can finish. As
an example in Figure 2(d), we use a test-and-set lock to synchronize the incre-
ments of the counter. Since some thread is guaranteed to acquire the test-and-set
lock, the method call of that thread is guaranteed to finish. Thus the object is
deadlock-free. Similarly, a starvation-free object guarantees that every method
call can finish in fair executions. Figure 2(e) shows a counter implemented with
Lamport’s bakery lock. It is starvation-free since the bakery lock ensures that
every thread can acquire the lock and hence every method call can eventually
complete.

233



Wait-Free Lock-Free Obstruction-Free Deadlock-Free Starvation-Free
ΠA (t, Div.) Div. Div. Div. (t, Div.)
Π (t, Div.) Div. Div. if Isolating Div. if Fair (t, Div.) if Fair

Table 1: Characterizing Progress Properties via Contextual Refinements Π ⊑ ΠA

Our Results. None of the above definitions of the five progress properties
describes their guarantees regarding the behaviors of client code. In this paper,
we define several contextual refinements to characterize the effects over client
behaviors when the client uses objects with some progress properties. We show
that linearizability together with a progress property is equivalent to a certain
termination-sensitive contextual refinement. Table 1 summarizes our results.

For each progress property, the new contextual refinement Π ⊑ ΠA is de-
fined with respect to a divergence behavior and/or a specific scheduling at the
implementation level (the third row in Table 1) and at the abstract side (the
second row), in addition to the I/O events in the basic contextual refinement for
linearizability.

– For wait-freedom, we need to observe the divergence of each individual thread
t, represented by “(t, Div.)” in Table 1, at both the concrete and the abstract
levels. We show that, if the thread t of a client program diverges when the
client uses a linearizable and wait-free object Π , then thread t must also
diverge when using ΠA instead.

– The case for lock-freedom is similar, except that we now consider the diver-
gence behaviors of the whole client program rather than individual threads
(denoted by “Div.” in Table 1). If a client diverges when using a linearizable
and lock-free object Π , it must also diverge when it uses ΠA instead.

– For obstruction-freedom, we consider the behaviors of isolating executions
at the concrete side (denoted by “Div. if Isolating” in Table 1). In those
executions, eventually only one thread is running. We show that, if a client
diverges in an isolating execution when it uses a linearizable and obstruction-
free object Π , it must also diverge in some abstract execution.

– For deadlock-freedom, we only care about fair executions at the concrete
level (denoted by “Div. if Fair” in Table 1).

– For starvation-freedom, we observe the divergence of each individual thread
at both levels and restrict our considerations to fair executions for the con-
crete side (“(t, Div.) if Fair” in Table 1). Any thread using Π can diverge in
a fair execution, only if it also diverges in some abstract execution.

These new contextual refinements can characterize linearizable objects with
progress properties. We will formalize the results and give examples in Section 5.

3 Formal Setting and Linearizability

In this section, we formalize linearizability and show its equivalence to a contex-
tual refinement that preserves safety properties only. This equivalence is the basis
of our new results that relate progress properties and contextual refinements.

234



(Expr) E ::= . . . (BExp) B ::= . . . (Instr) c ::= print(E) | . . .

(Stmt) C ::= skip | c | x := f(E) | return E | end

| ⟨C⟩ | C;C | if (B) C else C | while (B){C}
(Prog) W ::= skip | let Π in C ∥ . . .∥C

(ODecl) Π ::= {f1 ❀ (x1, C1), . . . , fn ❀ (xn, Cn)}

Fig. 3: Syntax of the Programming Language

(State) S ::= . . . (ThrdID) t ∈ Nat

(Evt) e ::= (t, f, n) | (t, ret, n) | (t,obj) | (t,obj,abort)
| (t,out, n) | (t, clt) | (t, clt,abort) | (t, term) | (spawn, n)

(ETrace) T ::= ϵ | e ::T (co-inductive)

Fig. 4: States and Event Traces

Language and Semantics. We use a similar language as in previous work of
Liang and Feng [12]. As shown in Figure 3, a program W consists of several
client threads that run in parallel. Each thread could call the methods declared
in the object Π . A method f is defined as a pair (x,C), where x is the formal
argument and C is the method body. The object Π could be either concrete
with fine-grained code that we want to verify, or abstract (usually denoted as
ΠA in the following) that we consider as the specification. For the latter case,
each method body should be an atomic operation of the form ⟨C⟩ and it should
be always safe to execute it. For simplicity, we assume there is only one object
in the program W and each method takes one argument only.

Most commands are standard. Clients can use print(E) to produce observ-
able external events. We do not allow the object’s methods to produce external
events. To simplify the semantics, we also assume there are no nested method
calls. To discuss progress properties later, we introduce an auxiliary command
end. It is a special marker that can be added at the end of a thread, but is not
supposed to be used directly by programmers. The skip statement plays two
roles here: a statement that has no computation effects or a flag to show the end
of an execution.

We use S for a program state. Program transitions (W,S)
e

$−→ (W ′,S ′) gen-
erate events e defined in Figure 4. A method invocation event (t, f, n) is produced
when thread t executes x := f(E), where n is the value of the argument E. A
return (t, ret, n) is produced with the return value n. print(E) generates an out-
put (t,out, n), and end generates a termination marker (t, term). Other steps
generate either normal object actions (t,obj) (for steps inside method calls) or
silent client actions (t, clt) (for client steps other than print(E)). For transi-
tions leading to the error state abort (e.g., invalid memory access), fault events
are produced: (t,obj, abort) by the object method code and (t, clt, abort) by
the client code. We also introduce an auxiliary event (spawn, n), saying that n
threads are spawned. It will be useful later when defining fair scheduling (in Sec-
tion 4). We write tid(e) for the thread ID in the event e. The predicate is clt(e)
states that the event e is either a silent client action, an output, or a client
fault. We write is inv(e) and is ret(e) to denote that e is a method invocation

235



T !W,S"
def

= {T | ∃W ′,S ′. (W,S)
T

&−→∗ (W ′,S ′) ∨ (W,S)
T

&−→∗ abort}

H!W,S"
def

= {get hist(T ) | T ∈ T !W,S" }

O!W,S"
def

= {get obsv(T ) | T ∈ T !W,S" }

Fig. 5: Generation of Finite Event Traces

and a return, respectively. The predicate is abt(e) denotes a fault of the object
or the client. Method invocations, returns and object faults are called history
events, which will be used to define linearizability below. Outputs, client faults
and object faults are called observable events.

An event trace T is a finite or infinite sequence of events. We write T (i) for
the i-th event of T . last(T ) is the last event in a finite T . The trace T (1..i) is the
sub-trace T (1), . . . , T (i) of T , and |T | is the length of T (|T | = ω if T is infinite).
The trace T |t represents the sub-trace of T consisting of all events whose thread
ID is t. We can use get hist(T ) to project T to the sub-trace consisting of all the
history events, and get obsv(T ) for the sub-trace of all the observable events.
Finite traces of history events are called histories.

In Figure 5, we define T !W,S" for the prefix-closed set of finite traces pro-

duced by the executions of (W,S). We use (W,S)
T

$−→ ∗ (W ′,S ′) for zero or
multiple-step program transitions that generate the trace T . We also define
H!W,S" and O!W,S" to get histories and finite observable traces produced by
the executions of (W,S). The TR [14] contains more details about the language.

Linearizability and Basic Contextual Refinement. We formulate lineariz-
ability following its standard definition [11]. Below we sketch the basic concepts.
Detailed formal definitions can be found in the companion TR [14].

Linearizability is defined using histories. We say a return e2 matches an
invocation e1, denoted as match(e1, e2), iff they have the same thread ID. An in-
vocation is pending in T if no matching return follows it. We can use pend inv(T )
to get the set of pending invocations in T . We handle pending invocations in
a history T in the standard way [11]: we append zero or more return events
to T , and drop the remaining pending invocations. The result is denoted by
completions(T ). It is a set of histories, and for each history in it, every invoca-
tion has a matching return event.

Definition 1 (Linearizable Histories). T ≼lin T
′ iff

1. ∀t. T |t = T ′|t;
2. there exists a bijection π : {1, . . . , |T |}→ {1, . . . , |T ′|} such that ∀i. T (i) =

T ′(π(i)) and ∀i, j. i < j ∧ is ret(T (i)) ∧ is inv(T (j)) =⇒ π(i) < π(j).

That is, T is linearizable w.r.t. T ′ if the latter is a permutation of the former,
preserving the order of events in the same threads and the order of the non-
overlapping method calls. Then an object is linearizable iff each of its concurrent
histories after completions is linearizable w.r.t. some legal sequential history. We
use ΠA ◃ (Sa, T

′) to mean that T ′ is a legal sequential history generated by any
client using the specification ΠA with an abstract initial state Sa.

236



Definition 2 (Linearizability of Objects). The object’s implementation Π

is linearizable w.r.t.ΠA under a refinement mapping ϕ, denoted by Π≼ϕΠA, iff
∀n,C1, . . . , Cn,S ,Sa, T. T ∈ H!(let Π in C1∥ . . .∥Cn),S" ∧ (ϕ(S) = Sa)
=⇒ ∃Tc, T

′. Tc ∈ completions(T ) ∧ΠA ◃ (Sa, T
′) ∧ Tc ≼lin T

′ .
Here the partial mapping ϕ :State⇀State relates concrete states to abstract ones.

The side condition ϕ(S) = Sa in the above definition requires the initial concrete
state S to be well-formed in that it represents a valid abstract state Sa. For
instance, ϕ may need S to contain a linked list and relate it to an abstract
mathematical set in Sa for a set object. Besides, ϕ should always require the
client states in S and Sa to be identical.

Next we define a contextual refinement between the concrete object and its
specification, which is equivalent to linearizability.

Definition 3 (Basic Contextual Refinement). Π ⊑ϕ ΠA iff

∀n, C1, . . . , Cn,S ,Sa. (ϕ(S) = Sa)
=⇒ O!(let Π in C1∥ . . .∥Cn),S" ⊆ O!(let ΠA in C1∥ . . .∥Cn),Sa" .

Remember that O!W,S" represents the prefix-closed set of observable event
traces generated during the executions of (W,S), which is defined in Figure 5.

Following Filipović et al. [4], we can prove that linearizability is equivalent
to this contextual refinement. We give the proofs in the TR [14].

Theorem 1 (Basic Equivalence). Π ≼ϕ ΠA ⇐⇒ Π ⊑ϕ ΠA.

Theorem 1 allows us to use Π ⊑ϕ ΠA to identify linearizable objects. However,
we cannot use it to characterize progress properties of objects. For the following
example, Π ⊑ϕ ΠA holds although no concrete method call of f could finish (we
assume this object contains a method f only).

Π(f) : while(true) skip; ΠA(f) : skip; C : print(1); f(); print(1);

The reason is that Π ⊑ϕ ΠA considers a prefix-closed set of event traces at the
abstract side. For the above client C, the observable behaviors of let Π in C
can all be found in the prefix-closed set of behaviors produced by let ΠA in C.

4 Formalizing Progress Properties

We define progress in Figure 6 as properties over both event traces T and object
implementations Π . We say an object implementation Π has a progress property
P iff all its event traces have the property. Here we use Tω to generate the event
traces. Its definition in Figure 6 is similar to T !W,S" of Figure 5, but Tω!W,S"
is for the set of finite or infinite event traces produced by complete executions.

We use (W,S)
T

$−→ω · to denote the existence of a T -labelled infinite execution.

(W,S)
T

$−→ ∗ (skip, ) represents a terminating execution that produces T . By
using ⌊W ⌋, we append end at the end of each thread to explicitly mark the
termination of the thread. We also insert the spawning event (spawn, n) at the

237



Definition. An object Π satisfies P under a refinement mapping ϕ, Pϕ(Π), iff
∀n,C1,. . . ,Cn,S , T. T ∈ Tω!(letΠ in C1∥. . .∥Cn),S" ∧ (S∈dom(ϕ)) =⇒ P (T ) .

Tω!W,S"
def

= {(spawn, |W |) ::T |

(⌊W ⌋,S)
T

&−→ω · ∨ (⌊W ⌋,S)
T

&−→∗(skip, ) ∨ (⌊W ⌋,S)
T

&−→∗abort}

⌊let Π in C1∥ . . .∥Cn⌋
def

= let Π in (C1; end)∥ . . .∥(Cn; end)

|let Π in C1 ∥ . . . ∥ Cn|
def

= n tnum((spawn, n) ::T )
def

= n

pend inv(T )
def

= {e | ∃i. e=T (i)∧ is inv(e) ∧ ¬∃j. (j > i ∧match(e, T (j)))}

prog-t(T ) iff ∀i, e. e ∈ pend inv(T (1..i)) =⇒ ∃j. j > i ∧match(e, T (j))

prog-s(T ) iff ∀i, e. e ∈ pend inv(T (1..i)) =⇒ ∃j. j > i ∧ is ret(T (j))

abt(T ) iff ∃i. is abt(T (i))

sched(T ) iff |T | = ω ∧ pend inv(T ) ̸= ∅ =⇒ ∃e. e ∈ pend inv(T ) ∧ |(T |tid(e))| = ω

fair(T ) iff |T | = ω =⇒ ∀t ∈ [1..tnum(T )]. |(T |t)| = ω ∨ last(T |t) = (t, term)

iso(T ) iff |T | = ω =⇒ ∃t, i. (∀j. j ≥ i =⇒ tid(T (j)) = t)

wait-free iff sched =⇒ prog-t ∨ abt starvation-free iff fair =⇒ prog-t ∨ abt

lock-free iff sched =⇒ prog-s ∨ abt deadlock-free iff fair =⇒ prog-s ∨ abt

obstruction-free iff sched ∧ iso =⇒ prog-t ∨ abt

Fig. 6: Formalizing Progress Properties

lock-free ⇐⇒ wait-free ∨ prog-s starvation-free ⇐⇒ wait-free ∨ ¬fair

obstruction-free ⇐⇒ lock-free ∨ ¬iso deadlock-free ⇐⇒ lock-free ∨ ¬fair

Fig. 7: Relationships between Progress Properties

beginning of T , where n is the number of threads in W . Then we can use tnum(T )
to get the number n, which is needed to define fairness, as shown below.

Before formulating each progress property over event traces, we first define
some auxiliary properties in Figure 6. prog-t(T ) guarantees that every method
call in T eventually finishes. prog-s(T ) guarantees that some pending method
call finishes. Different from prog-t, the return event T (j) in prog-s does not have
to be a matching return of the pending invocation e. abt(T ) says that T ends
with a fault event.

There are three useful conditions on scheduling. The basic requirement for
a good schedule is sched. If T is infinite and there exist pending calls, then at
least one pending thread should be scheduled infinitely often. In fact, there are
two possible reasons causing a method call of thread t to pend. Either t is no
longer scheduled, or it is always scheduled but the method call never finishes.
sched rules out the bad schedule where no thread with an invoked method is
active. For instance, the following infinite trace does not satisfy sched.

(t1, f1, n1) :: (t2, f2, n2) :: (t1, obj) :: (t3, clt) :: (t3, clt) :: (t3, clt) :: . . .

238



div tids(T )
def

= {t | ( |(T |t)| = ω ) }

Oω!W,S"
def

= {get obsv(T ) | T ∈ Tω!W,S" }

Oiω!W,S"
def

= {get obsv(T ) | T ∈ Tω!W,S" ∧ iso(T )}

Ofω!W,S"
def

= {get obsv(T ) | T ∈ Tω!W,S" ∧ fair(T )}

Otω!W,S"
def

= {(get obsv(T ), div tids(T )) | T ∈ Tω!W,S" }

Oftω!W,S"
def

= {(get obsv(T ),div tids(T )) | T ∈ Tω!W,S" ∧ fair(T )}

Fig. 8: Generation of Complete Event Traces

If T is infinite, fair(T ) requires every non-terminating thread be scheduled in-
finitely often; and iso(T ) requires eventually only one thread be scheduled. We
can see that a fair schedule is a good schedule satisfying sched.

At the bottom of Figure 6 we define the progress properties formally. We
omit the parameter T in the formulae to simplify the presentation. An event
trace T is wait-free (i.e., wait-free(T ) holds) if under the good schedule sched, it
guarantees prog-t unless it ends with a fault. lock-free(T ) is similar except that
it guarantees prog-s. Starvation-freedom and deadlock-freedom guarantee prog-t
and prog-s under fair scheduling. Obstruction-freedom guarantees prog-t if some
pending thread is always scheduled (sched) and runs in isolation (iso).

Figure 7 contains lemmas that relate progress properties. For instance, an
event trace is starvation-free, iff it is wait-free or not fair. These lemmas give us
the relationship lattice in Figure 1. To close the lattice, we also define a progress
property in the sequential setting. Sequential termination guarantees that every
method call must finish in a trace produced by a sequential client. The formal
definition is given in the companion TR [14], and we prove that it is implied by
each of the five progress properties for concurrent objects.

5 Equivalence to Contextual Refinements

We extend the basic contextual refinement in Definition 3 to observe progress
as well as linearizability. For each progress property, we carefully choose the
observable behaviors at the concrete and the abstract levels.

5.1 Observable Behaviors

In Figure 8, we define various observable behaviors for the termination-sensitive
contextual refinements.

We use Oω!W,S" to represent the set of observable event traces produced
by complete executions of (W,S). Recall that get obsv(T ) gets the sub-trace
of T consisting of all the observable events only. Unlike the prefix-closed set
O!W,S", this definition utilizes Tω!W,S" (see Figure 6) whose event traces are
all complete and could be infinite. Thus it allows us to observe divergence of the
whole program. Oiω and Ofω take the complete observable traces of isolating
and fair executions respectively. Here iso(T ) and fair(T ) are defined in Figure 6.

239



P wait-free lock-free obstruction-free deadlock-free starvation-free

Π ⊑P
ϕ ΠA Otω ⊆ Otω Oω ⊆ Oω Oiω ⊆ Oω Ofω ⊆ Oω Oftω ⊆ Otω

Table 2: Contextual Refinements Π ⊑P
ϕ ΠA for Progress Properties P

We could also observe divergence of individual threads rather than the whole
program. We define div tids(T ) to collect the set of threads that diverge in the
trace T . Then we write Otω!W,S" to get both the observable behaviors and the
diverging threads in the complete executions. Oftω!W,S" is defined similarly but
considers fair executions only.

More on divergence. In general, divergence means non-termination. For example,
we could say that the following two-threaded program (5.1) must diverge since
it never terminates.

x := x + 1; ∥ while(true) skip; (5.1)

But for individual threads, divergence is not equivalent to non-termination, since
a non-terminating thread may either have an infinite execution or simply be not
scheduled from some point due to unfair scheduling. We view only the former
case as divergence. For instance, in an unfair execution, the left thread of (5.1)
may never be scheduled and hence it has no chance to terminate. It does not
diverge. Similarly, for the following program (5.2),

while(true) skip; ∥ while(true) skip; (5.2)

the whole program must diverge, but it is possible that a single thread does not
diverge in an execution.

5.2 New Contextual Refinements and Equivalence Results

In Table 2, we summarize the definitions of the termination-sensitive contextual
refinements. Each new contextual refinement follows the basic one in Definition 3
but takes different observable behaviors as specified in Table 2. For example, the
contextual refinement for wait-freedom is formally defined as follows:

Π ⊑wait-free
ϕ ΠA iff ( ∀n,C1, . . . , Cn,S ,Sa. (ϕ(S) = Sa) =⇒

Otω!(letΠ in C1∥ . . .∥Cn),S)" ⊆ Otω!(letΠA in C1∥ . . .∥Cn),Sa" ).

Theorem 2 says that linearizability with a progress property P together is equiv-
alent to the corresponding contextual refinement ⊑P

ϕ .

Theorem 2 (Equivalence). Π ≼ϕ ΠA ∧ Pϕ(Π) ⇐⇒ Π ⊑P
ϕ ΠA , where P is

wait-free, lock-free, obstruction-free, deadlock-free or starvation-free.

Here we assume the object specification ΠA is total, i.e., the abstract operations
never block. We provide the proofs of our equivalence results in the TR [14].

The contextual refinement for wait-freedom takes Otω at both the concrete
and the abstract levels. The divergence of individual threads as well as I/O
events are treated as observable behaviors. The intuition of the equivalence is as

240



follows. Since a wait-free object Π guarantees that every method call finishes,
we have to blame the client code itself for the divergence of a thread using Π .
That is, even if the thread uses the abstract object ΠA, it must still diverge.

As an example, consider the client program (2.1). Intuitively, for any execu-
tion in which the client uses the abstract operations, only the right thread t2
diverges. Thus Otω of the abstract program is a singleton set {(ϵ, {t2})}. When
the client uses the wait-free object in Figure 2(a), its Otω set is still {(ϵ, {t2})}.
It does not produce more observable behaviors. But if it uses a non-wait-free
object (such as the one in Figure 2(b)), the left thread t1 does not necessarily
finish. The Otω set becomes {(ϵ, {t2}), (ϵ, {t1, t2})}. It produces more observable
behaviors than the abstract client, breaking the contextual refinement. Thanks
to observing div tids that collects the diverging threads, we can rule out non-
wait-free objects which may cause more threads to diverge.

Π ⊑lock-free
ϕ ΠA takes coarser observable behaviors. We observe the divergence

of the whole client program by using Oω at both the concrete and the abstract
levels. Intuitively, a lock-free object Π ensures that some method call will finish,
thus the client using Π diverges only if there are an infinite number of method
calls. Then it must also diverge when using the abstract object ΠA.

For example, consider the client (2.1). The whole client program diverges in
every execution both when it uses the lock-free object in Figure 2(b) and when
it uses the abstract one. The Oω set of observable behaviors is {ϵ} at both levels.
On the other hand, the following client must terminate and print out both 1 and
2 in every execution. The Oω set is {1::2 ::ϵ, 2::1 ::ϵ} at both levels.

inc(); print(1); ∥ dec(); print(2); (5.3)

Instead, if the client (5.3) uses the non-lock-free object in Figure 2(c), it may
diverge and nothing is printed out. The Oω set becomes {ϵ, 1 :: 2 :: ϵ, 2 :: 1 :: ϵ},
which contains more behaviors than the abstract side. Thus Π ⊑lock-free

ϕ ΠA fails.
Obstruction-freedom ensures progress for isolating executions in which even-

tually only one thread is running. Correspondingly,Π ⊑obstruction-free
ϕ ΠA restricts

our considerations to isolating executions. It takes Oiω at the concrete level and
Oω at the abstract level.

To understand the equivalence, consider the client (5.3) again. For isolating
executions with the obstruction-free object in Figure 2(c), it must terminate and
print out both 1 and 2. The Oiω set at the concrete level is {1::2 ::ϵ, 2::1 ::ϵ}, the
same as the set Oω of the abstract side. Non-obstruction-free objects in general
do not guarantee progress for some isolating executions. If the client uses the
object in Figure 2(d) or (e), the Oiω set is {ϵ, 1 :: 2 :: ϵ, 2 :: 1 :: ϵ}, not a subset of
the abstract Oω set. The undesired empty observable trace is produced by unfair
executions, where a thread acquires the lock and gets suspended and then the
other thread would keep requesting the lock forever (it is executed in isolation).

Π ⊑deadlock-free
ϕ ΠA uses Ofω at the concrete side, ruling out undesired di-

vergence caused by unfair scheduling. For the client (5.3) with the object in
Figure 2(d) or (e), its Ofω set is same as the set Oω at the abstract level.

For Π ⊑starvation-free
ϕ ΠA, we still consider only fair executions at the concrete

level (similar to deadlock-freedom), but observe the divergence of individual

241



threads rather than the whole program (similar to wait-freedom). It uses Oftω

at the concrete side and Otω at the abstract level. For the client (5.3) with the
starvation-free object in Figure 2(e), no thread diverges in any fair execution.
Then the set Oftω of observable behaviors is {(1 ::2 ::ϵ, ∅), (2 ::1 ::ϵ, ∅)}, which is
same as the set Otω at the abstract level.

Observing threaded divergence allows us to distinguish starvation-free objects
from deadlock-free objects. Consider the client (2.1). Under fair scheduling, we
know only the right thread t2 would diverge when using the starvation-free ob-
ject in Figure 2(e). The set Oftω is {(ϵ, {t2})}. It coincides with the abstract
behaviors Otω. But when using the deadlock-free object of Figure 2(d), the Oftω

set becomes {(ϵ, {t2}), (ϵ, {t1, t2})}, breaking the contextual refinement.

6 Related Work and Conclusion

There is a large body of work discussing the five progress properties and the con-
textual refinements individually. Our work in contrast studies their relationships,
which have not been considered much before.

Gotsman and Yang [6] propose a new linearizability definition that preserves
lock-freedom, and suggest a connection between lock-freedom and a termination-
sensitive contextual refinement. We do not redefine linearizability here. Instead,
we propose a unified framework to systematically relate all the five progress
properties plus linearizability to various contextual refinements.

Herlihy and Shavit [10] informally discuss all the five progress properties.
Our definitions in Section 4 mostly follow their explanations, but they are more
formal and close the gap between program semantics and their history-based
interpretations. We also notice that their obstruction-freedom is inappropriate
for some examples (see TR [14]), and propose a different definition that is closer
to the common intuition [9]. In addition, we relate the progress properties to
contextual refinements, which consider the extensional effects on client behaviors.

Fossati et al. [5] propose a uniform approach in the π-calculus to formulate
both the standard progress properties and their observational approximations.
Their technical setting is completely different from ours. Also, their observational
approximations for lock-freedom and wait-freedom are strictly weaker than the
standard notions. Their deadlock-freedom and starvation-freedom are not formu-
lated, and there is no observational approximation given for obstruction-freedom.
In comparison, our framework relates each of the five progress properties (plus
linearizablity) to an equivalent contextual refinement.

There are also formulations of progress properties based on temporal logics.
For example, Petrank et al. [15] formalize the three non-blocking properties and
Dongol [3] formalize all the five progress properties, using linear temporal logics.
Those formulations make it easier to do model checking (e.g., Petrank et al. [15]
also build a tool to model check a variant of lock-freedom), while our contextual
refinement framework is potentially helpful for modular Hoare-style verification.

Conclusion. We have introduced a contextual refinement framework to unify
various progress properties. For linearizable objects, each progress property is

242



equivalent to a specific termination-sensitive contextual refinement, as summa-
rized in Table 1. The framework allows us to verify safety and liveness properties
of client programs at a high abstraction level by replacing concrete method im-
plementations with abstract operations. It also makes it possible to borrow ideas
from existing proof methods for contextual refinements to verify linearizability
and a progress property together, which we leave as future work.

Acknowledgments. We would like to thank anonymous referees for their help-
ful suggestions and comments. This work is supported in part by China Scholar-
ship Council, NSFC grants 61073040 and 61229201, NCET grant NCET-2010-
0984, and the Fundamental Research Funds for the Central Universities (Grant
No. WK0110000018). It is also supported in part by DARPA grants FA8750-
10-2-0254 and FA8750-12-2-0293, ONR grant N000141210478, and NSF grants
0915888 and 1065451. Any opinions, findings, and conclusions contained in this
document are those of the authors and do not reflect the views of these agencies.

References

1. Aspnes, J., Herlihy, M.: Wait-free data structures in the asynchronous PRAM
model. In: SPAA. pp. 340–349 (1990)

2. Birkedal, L., Sieczkowski, F., Thamsborg, J.: A concurrent logical relation. In:
CSL. pp. 107–121 (2012)

3. Dongol, B.: Formalising progress properties of non-blocking programs. In: ICFEM.
pp. 284–303 (2006)

4. Filipovic, I., O’Hearn, P., Rinetzky, N., Yang, H.: Abstraction for concurrent ob-
jects. Theor. Comput. Sci. 411(51-52), 4379–4398 (2010)

5. Fossati, L., Honda, K., Yoshida, N.: Intensional and extensional characterisation
of global progress in the π-calculus. In: CONCUR. pp. 287–301 (2012)

6. Gotsman, A., Yang, H.: Liveness-preserving atomicity abstraction. In: ICALP. pp.
453–465 (2011)

7. Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13(1),
124–149 (1991)

8. Herlihy, M., Luchangco, V., Moir, M.: Obstruction-free synchronization: Double-
ended queues as an example. In: ICDCS. pp. 522–529 (2003)

9. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann (Apr 2008)

10. Herlihy, M., Shavit, N.: On the nature of progress. In: OPODIS. pp. 313–328 (2011)
11. Herlihy, M., Wing, J.: Linearizability: a correctness condition for concurrent ob-

jects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)
12. Liang, H., Feng, X.: Modular verification of linearizability with non-fixed lineariza-

tion points. In: PLDI. p. to appear (2013)
13. Liang, H., Feng, X., Fu, M.: A rely-guarantee-based simulation for verifying con-

current program transformations. In: POPL. pp. 455–468 (2012)
14. Liang, H., Hoffmann, J., Feng, X., Shao, Z.: The extended version of the present

paper (2013), http://kyhcs.ustcsz.edu.cn/relconcur/prog
15. Petrank, E., Musuvathi, M., Steensgaard, B.: Progress guarantee for parallel pro-

grams via bounded lock-freedom. In: PLDI. pp. 144–154 (2009)

243



Characterizing Progress Properties of

Concurrent Objects via Contextual Refinements

(Extended Version)

Hongjin Liang1,2, Jan Hoffmann2, Xinyu Feng1, and Zhong Shao2

1 University of Science and Technology of China
2 Yale University

Abstract. Implementations of concurrent objects should guarantee lin-
earizability and a progress property such as wait-freedom, lock-freedom,
obstruction-freedom, starvation-freedom, or deadlock-freedom. Conven-
tional informal or semi-formal definitions of these progress properties
describe conditions under which a method call is guaranteed to com-
plete, but it is unclear how these definitions can be utilized to formally
verify system software in a layered and modular way.
In this paper, we propose a unified framework based on contextual re-
finements to show exactly how progress properties affect the behaviors
of client programs. We give formal operational definitions of all common
progress properties and prove that for linearizable objects, each progress
property is equivalent to a specific type of contextual refinement that
preserves termination. The equivalence ensures that verification of such
a contextual refinement for a concurrent object guarantees both lineariz-
ability and the corresponding progress property. Contextual refinement
also enables us to verify safety and liveness properties of client programs
at a high abstraction level by soundly replacing concrete method imple-
mentations with abstract atomic operations.

1 Introduction

A concurrent object consists of shared data and a set of methods that provide
an interface for client threads to manipulate and access the shared data. The
synchronization of simultaneous data access within the object affects the progress
of the execution of the client threads in the system.

Various progress properties have been proposed for concurrent objects. The
most important ones are wait-freedom, lock-freedom and obstruction-freedom for
non-blocking implementations, and starvation-freedom and deadlock-freedom for
lock-based implementations. These properties describe conditions under which
method calls are guaranteed to successfully complete in an execution. For exam-
ple, lock-freedom guarantees that “infinitely often some method call finishes in
a finite number of steps” [10].

Nevertheless, the common informal or semi-formal definitions of the progress
properties are difficult to use in a modular and layered program verification be-
cause they fail to describe how the progress properties affect clients. In a modular

244



verification of client threads, the concrete implementation Π of the object meth-
ods should be replaced by an abstraction (or specification) ΠA that consists of
equivalent atomic methods. The progress properties should then characterize
whether and how the behaviors of a client program will be affected if a client
uses Π instead of ΠA. In particular, we are interested in systematically study-
ing whether the termination of a client using the abstract methods ΠA will be
preserved when using an implementation Π with some progress guarantee.

Previous work on verifying the safety of concurrent objects (e.g., [4, 13]) has
shown that linearizability—a standard safety criterion for concurrent objects—
and contextual refinement are equivalent. Informally, an implementation Π is
a contextual refinement of a (more abstract) implementation ΠA, if every ob-
servable behavior of any client program using Π can also be observed when the
client uses ΠA instead. To obtain equivalence to linearizability, the observable
behaviors include I/O events but not divergence (i.e., non-termination). Re-
cently, Gotsman and Yang [7] showed that a client program that diverges using
a linearizable and lock-free object must also diverge when using the abstract
operations instead. Their work reveals a connection between lock-freedom and
a form of contextual refinement which preserves termination as well as safety
properties. It is unclear how other progress guarantees affect termination of
client programs and how they are related to contextual refinements.

This paper studies all five commonly used progress properties and their re-
lationships to contextual refinements. We propose a unified framework in which
a certain type of termination-sensitive contextual refinement is equivalent to
linearizability together with one of the progress properties. The idea is to iden-
tify different observable behaviors for different progress properties. For example,
for the contextual refinement for lock-freedom we observe the divergence of the
whole program, while for wait-freedom we also need to observe which threads in
the program diverge. For lock-based progress properties, e.g., starvation-freedom
and deadlock-freedom, we have to take fair schedulers into account.

Our paper makes the following new contributions:

– We formalize the definitions of the five most common progress properties:
wait-freedom, lock-freedom, obstruction-freedom, starvation-freedom, and
deadlock-freedom. Our formulation is based on possibly infinite event traces
that are operationally generated by any client using the object.

– Based on our formalization, we prove relationships between the progress
properties. For example, wait-freedom implies lock-freedom and starvation-
freedom implies deadlock-freedom. These relationships form a lattice shown
in Figure 1 (where the arrows represent implications). We close the lattice
with a bottom element that we call sequential termination, a progress prop-
erty in the sequential setting. It is weaker than any other progress property.

– We develop a unified framework to characterize progress properties via con-
textual refinements. With linearizability, each progress property is proved
equivalent to a contextual refinement which takes into account divergence of
programs. The formal proofs of our results can be found in Appendix B.

245



Wait-freedom

Lock-freedom Starvation-freedom

Obstruction-freedom Deadlock-freedom

Sequential termination

Fig. 1: Relationships between Progress Properties

By extending earlier equivalence results on linearizability [4], our contextual
refinement framework can serve as a new alternative definition for the full cor-
rectness properties of concurrent objects. The contextual refinement implied by
linearizability and a progress guarantee precisely characterizes the properties at
the abstract level that are preserved by the object implementation. When prov-
ing these properties of a client of the object, we can soundly replace the concrete
method implementations by its abstract operations. On the other hand, since the
contextual refinement also implies linearizability and the progress property, we
can potentially borrow ideas from existing proof methods for contextual refine-
ments, such as simulations (e.g., [14]) and logical relations (e.g., [2]), to verify
linearizability and the progress guarantee together.

In the remainder of this paper, we first informally explain our framework
in Section 2. We then introduce the formal setting in Section 3; including the
definition of linearizability as the safety criterion of objects. We formulate the
progress properties in Section 4 and the contextual refinement framework in
Section 5. We discuss related work and conclude in Section 6.

2 Informal Account

In this section, we informally describe our results. We first give an overview of
linearizability and its equivalence to the basic contextual refinement. Then we
explain the progress properties and summarize our new equivalence results.

Linearizability and Contextual Refinement. Linearizability is a standard
safety criterion for concurrent objects [10]. Intuitively, linearizability describes
atomic behaviors of object implementations. It requires that each method call
should appear to take effect instantaneously at some moment between its invo-
cation and return.

Linearizability intuitively establishes a correspondence between the object
implementation Π and the intended atomic operationsΠA. This correspondence
can also be understood as a contextual refinement. Informally, we say that Π is a
contextual refinement of ΠA, Π ⊑ ΠA, if substituting Π for ΠA in any context
(i.e., in a client program) does not add observable behaviors. External observers
cannot tell that ΠA has been replaced by Π from monitoring the behaviors of
the client program.

246



It has been proved [4, 13] that linearizability is equivalent to a contextual
refinement in which the observable behaviors are finite traces of I/O events. Thus
this basic contextual refinement can be used to distinguish linearizable objects
from non-linearizable ones. But it cannot characterize progress properties of
objects.

Progress Properties. Figure 2 shows several implementations of a counter
with different progress guarantees that we study in this paper. A counter object
provides the two methods inc and dec for incrementing and decrementing a
shared variable x. The implementations given here are not intended to be prac-
tical but merely to demonstrate the meanings of the progress properties. We
assume that every command is executed atomically.

Informally, an object implementation is wait-free, if it guarantees that every
thread can complete any started operation of the data structure in a finite num-
ber of steps [8]. Figure 2(a) shows an ideal wait-free implementation in which the
increment and the decrement are done atomically. This implementation is obvi-
ously wait-free since it guarantees termination of every method call regardless of
interference from other threads. Note that realistic implementations of wait-free
counters are more complex and involve arrays and atomic snapshots [1].

Lock-freedom is similar to wait-freedom but only guarantees that some thread
will complete an operation in a finite number of steps [8]. Typical lock-free imple-
mentations (such as the well-known Treiber stack, HSY elimination-backoff stack
and Harris-Michael lock-free list) use the atomic compare-and-swap instruction
cas in a loop to repeatedly attempt an update until it succeeds. Figure 2(b)
shows such an implementation of the counter object. It is lock-free, because
whenever inc and dec operations are executed concurrently, there always exists
some successful update. Note that this object is not wait-free. For the following
program (2.1), the cas instruction in the method called by the left thread may
continuously fail due to the continuous updates of x made by the right thread.

inc(); ∥ while(true) inc(); (2.1)

Herlihy et al. [9] propose obstruction-freedom which “guarantees progress
for any thread that eventually executes in isolation” (i.e., without other active
threads in the system). They present two double-ended queues as examples. In
Figure 2(c) we show an obstruction-free counter that may look contrived but
nevertheless illustrates the idea of the progress property.

The implementation introduces a variable i, and lets inc perform the atomic
increment after increasing i to 10 and dec do the atomic decrement after decreas-
ing i to 0. Whenever a method is executed in isolation (i.e., without interference
from other threads), it will complete. Thus the object is obstruction-free. It is
not lock-free, because for the client

inc(); ∥ dec(); (2.2)

which executes an increment and a decrement concurrently, it is possible that
neither of the method calls returns. For instance, under a specific schedule, every

247



1 inc() { x := x + 1; }
2 dec() { x := x - 1; }

(a) Wait-Free (Ideal) Impl.

1 inc() {

2 local t, b;
3 do {
4 t := x;

5 b := cas(&x,t,t+1);
6 } while(!b);
7 }

(b) Lock-Free Impl.

1 inc() {
2 while (i < 10) {

3 i := i + 1;
4 }
5 x := x + 1;

6 }

7 dec() {

8 while (i > 0) {
9 i := i - 1;
10 }

11 x := x - 1;
12 }

(c) Obstruction-Free Impl.

1 inc() {
2 TestAndSet_lock();

3 x := x + 1;
4 TestAndSet_unlock();
5 }

(d) Deadlock-Free Impl.

1 inc() {
2 Bakery_lock();
3 x := x + 1;

4 Bakery_unlock();
5 }

(e) Starvation-Free Impl.

Fig. 2: Counter Objects with Methods inc and dec

increment over i made by the left thread is immediately followed by a decrement
from the right thread.

Wait-freedom, lock-freedom, and obstruction-freedom are progress properties
for non-blocking implementations, where a delay of a thread cannot prevent other
threads from making progress. In contrast, deadlock-freedom and starvation-
freedom are progress properties for lock-based implementations. A delay of a
thread holding a lock will block other threads which request the lock.

Deadlock-freedom and starvation-freedom are often defined in terms of locks
and critical sections. Deadlock-freedom guarantees that some thread will succeed
in acquiring the lock, and starvation-freedom states that every thread attempting
to acquire the lock will eventually succeed [10]. For example, a test-and-set spin
lock is deadlock-free but not starvation-free. In a concurrent access, some thread
will successfully set the bit and get the lock, but there might be a thread that
is continuously failing to get the lock. Lamport’s bakery lock is starvation-free.
It ensures that threads can acquire locks in the order of their requests.

However, as noted by Herlihy and Shavit [11], the above definitions based on
locks are unsatisfactory, because it is often difficult to identify a particular field
in the object as a lock. Instead, they suggest defining them in terms of method
calls. They also notice that the above definitions implicitly assume that every
thread acquiring the lock will eventually release it. This assumption requires fair
scheduling, i.e., every thread gets eventually executed.

Following Herlihy and Shavit [11], we say an object is deadlock-free, if in
each fair execution there always exists some method call that can finish. As
an example in Figure 2(d), we use a test-and-set lock to synchronize the incre-
ments of the counter. Since some thread is guaranteed to acquire the test-and-set
lock, the method call of that thread is guaranteed to finish. Thus the object is
deadlock-free. Similarly, a starvation-free object guarantees that every method
call can finish in fair executions. Figure 2(e) shows a counter implemented with
Lamport’s bakery lock. It is starvation-free since the bakery lock ensures that

248



Wait-Free Lock-Free Obstruction-Free Deadlock-Free Starvation-Free
ΠA (t, Div.) Div. Div. Div. (t, Div.)
Π (t, Div.) Div. Div. if Isolating Div. if Fair (t, Div.) if Fair

Table 1: Characterizing Progress Properties via Contextual Refinements Π ⊑ ΠA

every thread can acquire the lock and hence every method call can eventually
complete.

Our Results. None of the above definitions of the five progress properties
describes their guarantees regarding the behaviors of client code. In this paper,
we define several contextual refinements to characterize the effects over client
behaviors when the client uses objects with some progress properties. We show
that linearizability together with a progress property is equivalent to a certain
termination-sensitive contextual refinement. Table 1 summarizes our results.

For each progress property, the new contextual refinement Π ⊑ ΠA is de-
fined with respect to a divergence behavior and/or a specific scheduling at the
implementation level (the third row in Table 1) and at the abstract side (the
second row), in addition to the I/O events in the basic contextual refinement for
linearizability.

– For wait-freedom, we need to observe the divergence of each individual thread
t, represented by “(t, Div.)” in Table 1, at both the concrete and the abstract
levels. We show that, if the thread t of a client program diverges when the
client uses a linearizable and wait-free object Π , then thread t must also
diverge when using ΠA instead.

– The case for lock-freedom is similar, except that we now consider the diver-
gence behaviors of the whole client program rather than individual threads
(denoted by “Div.” in Table 1). If a client diverges when using a linearizable
and lock-free object Π , it must also diverge when it uses ΠA instead.

– For obstruction-freedom, we consider the behaviors of isolating executions
at the concrete side (denoted by “Div. if Isolating” in Table 1). In those
executions, eventually only one thread is running. We show that, if a client
diverges in an isolating execution when it uses a linearizable and obstruction-
free object Π , it must also diverge in some abstract execution.

– For deadlock-freedom, we only care about fair executions at the concrete
level (denoted by “Div. if Fair” in Table 1).

– For starvation-freedom, we observe the divergence of each individual thread
at both levels and restrict our considerations to fair executions for the con-
crete side (“(t, Div.) if Fair” in Table 1). Any thread using Π can diverge in
a fair execution, only if it also diverges in some abstract execution.

These new contextual refinements can characterize linearizable objects with
progress properties. We will formalize the results and give examples in Section 5.

249



(Expr) E ::= x | n | E +E | . . .

(BExp) B ::= true | false | E = E | !B | . . .

(Instr) c ::= x := E | x := [E] | [E] := E | print(E)
| x := cons(E, . . . , E) | dispose(E) | . . .

(Stmt) C ::= skip | c | x := f(E) | return E | fret(n) | noret

| end | ⟨C⟩ | C;C | if (B) C else C | while (B){C}
(Prog) W ::= skip | let Π in C∥ . . .∥C

(ODecl) Π ::= {f1 ❀ (x1, C1), . . . , fn ❀ (xn, Cn)}

Fig. 3: Syntax of the Programming Language

3 Formal Setting and Linearizability

In this section, we formalize linearizability and show its equivalence to a contex-
tual refinement that preserves safety properties. This equivalence is the basis of
our new results that relate contextual refinement and progress properties.

Language and Semantics We use a similar language as in previous work of
Liang and Feng [13]. As shown in Figure 3, a program W consists of several
client threads that run in parallel. Each thread could call the methods declared
in the object Π . A method f is defined as a pair (x,C), where x is the formal
argument and C is the method body. We write f ❀ (x,C). The object Π could
be either concrete with fine-grained code that we want to verify, or abstract
(usually denoted as ΠA in the following) that we consider as the specification.
For the latter case, each method body should be an atomic operation of the form
⟨C⟩ and it should be always safe to execute it. For simplicity, we assume there
is only one object in the program W and each method takes one argument only.
However, it is easy to extend our work to multiple objects and arguments.

We use the command noret at the end of methods that terminate but do
not execute return E. It is automatically appended to the method code and
is not supposed to be used by programmers. The command return E will first
calculate the return value n and reduce to fret(n), another runtime command
automatically generated during executions. We separate the evaluation of E from
returning its value n to the client, to allow interference between the two steps.
Note that the atomic block ⟨C⟩ may contain the command return E. In that
case, ⟨C⟩ would also reduce to fret(n).

To discuss progress properties later, we introduce an auxiliary command end.
It is a special marker that can be added at the end of a thread, but should not
be used directly by programmers. Other commands are mostly standard. Clients
can use print(E) to produce observable external events. We do not allow the
object’s methods to produce external events. To simplify the semantics, we also
assume there are no nested method calls.

Figure 4 defines program states and event traces. We partition a global state
S into the client memory σc, the object σo, and a thread pool K. A client can
only access the client memory σc, unless it calls object methods. The thread pool
maps each thread ID t to its local call stack frame. A call stack κ could be either

250



(ThrdID) t ∈ Nat

(Mem) σ ∈ (PVar ∪Nat) ⇀ Int

(CallStk) κ ::= (σl, x, C) | ◦

(ThrdPool) K ::= {t1❀κ1, . . . , tn❀κn}
(PState) S ::= (σc,σo,K)
(LState) s ::= (σc,σo,κ)

(Evt) e ::= (t, f, n) | (t, ret, n)
| (t,obj) | (t,obj,abort)
| (t,out, n) | (t, clt)
| (t, clt,abort) | (t, term)
| (spawn, n)

(ETrace) T ::= ϵ | e ::T (co-inductive)

Fig. 4: States and Event Traces

empty (◦) when the thread is not executing a method, or a triple (σl, x, C), where
σl maps the method’s formal argument and local variables to their values, x is
the caller’s variable to receive the return value, and C is the caller’s remaining
code to be executed after the method returns. To give a thread-local semantics,
we also define the thread local view s of the state that only includes one call
stack.

Figure 5 contains selected rules of the operational semantics. To describe
the operational semantics for threads, we use an execution context E, where
E ::= [ ] | E;C. The execution of code occurs in the hole [ ]. The context E[C ]
results from placing C into the hole.

We have three kinds of transitions. We write (W,S)
e

"−→ (W ′,S ′) for the top-
level program transitions and (C, s)

e
−→ t,Π (C ′, s′) for the transitions of thread t

with the object Π . We also introduce the local transition (C,σ) −! t (C ′,σ′) to
describe a step inside or outside method calls of concurrent objects. It accesses
only object memory and method local variables (for the case inside method calls),
or only client memory (for the other case). We then lift a local transition to a
thread transition that produces an event (t,obj) or (t, clt). All three transitions
also include steps that lead to the error state abort.

We define all the generated events e in Figure 4. A method invocation
event (t, f, n) is produced when thread t executes x := f(E), where the ar-
gument E’s value is n. A return (t, ret, n) is produced with the return value
n. print(E) generates an output (t,out, n), and end generates a termination
marker (t, term). Other steps generate either normal object actions (t,obj) (for
steps inside method calls) or silent client actions (t, clt) (for client steps other
than print(E)). For transitions leading to the error state abort, fault events
are produced: (t,obj, abort) by the object method code and (t, clt, abort) by
the client code. We also introduce an auxiliary event (spawn, n) to represent
spawning n threads. It is automatically inserted at the beginning of a generated
event trace, according to the total number of threads in the program.3 Note that
in this paper, we follow Herlihy and Wing [12] and model dynamic thread cre-
ation by simply treating each child thread as an additional thread that executes
no operations before being created. Outputs and faults are observable events.
We write tid(e) for the thread ID in the event e. The predicate is clt(e) states

3 The spawning event (spawn, n) is newly introduced in this TR. It helps to hide the
parameter of the total number of threads in the fairness definition in the submitted
version, and to formulate the alternative definitions of progress properties.

251



(Ci, (σc, σo,K(i)))
e

−→ i,Π (C′
i, (σ

′
c,σ

′
o, κ

′)))

(letΠ in C1∥ . . . Ci . . .∥Cn, (σc,σo,K))
e

#−→ (letΠ in C1∥ . . . C
′
i . . .∥Cn, (σ

′
c,σ

′
o,K{i ❀ κ′}))

(a) Program Transitions

Π(f) = (y, C) !E"σc
= n x ∈ dom(σc) κ = ({y ❀ n}, x,E[ skip ])

(E[x := f(E) ], (σc,σo, ◦))
(t,f,n)
−−−−→ t,Π (C;noret, (σc,σo,κ))

f ̸∈ dom(Π) or !E"σc
undefined or x ̸∈ dom(σc)

(E[x := f(E) ], (σc,σo, ◦))
(t,clt,abort)
−−−−−−−−→ t,Π abort

κ = (σl, x, C) σ′
c = σc{x ❀ n}

(fret(n), (σc,σo,κ))
(t,ret,n)
−−−−−→ t,Π (C, (σ′

c,σo, ◦)) (end, s)
(t,term)
−−−−−→ t,Π (skip, s)

!E"σc
= n

(E[print(E) ], (σc,σo, ◦))
(t,out,n)
−−−−−−→ t,Π (E[ skip ], (σc,σo, ◦))

(C,σo ' σl) −# t (C
′,σ′

o ' σ′
l) dom(σl) = dom(σ′

l)

(C, (σc, σo, (σl, x, Cc)))
(t,obj)
−−−−→ t,Π (C′, (σc,σ

′
o, (σ

′
l, x, Cc)))

(C,σo ' σl) −# t abort

(C, (σc, σo, (σl, x, Cc)))
(t,obj,abort)
−−−−−−−−→ t,Π abort

(C,σc) −# t (C
′,σ′

c)

(C, (σc,σo, ◦))
(t,clt)
−−−−→ t,Π (C′, (σ′

c, σo, ◦))

(b) Thread Transitions

!E"σ = n

(E[ return E ], σ) −# t (fret(n),σ) (noret,σ) −# t abort

(C,σ) −#∗
t (skip,σ

′)

(E[ ⟨C⟩ ], σ) −# t (E[ skip ],σ′)

(C,σ) −#∗
t (fret(n), σ

′)

(E[ ⟨C⟩ ], σ) −# t (fret(n),σ
′)

(C,σ) −#∗
t abort

(E[ ⟨C⟩ ],σ) −# t abort

(c) Local Thread Transitions

Fig. 5: Selected Rules of Operational Semantics

252



that the event e is either a silent client action, an output, or a client fault. We
write is inv(e) and is ret(e) to denote that the event e is a method invocation
and a return, respectively. The predicate is res(e) denotes a return or an object
fault, and is abt(e) denotes a fault of the object or the client. Other predicates
are similar and summarized below.

– is inv(e) iff there exist t, f and n such that e = (t, f, n);
– is ret(e) iff there exist t and n′ such that e = (t, ret, n′);
– is obj abt(e) iff there exists t such that e = (t,obj, abort);
– is res(e) iff either is ret(e) or is obj abt(e) holds;
– is obj(e) iff either e = ( ,obj) or is inv(e) or is res(e) holds;
– is clt abt(e) iff there exists t such that e = (t, clt, abort);
– is abt(e) iff either is obj abt(e) or is clt abt(e) holds;
– is clt(e) iff there exists t and n such that either e = (t, clt) or e = (t,out, n)

or e = (t, clt, abort) holds.

An event trace T is a finite or infinite sequence of events. We write T (i)
for the i-th event of T . last(T ) is the last event in a finite T . The trace T (1..i)
is the sub-trace T (1), . . . , T (i) of T , and |T | is the length of T (|T | = ω if T
is infinite). The trace T |t represents the sub-trace of T consisting of all events
whose thread ID is t. We generate event traces from executions in Figure 6.
We write T !W, (σc,σo)" for the prefix-closed set of finite traces produced by the
executions of W with the initial client memory σc, the object σo, and empty
call stacks for all threads. Similarly, we write Tω!W, (σc,σo)" for the finite or
infinite event traces produced by complete executions. In the definitions, we use

the notation
T

!−→∗ for zero or multiple-step program transitions the generate

the trace T . Similarly,
T

!−→ ω · denotes the existence of an infinite T -labelled
execution. Note that by using ⌊W ⌋, end is automatically appended at the end
of each thread in W to explicitly mark the termination of a thread. Using ⌊T ⌋W ,
we insert the spawning event (spawn, n) at the beginning of T , where n is the
total number of threads in W . Then we could use tnum(T ) to get the number
of threads in the program that generates T . Figure 6 also shows various ways to
get histories and observable behaviors of a program, which we will explain later.

Linearizability and Basic Contextual Refinement Linearizability [12] is
defined using histories. Histories are special event traces only consisting of method
invocation, method return, and object faults.

We say a response e2 matches an invocation e1, denoted as match(e1, e2), iff
they have the same thread ID.

match(e1, e2)
def

= is inv(e1) ∧ is res(e2) ∧ (tid(e1) = tid(e2))

A history T is sequential, i.e., seq(T ), iff the first event of T is an invocation, and
each invocation, except possibly the last, is immediately followed by a matching
response. It is inductively defined as follows.

seq(ϵ)

is inv(e)

seq(e :: ϵ)

match(e1, e2) seq(T )

seq(e1 :: e2 :: T )

253



T !W, (σc,σo)"
def

= {⌊T ⌋W | ∃W ′,S ′. (⌊W ⌋, (σc,σo,!))
T

$−→∗ (W ′,S ′)

∨ (⌊W ⌋, (σc, σo,!))
T

$−→∗ abort}

Tω!W, (σc,σo)"
def

= {⌊T ⌋W | (⌊W ⌋, (σc,σo,!))
T

$−→ω · ∨ (⌊W ⌋, (σc,σo,!))
T

$−→∗ (skip, )

∨ (⌊W ⌋, (σc, σo,!))
T

$−→∗ abort}

⌊let Π in C1∥ . . .∥Cn⌋
def

= let Π in (C1; end)∥ . . .∥(Cn; end)

⌊T ⌋(let Π in C1∥...∥Cn)
def

= (spawn, n) ::T tnum((spawn, n) ::T )
def

= n

!
def

= {t1 ❀ ◦, . . . , tn ❀ ◦} div tids(T )
def

= {t | ( |(T |t)| = ω ) }

iso(T ) iff |T | = ω =⇒ ∃t, i. (∀j. j ≥ i =⇒ tid(T (j)) = t)

fair(T ) iff |T | = ω =⇒ ∀t ∈ [1..tnum(T )]. |(T |t)| = ω ∨ last(T |t) = (t, term)

H!W, (σc, σo)"
def

= {get hist(T ) | T ∈ T !W, (σc,σo)" }

O!W, (σc,σo)"
def

= {get obsv(T ) | T ∈ T !W, (σc,σo)" }

Otω!W, (σc, σo)"
def

= {(get obsv(T ), div tids(T )) | T ∈ Tω!W, (σc,σo)" }

Oω!W, (σc,σo)"
def

= {get obsv(T ) | T ∈ Tω!W, (σc,σo)" }

Oiω!W, (σc, σo)"
def

= {get obsv(T ) | T ∈ Tω!W, (σc,σo)" ∧ iso(T )}

Ofω!W, (σc,σo)"
def

= {get obsv(T ) | ∃n. T ∈ Tω!W, (σc, σo)" ∧ fair(T )}

Fig. 6: Generation of Event Traces

Then T is well-formed iff, for all t, T |t is sequential.

well formed(T )
def

= ∀t. seq(T |t) .

T is complete iff it is well-formed and every invocation has a matching response.
An invocation is pending if no matching response follows it. We write pend inv(T )
for the set of pending invocations in T .

pend inv(T )
def

= {e | ∃i. e=T (i)∧ is inv(e) ∧ (∀j. i<j≤ |T | ⇒ ¬match(e, T (j)))}

We handle pending invocations in an incomplete history T following the stan-
dard linearizability definition [12]: We append zero or more return events to T ,
and drop the remaining pending invocations. Then we get a set of complete his-
tories, which is denoted by completions(T ). Formally, we define completions(T )
as follows.

Definition 1 (Extensions of a history). extensions(T ) is a set of well-formed
histories where we extend T by appending successful return events:

well formed(T )

T ∈ extensions(T )

T ′ ∈ extensions(T ) is ret(e) well formed(T ′ ::e)

T ′ ::e ∈ extensions(T )

Or equivalently,

extensions(T )
def

= {T ′ | well formed(T ′)∧ ∃Tok. T
′=T::Tok∧ ∀i. is ret(Tok(i))}.

254



Definition 2 (Completions of a history). truncate(T ) is the maximal com-
plete sub-history of T , which is inductively defined by dropping the pending in-
vocations in T :

truncate(ϵ)
def

= ϵ

truncate(e ::T )
def

=

{

e :: truncate(T ) if is res(e) or ∃i. match(e, T (i))
truncate(T ) otherwise

Then completions(T )
def

= {truncate(T ′) | T ′ ∈ extensions(T )} . It’s a set of
histories without pending invocations.

Then we can formulate the linearizability relation between well-formed his-
tories, which is a core notion used in the linearizability definition of an object.

Definition 3 (Linearizable Histories). T ≼lin T
′ iff

1. ∀t. T |t = T ′|t;
2. there exists a bijection π : {1, . . . , |T |} → {1, . . . , |T ′|} such that ∀i. T (i) =

T ′(π(i)) and ∀i, j. i < j ∧ is ret(T (i)) ∧ is inv(T (j)) =⇒ π(i) < π(j).

That is, T is linearizable w.r.t. T ′ if the latter is a permutation of the former,
preserving the order of events in the same threads and the order of the non-
overlapping method calls. Then an object is linearizable iff all its concurrent
histories after completions are linearizable w.r.t. some legal sequential histories.
We use ΠA ◃ (σa, T

′) to mean that T ′ is a legal sequential history generated by
any client using the specification ΠA with an initial abstract object σa.

ΠA ◃ (σa, T )
def

=
∃n,C1, . . . , Cn,σc. T ∈ H!(let ΠA in C1∥ . . .∥Cn), (σc,σa)" ∧ seq(T )

As defined in Figure 6, we use H!W, (σc,σa)" to generate histories from W ,
where get hist(T ) projects the event trace T to the sub-history.

Definition 4 (Linearizability of Objects). The object’s implementation Π is
linearizable w.r.t. ΠA under a refinement mapping ϕ, denoted by Π ≼ϕ ΠA iff
∀n,C1, . . . , Cn,σc,σo,σa, T. T ∈ H!(let Π in C1∥ . . .∥Cn), (σc,σo)" ∧ (ϕ(σo) = σa)

=⇒ ∃Tc, T
′. Tc ∈ completions(T ) ∧ΠA ◃ (σa, T

′) ∧ Tc ≼lin T
′

Here the mapping ϕ relates concrete objects to abstract ones:

(RefMap) ϕ ∈ Mem ⇀ AbsObj

The side condition ϕ(σo) = θ in the above definition requires the initial concrete
object σo to be a well-formed data structure representing a valid object θ.

Next we define a contextual refinement between the concrete object and its
specification, which is equivalent to linearizability. Informally, this contextual
refinement states that for any set of client threads, the program W has no more
observable behaviors than the corresponding abstract program. Below we use
O!W, (σc,σo)" to represent the set of observable event traces generated during
the executions of W with the initial state (σc,σo) (and empty stacks). It is
defined similarly as H!W, (σc,σo)" in Figure 6, but now the traces consist of
observable events only (outputs, client faults or object faults).

255



Definition. An object Π satisfies P under a refinement mapping ϕ, Pϕ(Π), iff
∀n,C1,. . . ,Cn,S , T. T ∈ Tω!(letΠ in C1∥. . .∥Cn),S" ∧ (S∈dom(ϕ)) =⇒ P (T ) .

Tω!W,S"
def

= {(spawn, |W |) ::T |

(⌊W ⌋,S)
T

'−→ω · ∨ (⌊W ⌋,S)
T

'−→∗(skip, ) ∨ (⌊W ⌋,S)
T

'−→∗abort}

⌊let Π in C1∥ . . .∥Cn⌋
def

= let Π in (C1; end)∥ . . .∥(Cn; end)

|let Π in C1 ∥ . . . ∥ Cn|
def

= n tnum((spawn, n) ::T )
def

= n

pend inv(T )
def

= {e | ∃i. e=T (i)∧ is inv(e) ∧ ¬∃j. (j > i ∧match(e, T (j)))}

prog-t(T ) iff ∀i, e. e ∈ pend inv(T (1..i)) =⇒ ∃j. j > i ∧match(e, T (j))

prog-s(T ) iff ∀i, e. e ∈ pend inv(T (1..i)) =⇒ ∃j. j > i ∧ is ret(T (j))

abt(T ) iff ∃i. is abt(T (i))

sched(T ) iff |T | = ω ∧ pend inv(T ) ̸= ∅ =⇒ ∃e. e ∈ pend inv(T ) ∧ |(T |tid(e))| = ω

fair(T ) iff |T | = ω =⇒ ∀t ∈ [1..tnum(T )]. |(T |t)| = ω ∨ last(T |t) = (t, term)

iso(T ) iff |T | = ω =⇒ ∃t, i. (∀j. j ≥ i =⇒ tid(T (j)) = t)

wait-free iff sched =⇒ prog-t ∨ abt starvation-free iff fair =⇒ prog-t ∨ abt

lock-free iff sched =⇒ prog-s ∨ abt deadlock-free iff fair =⇒ prog-s ∨ abt

obstruction-free iff sched ∧ iso =⇒ prog-t ∨ abt

Fig. 7: Formalizing Progress Properties

Definition 5 (Basic Contextual Refinement). Π ⊑ϕ ΠA iff
∀n,C1, . . . , Cn,σc,σo,σa. (ϕ(σo) = σa)
=⇒ O!(let Π in C1∥ . . .∥Cn), (σc,σo)" ⊆ O!(let ΠA in C1∥ . . .∥Cn), (σc,σa)" .

Following Filipović et al. [4], we can prove that linearizability is equivalent
to this contextual refinement. We give the proofs in Appendix B.1.

Theorem 1 (Basic Equivalence). Π ≼ϕ ΠA ⇐⇒ Π ⊑ϕ ΠA.

Theorem 1 allows us to use Π ⊑ϕ ΠA to identify linearizable objects. However,
we cannot use it to observe progress properties of objects. For the following
example, Π ⊑ϕ ΠA holds although no concrete method call of f could finish (we
assume this object contains a method f only).

Π(f) : while(true) skip; ΠA(f) : skip; C : print(1); f(); print(1);

The reason is that Π ⊑ϕ ΠA considers a prefix-closed set of event traces at the
abstract side. For the above client C, the observable behaviors of let Π in C
can all be found in the prefix-closed set of behaviors produced by let ΠA in C.

4 Formalizing Progress Properties

We define progress in Figure 7 as properties over both event traces T and object
implementations Π . We say an object implementation Π has a progress property

256



lock-free ⇐⇒ wait-free ∨ prog-s starvation-free ⇐⇒ wait-free ∨ ¬fair

obstruction-free ⇐⇒ lock-free ∨ ¬iso deadlock-free ⇐⇒ lock-free ∨ ¬fair

Fig. 8: Relationships between Progress Properties

P iff all its event traces have the property. Here we use Tω to generate the event
traces. Its definition in Figure 7 is similar to T !W,S" of Figure ??, but Tω!W,S"
is for the set of finite or infinite event traces produced by complete executions.

We use (W,S)
T

!−→ω · to denote the existence of a T -labelled infinite execution.

(W,S)
T

!−→ ∗ (skip, ) represents a terminating execution that produces T . By
using ⌊W ⌋, we append end at the end of each thread to explicitly mark the
termination of the thread. We also insert the spawning event (spawn, n) at the
beginning of T , where n is the number of threads in W . Then we can use tnum(T )
to get the number n, which is needed to define fairness, as shown below.

Before formulating each progress property over event traces, we first define
some auxiliary properties in Figure 7. prog-t(T ) guarantees that every method
call in T eventually finishes. prog-s(T ) guarantees that some pending method
call finishes. Different from prog-t, the return event T (j) in prog-s does not have
to be a matching return of the pending invocation e. abt(T ) says that T ends
with a fault event.

There are three useful conditions on scheduling. The basic requirement for
a good schedule is sched. If T is infinite and there exist pending calls, then at
least one pending thread should be scheduled infinitely often. In fact, there are
two possible reasons causing a method call of thread t to pend. Either t is no
longer scheduled, or it is always scheduled but the method call never finishes.
sched rules out the bad schedule where no thread with an invoked method is
active. For instance, the following infinite trace does not satisfy sched.

(t1, f1, n1) :: (t2, f2, n2) :: (t1, obj) :: (t3, clt) :: (t3, clt) :: (t3, clt) :: . . .

If T is infinite, fair(T ) requires every non-terminating thread be scheduled in-
finitely often; and iso(T ) requires eventually only one thread be scheduled. We
can see that a fair schedule is a good schedule satisfying sched.

At the bottom of Figure 7 we define the progress properties formally. We
omit the parameter T in the formulae to simplify the presentation. An event
trace T is wait-free (i.e., wait-free(T ) holds) if under the good schedule sched, it
guarantees prog-t unless it ends with a fault. lock-free(T ) is similar except that
it guarantees prog-s. Starvation-freedom and deadlock-freedom guarantee prog-t
and prog-s under fair scheduling. Obstruction-freedom guarantees prog-t if some
pending thread is always scheduled (sched) and runs in isolation (iso).

Figure 8 contains lemmas that relate progress properties. For instance, an
event trace is starvation-free, iff it is wait-free or not fair. These lemmas give us
the relationship lattice in Figure 1. To close the lattice, we also define a progress
property in the sequential setting. Sequential termination guarantees that every
method call must finish in a trace produced by a sequential client. The formal

257



div tids(T )
def

= {t | ( |(T |t)| = ω ) }

Oω!W,S"
def

= {get obsv(T ) | T ∈ Tω!W,S" }

Oiω!W,S"
def

= {get obsv(T ) | T ∈ Tω!W,S" ∧ iso(T )}

Ofω!W,S"
def

= {get obsv(T ) | T ∈ Tω!W,S" ∧ fair(T )}

Otω!W,S"
def

= {(get obsv(T ), div tids(T )) | T ∈ Tω!W,S" }

Oftω!W,S"
def

= {(get obsv(T ),div tids(T )) | T ∈ Tω!W,S" ∧ fair(T )}

Fig. 9: Generation of Complete Event Traces

definition is given in the companion TR [15], and we prove that it is implied by
each of the five progress properties for concurrent objects.

5 Equivalence to Contextual Refinements

We extend the basic contextual refinement in Definition 5 to observe progress
as well as linearizability. For each progress property, we carefully choose the
observable behaviors at the concrete and the abstract levels.

5.1 Observable Behaviors

In Figure 9, we define various observable behaviors for the termination-sensitive
contextual refinements.

We use Oω!W,S" to represent the set of observable event traces produced
by complete executions of (W,S). Recall that get obsv(T ) gets the sub-trace
of T consisting of all the observable events only. Unlike the prefix-closed set
O!W,S", this definition utilizes Tω!W,S" (see Figure 7) whose event traces are
all complete and could be infinite. Thus it allows us to observe divergence of the
whole program. Oiω and Ofω take the complete observable traces of isolating
and fair executions respectively. Here iso(T ) and fair(T ) are defined in Figure 7.

We could also observe divergence of individual threads rather than the whole
program. We define div tids(T ) to collect the set of threads that diverge in the
trace T . Then we write Otω!W,S" to get both the observable behaviors and the
diverging threads in the complete executions. Oftω!W,S" is defined similarly but
considers fair executions only.

More on divergence. In general, divergence means non-termination. For example,
we could say that the following two-threaded program (5.1) must diverge since
it never terminates.

x := x + 1; ∥ while(true) skip; (5.1)

But for individual threads, divergence is not equivalent to non-termination, since
a non-terminating thread may either have an infinite execution or simply be not
scheduled from some point due to unfair scheduling. We view only the former
case as divergence. For instance, in an unfair execution, the left thread of (5.1)

258



P wait-free lock-free obstruction-free deadlock-free starvation-free

Π ⊑P
ϕ ΠA Otω ⊆ Otω Oω ⊆ Oω Oiω ⊆ Oω Ofω ⊆ Oω Oftω ⊆ Otω

Table 2: Contextual Refinements Π ⊑P
ϕ ΠA for Progress Properties P

may never be scheduled and hence it has no chance to terminate. It does not
diverge. Similarly, for the following program (5.2),

while(true) skip; ∥ while(true) skip; (5.2)

the whole program must diverge, but it is possible that a single thread does not
diverge in an execution.

5.2 New Contextual Refinements and Equivalence Results

In Table 2, we summarize the definitions of the termination-sensitive contextual
refinements. Each new contextual refinement follows the basic one in Definition 5
but takes different observable behaviors as specified in Table 2. For example, the
contextual refinement for wait-freedom is formally defined as follows:

Π ⊑wait-free
ϕ ΠA iff ( ∀n,C1, . . . , Cn,S ,Sa. (ϕ(S) = Sa) =⇒

Otω!(letΠ in C1∥ . . .∥Cn),S)" ⊆ Otω!(letΠA in C1∥ . . .∥Cn),Sa" ).

Theorem 2 says that linearizability with a progress property P together is equiv-
alent to the corresponding contextual refinement ⊑P

ϕ .

Theorem 2 (Equivalence). Π ≼ϕ ΠA ∧ Pϕ(Π) ⇐⇒ Π ⊑P
ϕ ΠA , where P is

wait-free, lock-free, obstruction-free, deadlock-free or starvation-free.

Here we assume the object specification ΠA is total, i.e., the abstract operations
never block. We provide the full proofs of our equivalence results in Appendix B.

The contextual refinement for wait-freedom takes Otω at both the concrete
and the abstract levels. The divergence of individual threads as well as I/O
events are treated as observable behaviors. The intuition of the equivalence is as
follows. Since a wait-free object Π guarantees that every method call finishes,
we have to blame the client code itself for the divergence of a thread using Π .
That is, even if the thread uses the abstract object ΠA, it must still diverge.

As an example, consider the client program (2.1). Intuitively, for any execu-
tion in which the client uses the abstract operations, only the right thread t2
diverges. Thus Otω of the abstract program is a singleton set {(ϵ, {t2})}. When
the client uses the wait-free object in Figure 2(a), its Otω set is still {(ϵ, {t2})}.
It does not produce more observable behaviors. But if it uses a non-wait-free
object (such as the one in Figure 2(b)), the left thread t1 does not necessarily
finish. The Otω set becomes {(ϵ, {t2}), (ϵ, {t1, t2})}. It produces more observable
behaviors than the abstract client, breaking the contextual refinement. Thanks
to observing div tids that collects the diverging threads, we can rule out non-
wait-free objects which may cause more threads to diverge.

Π ⊑lock-free
ϕ ΠA takes coarser observable behaviors. We observe the divergence

of the whole client program by using Oω at both the concrete and the abstract

259



levels. Intuitively, a lock-free object Π ensures that some method call will finish,
thus the client using Π diverges only if there are an infinite number of method
calls. Then it must also diverge when using the abstract object ΠA.

For example, consider the client (2.1). The whole client program diverges in
every execution both when it uses the lock-free object in Figure 2(b) and when
it uses the abstract one. The Oω set of observable behaviors is {ϵ} at both levels.
On the other hand, the following client must terminate and print out both 1 and
2 in every execution. The Oω set is {1::2 ::ϵ, 2::1 ::ϵ} at both levels.

inc(); print(1); ∥ dec(); print(2); (5.3)

Instead, if the client (5.3) uses the non-lock-free object in Figure 2(c), it may
diverge and nothing is printed out. The Oω set becomes {ϵ, 1 :: 2 :: ϵ, 2 :: 1 :: ϵ},
which contains more behaviors than the abstract side. Thus Π ⊑lock-free

ϕ ΠA fails.

Obstruction-freedom ensures progress for isolating executions in which even-
tually only one thread is running. Correspondingly,Π ⊑obstruction-free

ϕ ΠA restricts
our considerations to isolating executions. It takes Oiω at the concrete level and
Oω at the abstract level.

To understand the equivalence, consider the client (5.3) again. For isolating
executions with the obstruction-free object in Figure 2(c), it must terminate and
print out both 1 and 2. The Oiω set at the concrete level is {1::2 ::ϵ, 2::1 ::ϵ}, the
same as the set Oω of the abstract side. Non-obstruction-free objects in general
do not guarantee progress for some isolating executions. If the client uses the
object in Figure 2(d) or (e), the Oiω set is {ϵ, 1 :: 2 :: ϵ, 2 :: 1 :: ϵ}, not a subset of
the abstract Oω set. The undesired empty observable trace is produced by unfair
executions, where a thread acquires the lock and gets suspended and then the
other thread would keep requesting the lock forever (it is executed in isolation).

Π ⊑deadlock-free
ϕ ΠA uses Ofω at the concrete side, ruling out undesired di-

vergence caused by unfair scheduling. For the client (5.3) with the object in
Figure 2(d) or (e), its Ofω set is same as the set Oω at the abstract level.

For Π ⊑starvation-free
ϕ ΠA, we still consider only fair executions at the concrete

level (similar to deadlock-freedom), but observe the divergence of individual
threads rather than the whole program (similar to wait-freedom). It uses Oftω

at the concrete side and Otω at the abstract level. For the client (5.3) with the
starvation-free object in Figure 2(e), no thread diverges in any fair execution.
Then the set Oftω of observable behaviors is {(1 ::2 ::ϵ, ∅), (2 ::1 ::ϵ, ∅)}, which is
same as the set Otω at the abstract level.

Observing threaded divergence allows us to distinguish starvation-free objects
from deadlock-free objects. Consider the client (2.1). Under fair scheduling, we
know only the right thread t2 would diverge when using the starvation-free ob-
ject in Figure 2(e). The set Oftω is {(ϵ, {t2})}. It coincides with the abstract
behaviors Otω. But when using the deadlock-free object of Figure 2(d), the Oftω

set becomes {(ϵ, {t2}), (ϵ, {t1, t2})}, breaking the contextual refinement.

260



6 Related Work and Conclusion

There is a large body of work discussing the five progress properties and the con-
textual refinements individually. Our work in contrast studies their relationships,
which have not been considered much before.

Gotsman and Yang [7] propose a new linearizability definition that preserves
lock-freedom, and suggest a connection between lock-freedom and a termination-
sensitive contextual refinement. We do not redefine linearizability here. Instead,
we propose a unified framework to systematically relate all the five progress
properties plus linearizability to various contextual refinements.

Herlihy and Shavit [11] informally discuss all the five progress properties.
Our definitions in Section 4 mostly follow their explanations, but they are more
formal and close the gap between program semantics and their history-based
interpretations. We also notice that their obstruction-freedom is inappropriate
for some examples (see TR [15]), and propose a different definition that is closer
to the common intuition [10]. In addition, we relate the progress properties to
contextual refinements, which consider the extensional effects on client behaviors.

Fossati et al. [5] propose a uniform approach in the π-calculus to formulate
both the standard progress properties and their observational approximations.
Their technical setting is completely different from ours. Also, their observational
approximations for lock-freedom and wait-freedom are strictly weaker than the
standard notions. Their deadlock-freedom and starvation-freedom are not formu-
lated, and there is no observational approximation given for obstruction-freedom.
In comparison, our framework relates each of the five progress properties (plus
linearizablity) to an equivalent contextual refinement.

There are also formulations of progress properties based on temporal logics.
For example, Petrank et al. [16] formalize the three non-blocking properties and
Dongol [3] formalize all the five progress properties, using linear temporal logics.
Those formulations make it easier to do model checking (e.g., Petrank et al. [16]
also build a tool to model check a variant of lock-freedom), while our contextual
refinement framework is potentially helpful for modular Hoare-style verification.

Conclusion. We have introduced a contextual refinement framework to unify
various progress properties. For linearizable objects, each progress property is
equivalent to a specific termination-sensitive contextual refinement, as summa-
rized in Table 1. The framework allows us to verify safety and liveness properties
of client programs at a high abstraction level by replacing concrete method im-
plementations with abstract operations. It also makes it possible to borrow ideas
from existing proof methods for contextual refinements to verify linearizability
and a progress property together, which we leave as future work.

Acknowledgments. We would like to thank anonymous referees for their help-
ful suggestions and comments. This work is supported in part by China Scholar-
ship Council, NSFC grants 61073040 and 61229201, NCET grant NCET-2010-
0984, and the Fundamental Research Funds for the Central Universities (Grant

261



No. WK0110000018). It is also supported in part by DARPA grants FA8750-
10-2-0254 and FA8750-12-2-0293, ONR grant N000141210478, and NSF grants
0915888 and 1065451. Any opinions, findings, and conclusions contained in this
document are those of the authors and do not reflect the views of these agencies.

References

1. Aspnes, J., Herlihy, M.: Wait-free data structures in the asynchronous PRAM
model. In: SPAA. pp. 340–349 (1990)

2. Birkedal, L., Sieczkowski, F., Thamsborg, J.: A concurrent logical relation. In:
CSL. pp. 107–121 (2012)

3. Dongol, B.: Formalising progress properties of non-blocking programs. In: ICFEM.
pp. 284–303 (2006)

4. Filipovic, I., O’Hearn, P., Rinetzky, N., Yang, H.: Abstraction for concurrent ob-
jects. Theor. Comput. Sci. 411(51-52), 4379–4398 (2010)

5. Fossati, L., Honda, K., Yoshida, N.: Intensional and extensional characterisation
of global progress in the π-calculus. In: CONCUR. pp. 287–301 (2012)

6. Gotsman, A., Yang, H.: Linearizability with ownership transfer. In: CONCUR’12
7. Gotsman, A., Yang, H.: Liveness-preserving atomicity abstraction. In: ICALP. pp.

453–465 (2011)
8. Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13(1),

124–149 (1991)
9. Herlihy, M., Luchangco, V., Moir, M.: Obstruction-free synchronization: Double-

ended queues as an example. In: ICDCS. pp. 522–529 (2003)
10. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-

mann (Apr 2008)
11. Herlihy, M., Shavit, N.: On the nature of progress. In: OPODIS. pp. 313–328 (2011)
12. Herlihy, M., Wing, J.: Linearizability: a correctness condition for concurrent ob-

jects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)
13. Liang, H., Feng, X.: Modular verification of linearizability with non-fixed lineariza-

tion points. In: PLDI. p. to appear (2013)
14. Liang, H., Feng, X., Fu, M.: A rely-guarantee-based simulation for verifying con-

current program transformations. In: POPL. pp. 455–468 (2012)
15. Liang, H., Hoffmann, J., Feng, X., Shao, Z.: The extended version of the present

paper (2013), http://kyhcs.ustcsz.edu.cn/relconcur/prog
16. Petrank, E., Musuvathi, M., Steensgaard, B.: Progress guarantee for parallel pro-

grams via bounded lock-freedom. In: PLDI. pp. 144–154 (2009)

A Comparisons with Herlihy and Shavit’s
Obstruction-Freedom

Herlihy and Shavit [11] define obstruction-freedom using the notion of uniformly
isolating executions. A trace is uniformly isolating, if “for every k > 0, any thread
that takes an infinite number of steps has an interval where it takes at least k
concrete contiguous steps” [11]. Then, their obstruction-free object guarantees
wait-freedom for every uniformly isolating execution. They also propose a new

262



Fig. 10: Execution of f()∥g() in Example 1

progress property, clash-freedom, which guarantees lock-freedom for uniformly-
isolating executions.

Below we give an example showing that their definition is inconsistent with
the common intuition of obstruction-freedom.

Example 1. The object implementation uses three shared variables: x, a and b.
It provides two methods f and g:

f() {
while (a <= x <= b) {
x++;

a--;
}

}

g() {
while (a <= x <= b) {

x--;

b++;
}

}

We can see that, if f() or g() is eventually executed in isolation (i.e., we suspend
all but one threads), it must returns. Thus intuitively this object should be
obstruction-free. It also satisfies our formulation (Definitions ?? and ??).

However, we could construct an execution which is uniformly isolating but
is not lock-free or wait-free. Consider the client program f() ∥ g(). It has an
execution shown in Figure 10. Starting from x = 0, a = −1 and b = 1, we
alternatively let each thread execute more and more iterations. Then for any k,
we could always find an interval of k iterations for each thread in this execution.
Thus the execution is uniformly isolating. But neither method call finishes. This
execution is not lock-free nor wait-free. Thus the object does not satisfy Herlihy
and Shavit’s obstruction-freedom or clash-freedom definitions.

B Proofs

In the following proofs, we make the call stacks explicit in the generation of
event traces. For example, we use H!W, (σc,σo,!)" instead of H!W, (σc,σo)".
We generalize the definitions to allow nonempty call stacks in the initial state,
e.g., we can use H!W, (σc,σo,K)".

B.1 Proofs of Theorem 1

To prove the theorem, we utilize the most general client (MGC). Let’s assume
dom(Π) = {f1, . . . , fm}. We could use the expression rand() to get a random

263



(nondeterministic) integer, and rand(m) to get a random integer r ∈ [1..m].
Then, for any n, MGCn is defined as follows:

MGT
def

= while (true){ frand(m)(rand()); }

MGCn
def

=
!
i∈[1..n] MGT

Here each thread keeps calling a random method with a random argument. We
also define another kind of “most general clients” which print out arguments and
return values for method calls:

MGTpt
def

= while (true){
xt := rand(); yt := rand(m); print(yt, xt);
zt := fyt(xt); print(zt);

}

MGCpn
def

=
!
i∈[1..n] MGTpi

Here xt, yt and zt are all local variables for thread t. Below we define the MGC
versions of “linearizability” and refinements, and prove they are related to the
standard definitions of linearizability and contextual refinement.

Definition 6. Π ≼MGC
ϕ ΠA iff

∀n,σo,σa, T. T ∈ H"(let Π in MGCn), (∅,σo,!)# ∧ (ϕ(σo) = σa)
=⇒ ∃Tc, Ta. Tc ∈ completions(T ) ∧ΠA◃

MGC
n (σa, Ta) ∧ Tc ≼lin Ta

where

ΠA◃
MGC
n (σa, T )

def

= T ∈ H"(let ΠA in MGCn), (∅,σa,!)# ∧ seq(T ) .

Π #ϕΠA iff

∀n,σo,σa. (ϕ(σo) = σa)
=⇒ H"(let Π in MGCn), (∅,σo,!)# ⊆ H"(let ΠA in MGCn), (∅,σa,!)# .

The following lemma shows that every history of an object Π could be gen-
erated by the MGC.

Lemma 1 (MGC is the Most General). For any n, C1, . . . , Cn, σc, σo and
σa, H!(let Π in C1∥ . . .∥Cn), (σc,σo,!)" ⊆ H!(let Π in MGCn), (∅,σo,!)".

Proof. We define the simulation relation$MGC between a program and a MGC in
Figure 11(a), and prove the following (B.1) by case analysis and the operational
semantics:

For any W1, S1, W2, S2 and e1, if (W1,S1) $MGC (W2,S2), then

(1) if (W1,S1)
e1%−→ abort and is obj abt(e1), then

there exists T2 such that (W2,S2)
T2%−→∗ abort and

e1 = get hist(T2);
(2) if (W1,S1)

e1%−→ (W ′
1,S

′
1), then

there exist T2, W ′
2 and S ′

2 such that (W2,S2)
T2%−→∗ (W ′

2,S
′
2),

get hist(e1) = get hist(T2) and (W ′
1,S

′
1) $MGC (W ′

2,S
′
2).

(B.1)

264



(let Π in C1∥ . . .∥Cn, (σc,σo, {1 ❀ κ1, . . . , n ❀ κn}))
!MGC (let Π in C′

1∥ . . .∥C
′
n, (∅,σo, {1 ❀ κ′

1, . . . , n ❀ κ′
n}))

where ∀i. (Ci,κi) !MGC (C′
i,κ

′
i)

(C, ◦) !MGC (MGT; end, ◦) (C, (σl, x,C
′)) !MGC (C, (σl, ·, (skip;MGT; end)))

(a) Program is Simulated by MGC

(let Π in C1∥ . . .∥Cn, (σc,σo, {1 ❀ κ1, . . . , n ❀ κn}))
!MGCp (let Π in C′

1∥ . . .∥C
′
n, (σ

′
c,σo, {1 ❀ κ′

1, . . . , n ❀ κ′
n}))

where ∀i. (Ci,κi) !
i
MGCp (C′

i, κ
′
i) and σ′

c = {xt ❀ , yt ❀ , zt ❀ | 1 ≤ t ≤ n}

(C, ◦) !t
MGCp (MGTpt; end, ◦)

(C, (σl, ·, C′)) !t
MGCp (C, (σl, zt, (skip;print(zt);MGTpt; end)))

(b) Program is Simulated by MGCp

(let Π in C1∥ . . .∥Cn, (σc,σo, {1 ❀ κ1, . . . , n ❀ κn}))
!MGCp− (let Π in C′

1∥ . . .∥C
′
n, (∅,σo, {1 ❀ κ′

1, . . . , n ❀ κ′
n}))

where ∀i. (Ci,σc,κi) !
i,Π
MGCp (C′

i,κ
′
i) and σc = {xt ❀ , yt ❀ , zt ❀ | 1 ≤ t ≤ n}

(C,σc, ◦) !
t,Π

MGCp−

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(Co, ({x ❀ n}, ·, (skip;MGT; end))
if (C = E[ zt := fyt(xt) ] ∨ C = E[ skip; zt := fyt(xt) ])
∧ σc(xt) = n ∧ σc(yt) = i ∧Π(fi) = (x,Co)

(fret(n′), ( , ·, (skip;MGT; end))
if (C = E[print(zt) ] ∨ C = E[ skip;print(zt) ])
∧ σc(zt) = n′

(MGT; end, ◦) otherwise

(C,σc, (σl, zt, C
′)) !t,Π

MGCp−
(C, (σl, ·, (skip;MGT; end)))

(c) MGCp is Simulated by MGC

(let Π in C1∥ . . .∥Cn, (σc,σo, {1 ❀ κ1, . . . , n ❀ κn}))
! (let ΠA in C′

1∥ . . .∥C
′
n, (∅, σ

′
o, {1 ❀ κ′

1, . . . , n ❀ κ′
n});

let ΠA in C′′
1 ∥ . . .∥C′′

n , (σc,σ
′
o, {1 ❀ κ′′

1 , . . . , n ❀ κ′′
n}))

where ∀i. (Ci, κi) ! (C′
i,κ

′
i;C

′′
i ,κ

′′
i )

and H!let Π in C1∥ . . .∥Cn, (σc,σo, {1 ❀ κ1, . . . , n ❀ κn})"
⊆ H!let ΠA in C′

1∥ . . .∥C
′
n, (∅, σ

′
o, {1 ❀ κ′

1, . . . , n ❀ κ′
n})"

(C, ◦) ! (C′, ◦;C, ◦) (C, (σl, x, Cc)) ! (C′, (σ′
l, x

′, C′
c);C

′, (σ′
l, x, Cc))

(d) Concrete Program is Simulated by Abstract MGC and Abstract Program

Fig. 11: Simulations between Programs and MGC

265



With (B.1), we can prove the following by induction over the number of steps
generating the event trace of H!W1,S1".

If (⌊W1⌋,S1) !MGC (⌊W2⌋,S2), then H!W1,S1" ⊆ H!W2,S2".

Then, since

(⌊let Π in C1∥ . . .∥Cn⌋, (σc,σo,")) !MGC (⌊let Π in MGCn⌋, (∅,σo,")) ,

we are done. ⊓&

For linearizability, the MGC-version is equivalent to the original definition.

Lemma 2. Π ≼ϕ ΠA ⇐⇒ Π ≼MGC
ϕ ΠA .

Proof. 1. Π ≼ϕ ΠA =⇒ Π ≼MGC
ϕ ΠA :

For any n, σo, σa and T such that T ∈ H!(let Π in MGCn), (∅,σo,")" and
ϕ(σo) = σa, from Π ≼ϕ ΠA, we know there exist Tc and Ta such that

Tc ∈ completions(T ) ∧ΠA ◃ (σa, Ta) ∧ Tc ≼lin Ta .

We only need to show that

ΠA ◃ (σa, Ta) =⇒ ΠA◃
MGC
n (σa, Ta) .

First we know ∀i. tid(Ta(i)) ∈ [1..n]. Second, from ΠA ◃ (σa, Ta), we know
there exist n′, C1, . . . , Cn′ and σc such that seq(Ta) and

Ta ∈ H!(let ΠA in C1∥ . . .∥Cn′), (σc,σa,")" .

If n′ ≤ n, then we know

Ta ∈ H!(let ΠA in C1∥ . . .∥Cn′ ∥skip∥ . . .∥skip), (σc,σa,")" .

From Lemma 1, we are done. Otherwise, since Ta only contains events of
threads 1, . . . , n, we know the threads n + 1, . . . , n′ do not access the
object. Similar to the proof of Lemma 1, we can construct simulations and
prove Ta ∈ H!(let ΠA in MGCn), (∅,σa,")". Thus we are done.

2. Π ≼MGC
ϕ ΠA =⇒ Π ≼ϕ ΠA :

For any n, C1, . . . , Cn, σc, σo, σa and T such that ϕ(σo) = σa and T ∈
H!(let Π in C1∥ . . .∥Cn), (σc,σo,")", from Lemma 1, we know

T ∈ H!(let Π in MGCn), (∅,σo,")" .

From Π ≼MGC
ϕ ΠA, we know there exist Tc and Ta such that

Tc ∈ completions(T ) ∧ΠA◃
MGC
n (σa, Ta) ∧ Tc ≼lin Ta .

By definitions, we see

ΠA◃
MGC
n (σa, Ta) =⇒ ΠA ◃ (σa, Ta) .

Thus we are done. ⊓&

266



Below we prove an important lemma which relates the basic contextual re-
finement to a refinement over MGC which considers histories instead of observ-
able behaviors. The idea behind this lemma will be useful in proving various
equivalence results, including those for progress properties.

Lemma 3. Π ⊑ϕ ΠA ⇐⇒ Π !ϕΠA .

Proof. 1. Π ⊑ϕ ΠA =⇒ Π !ϕΠA :
We first prove the following (a) and (b):

(a) For any n, σo, σc, T ,
if σc = {xt ❀ , yt ❀ , zt ❀ | 1 ≤ t ≤ n} and
T ∈ H!(let Π in MGCn), (∅,σo,")",
then there exists B such that T ≈ B and
B ∈ O!(let Π in MGCpn), (σc,σo,")",
where

ϵ ≈ ϵ
λ ≈ e T ≈ B
λ ::T ≈ e ::B

(t, fi, n) ≈ (t,out, (i, n)) (t, ret, n) ≈ (t,out, n)

(t,obj,abort) ≈ (t,obj,abort)

Proof. We define the simulation relation #MGCp in Figure 11(b), and
prove the following (B.2) by case analysis and the operational semantics.
This simulation ensures that at the right side (MGCp), each output of the
method argument is immediately followed by invoking the method, and
each method return is immediately followed by printing out the return
value.

For any W1, S1, W2, S2 and e1, if (W1,S1) #MGCp (W2,S2), then

(1) if (W1,S1)
e1(−→ abort and is obj abt(e1), then

there exists T2 such that (W2,S2)
T2(−→∗ abort and

e1 ≈ get obsv(T2);

(2) if (W1,S1)
e1(−→ (W ′

1,S
′
1), then

there exist T2, W ′
2 and S ′

2 such that (W2,S2)
T2(−→∗ (W ′

2,S
′
2),

get hist(e1) ≈ get obsv(T2) and (W ′
1,S

′
1) #MGCp (W ′

2,S
′
2).

(B.2)

With (B.2), we can prove the following by induction over the number of
steps generating the event trace of H!W1,S1".

If (⌊W1⌋,S1) #MGCp (⌊W2⌋,S2) and T ∈ H!W1,S1", then
there exists B such that T ≈ B and B ∈ O!W2,S2".

Then, since

(⌊let Π in MGCn⌋, (∅,σo,")) #MGCp (⌊let Π in MGCpn⌋, (σc,σo,")),

we are done.

267



(b) For any n, σa, σc, B,
if σc = {xt ❀ , yt ❀ , zt ❀ | 1 ≤ t ≤ n} and
B ∈ O!(let Π in MGCpn), (σc,σa,!)",
then there exists T such that T ≈ B and
T ∈ H!(let Π in MGCn), (∅,σa,!)".

Proof. We define the simulation relation "MGCp− in Figure 11(c), and
prove the following (B.3) by case analysis and the operational semantics.
This simulation ensures two things. (i) Whenever the left side (MGCp)
prints out a method argument, the right side (MGC) invokes the method
using that argument. (ii) Whenever the left side prints out a return
value, the right side must return the same value. We can ensure (i) and
(ii) because xt, yt and zt are all thread-local variables.

For any W1, S1, W2, S2 and e1, if (W1,S1) "MGCp− (W2,S2), then

(1) if (W1,S1)
e1%−→ abort, then

there exists T2 such that (W2,S2)
T2%−→∗ abort and

get hist(T2) ≈ e1;
(2) if (W1,S1)

e1%−→ (W ′
1,S

′
1), then

there exist T2, W ′
2 and S ′

2 such that (W2,S2)
T2%−→∗ (W ′

2,S
′
2),

get hist(T2) ≈ get obsv(e1) and (W ′
1,S

′
1) "MGCp− (W ′

2,S
′
2).

(B.3)

With (B.3), we can prove the following by induction over the number of
steps generating the event trace of O!W1,S1".

If (⌊W1⌋,S1) "MGCp− (⌊W2⌋,S2) and B ∈ O!W1,S1", then there
exists T such that T ≈ B and T ∈ H!W2,S2".

Then, since

(⌊let Π in MGCpn⌋, (σc,σa,!)) "MGCp− (⌊let Π in MGCn⌋, (∅,σa,!)),

we are done.

Then, since Π ⊑ϕ ΠA, we know

∀n,σc,σo, σa. (ϕ(σo) = σa)
=⇒ O!(let Π in MGCpn), (σc,σo,!)" ⊆ O!(let ΠA in MGCpn), (σc, σa,!)" .

Thus from (a) and (b), we get

∀n, σo,σa. (ϕ(σo) = σa)
=⇒ H!(let Π in MGCn), (∅, σo,!)" ⊆ H!(let ΠA in MGCn), (∅, σa,!)" .

Then we are done.
2. Π #ϕΠA =⇒ Π ⊑ϕ ΠA :

We define the simulation relation " in Figure 11(d), and prove the following
(B.4) by case analysis and the operational semantics. This simulation relates
one program to two programs. We use the MGC at the abstract level to
help determine the abstract program that corresponds to the concrete one.

268



Specifically, we require the histories generated by the concrete program can
also be generated by the abstract MGC. Then, when an abstract thread is in
a method call, its code should be the same as the MGC thread. Otherwise,
its code is the same as the concrete thread.

For any W1, S1, W2, S2, W3, S3 and e1,
if (W1,S1) ! (W2,S2;W3,S3), then
(1) if (W1,S1)

e1!−→ abort, then

there exists T3 such that (W3,S3)
T3!−→∗ abort and

e1 = get obsv(T3);
(2) if (W1,S1)

e1!−→ (W ′
1,S

′
1), then

there exist T2, W ′
2, S

′
2, T3, W ′

3 and S ′
3 such that

(W2,S2)
T2!−→∗ (W ′

2,S
′
2), (W3,S3)

T3!−→∗ (W ′
3,S

′
3),

get obsv(e1) = get obsv(T3) and (W ′
1,S

′
1) ! (W ′

2,S
′
2;W

′
3,S

′
3).
(B.4)

With (B.4), we can prove the following by induction over the number of steps
generating the event trace of O!W1,S1".

If (W1,S1) ! (W2,S2;W3,S3), then O!W1,S1" ⊆ O!W3,S3".
For any n, C1, . . . , Cn, σc, σo and σa, by Lemma 1, we know

H!(let Π in C1∥ . . .∥Cn), (σc,σo,")" ⊆ H!(let Π in MGCn), (∅,σo,")" .

Since Π #ϕΠA, we know if ϕ(σo) = σa, then

H!(let Π in MGCn), (∅,σo,")" ⊆ H!(let ΠA in MGCn), (∅,σa,")" .

Then we know

(let Π in C1∥ . . .∥Cn, (σc,σo,"))
! (let ΠA in MGCn, (∅,σa,");

let ΠA in C1∥ . . .∥Cn, (σc,σa,")) .

Thus, we get

O!(let Π in C1∥ . . .∥Cn), (σc,σo,")"
⊆ O!(let ΠA in C1∥ . . .∥Cn), (σc,σa,")" .

Thus we are done. ⊓'

Then, we prove the following (B.5) and can get Theorem 1.

Π #ϕΠA ⇐⇒ Π ≼MGC
ϕ ΠA (B.5)

1. Π #ϕΠA =⇒ Π ≼MGC
ϕ ΠA :

We only need to prove the following lemma (remember we assume that each
Ci in ΠA is of the form ⟨C⟩ and it is always safe to execute ΠA).

Lemma 4 (ΠA is Linearizable). For any n, σa and T ,
if T ∈ H!(let ΠA in MGCn), (∅,σa,")",
then there exist Tc and Ta such that Tc ∈ completions(T ), Tc ≼lin Ta,
Ta ∈ H!(let ΠA in MGCn), (∅,σa,")" and seq(Ta).

269



Proof. We define a new operational semantics, in which we additionally gen-
erate two events at the single step of the method body. We know the method
body in the execution can only be ⟨C⟩;noret, and hence the resulting code
after one step (if not block) must be fret(n′) for some n′.

(⟨C⟩;noret,σo # σl) −! t (fret(n
′),σ′

o # σ′
l)

dom(σl) = dom(σ′
l) σl = {y ❀ n} Π(f) = (y, ⟨C⟩)

(⟨C⟩;noret, (σc,σo, (σl, x, Cc)))
[t,f,n]::[t,ret,n′]
−−−−−−−−−−→ t,Π (fret(n′), (σc, σ

′
o, (σ

′
l, x, Cc)))

Here [t, f, n] and [t, ret, n′] are two new events (called atom-invocation event
and atom-return event respectively) generated for the new semantics. We
use T |[] to project the event trace T to the new events, and use ⌊e⌋ (and
⌊T ⌋) to transform the new event (and the event trace) to an old event (and
a trace of old events), where [t, f, n] is transformed to (t, f, n) and [t, ret, n′]
is transformed to (t, ret, n′). Other parts of the semantics are the same as
the operational semantics in Figure 5. We can define T[]!W,S" in a similar
way as T !W,S", which uses the new semantics instead of the original one
and keeps all the events including the new events.
(1) We can prove that there is a lock-step simulation between the original

semantics in Figure 5 and the new semantics. Then, for any T such that
T ∈ H!(let ΠA in MGCn), (∅,σa,!)",

we have an corresponding execution under the new semantics to generate
TT such that

TT ∈ T[]!(let ΠA in MGCn), (∅,σa,!)",
and get hist(TT ) = T .

(2) Below we show:
If TT ∈ T[]!(let ΠA in MGCn), (∅,σa,!)", T = get hist(TT ) and
Ta = ⌊TT |[]⌋,
then seq(Ta) and there exists Tc such that Tc ∈ completions(T )
and Tc ≼lin Ta.

Proof. By the new operational semantics, we know seq(Ta) holds.

Construct Tc and Prove Linearizability Condition 1: By the new opera-
tional semantics, we know that for any t, T |t and Ta|t must satisfy one
of the following:
(i) T |t = Ta|t ; or
(ii) ∃n. T |t :: (t, ret, n) = Ta|t ; or
(iii) ∃f, n. T |t = Ta|t :: (t, f, n) .
We construct Te as follows. For any t, if it is the above case (ii), we ap-
pend the corresponding return event at the end of T . Since well formed(T )
and well formed(Ta), we could prove well formed(Te). Thus Te ∈ extensions(T ).
Also Te satisfies: for any t, one of the following holds:
(i) Te|t = Ta|t ; or
(ii) ∃f, n. Te|t = Ta|t :: (t, f, n) .
Let Tc = truncate(Te). Thus Tc ∈ completions(T ).
Since ∀t. is res(last(Ta|t)) ∧ seq(Ta|t), we could prove that for any t,
(i) if Te|t = Ta|t, then Tc|t = Te|t;
(ii) if Te|t = Ta|t :: (t, f, n), then Tc|t = Ta|t.
Thus ∀t. Tc|t = Ta|t.

270



Prove Linearizability Condition 2: We informally show that the bijection
π implicit in ∀t. Tc|t = Ta|t preserves the response-invocation order.
Let Tc(i) be a response event in Tc and let Tc(j) be an invocation event.
Then π(i) and π(j) are the indices of Tc(i) and Tc(j) in Ta respectively.
Suppose i < j. By the construction of Tc from T , we know the same
response and invocation events are in T , and the response happens before
the invocation. Let i′ and j′ be the indices of these events in T . Then
i′ < j′. By the new operational semantics, we know in TT , the atom-
return event is before the atom-invocation event since the history return
event is before the history invocation event. Thus π(i) < π(j).

(3) Finally, we show the following and finish the proof of the lemma:
If TT ∈ T[]!(let ΠA in MGCn), (∅,σa,!)" and Ta = ⌊TT |[]⌋,
then Ta ∈ H!(let ΠA in MGCn), (∅,σa,!)".

This is proved by constructing the following simulation "new. This sim-
ulation ensures that the right side invokes and returns from a method at
the time when the left side generates the new atomic events.

(let ΠA in C1∥ . . .∥Cn, (∅,σa, {1 ❀ κ1, . . . , n ❀ κn}))
"new (let ΠA in C′

1∥ . . .∥C
′
n, (∅, σa, {1 ❀ κ′

1, . . . , n ❀ κ′
n}))

where ∀i. (Ci,κi) "new (C′
i,κ

′
i)

(C, ◦) "new (C, ◦)

((⟨C⟩;noret), (σl, ·, (skip;MGT))) "new ((frand(m)(rand());MGT), ◦)

(fret(n′), (σl, ·, (skip;MGT))) "new ((skip;MGT), ◦)

We prove the following by case analysis and the operational semantics.
For any W1, S1, W2, S2 and T1,

if (W1,S1) "new (W2,S2) and (W1,S1)
T1&−→ (W ′

1,S
′
1) in the new

semantics,

then there exist T2, W ′
2 and S ′

2 such that (W2,S2)
T2&−→∗ (W ′

2,S
′
2),

get hist(T2) = ⌊T1|[]⌋ and (W ′
1,S

′
1) "new (W ′

2,S
′
2).

Then we can prove the following by induction over the number of steps
generating the event trace of T[]!W1,S1".

If (W1,S1) "new (W2,S2), TT ∈ T[]!W1,S1" and Ta = ⌊TT |[]⌋,
then Ta ∈ H!W2,S2".

Since we know
(let ΠA in MGCn, (∅,σa,!)) "new (let ΠA in MGCn, (∅,σa,!)) ,

we are done.

The lemma is immediate from the above (1), (2) and (3). ⊓*

2. Π ≼MGC
ϕ ΠA =⇒ Π #ϕΠA :

We only need to prove the following lemma (similar to the Rearrangement
Lemma in [6]):

Lemma 5 (Rearrangement). For any n, σa, T and Ta,
if T ≼lin Ta, Ta ∈ H!(let ΠA in MGCn), (∅,σa,!)" and seq(Ta),
then T ∈ H!(let ΠA in MGCn), (∅,σa,!)".

271



Proof. Suppose |T | = n. We know T must not contain the abort event. From
T ≼lin Ta, we know
(i) ∀t. T |t = Ta|t;
(ii) there exists a bijection π : {1, . . . , |T |} → {1, . . . , |Ta|} such that ∀i. T (i) =

Ta(π(i)) and ∀i, j. i < j ∧ is res(T (i)) ∧ is inv(T (j)) =⇒ π(i) < π(j) .
We construct the execution under the new semantics (defined in the proof
of Lemma 4) which generates T , and the new events constitute Ta, i.e., we
want to show the following holds:

∃TT . TT ∈ T[]!(let ΠA in MGCn), (∅,σa,!)" ∧ T = get hist(TT ) . (B.6)

Then we prove that there is a lock-step simulation between the new semantics
and the original semantics in Figure 5, and we can get

T ∈ H!(let ΠA in MGCn), (∅,σa,!)".

Below we prove (B.6). We prove that for any k, there exist TT , W ′, S ′ and
k′ such that

(let ΠA in MGCn, (∅,σa,!))
TT)−→∗ (W ′,S ′)

∧ get hist(TT ) = T (1..k) ∧ ⌊TT |[]⌋ = Ta(1..k′)

∧ (∀S ′′. (let ΠA in MGCn, (∅,σa,!)) !
Ta(1..k

′
)

−−−−−→∗ ( ,S ′′)
=⇒ S ′′|obj = S ′|obj) ,

where S ′|obj get the object memory in S ′.
By induction over k.
Base Case: If k = 0, trivial.
Inductive Step: Suppose there exist T1, W1, S1 and k1 such that

(let ΠA in MGCn, (∅,σa,!))
T1)−→∗ (W1,S1)

∧ get hist(T1) = T (1..k) ∧ ⌊T1|[]⌋ = Ta(1..k1)

∧ (∀S ′
1. (let ΠA in MGCn, (∅,σa,!)) !

Ta(1..k1)

−−−−−−→∗ ( ,S ′
1)

=⇒ S ′
1|obj = S1|obj) ,

we want to show there exist T2, W2, S2 and k2 such that

(W1,S1)
T2)−→∗ (W2,S2)

∧ get hist(T2) = T (k + 1) ∧ ⌊T2|[]⌋ = Ta(k1 + 1..k2)

∧ (∀S ′
2. (let ΠA in MGCn, (∅,σa,!)) !

Ta(1..k2)

−−−−−−→∗ ( ,S ′
2)

=⇒ S ′
2|obj = S2|obj) ,

By case analysis.
(a) T (k + 1) = (t, f, n′).

Suppose T (k + 1) = (T |t)(i).
From T |t = Ta|t and Ta ∈ H!(let ΠA in MGCn), (∅,σa,!)", we know
i = 1 or is ret((T |t)(i − 1)) holds.
i. If i = 1, we just let the code MGT of the thread t executes to calling

the method f using the argument n, and generates the event (t, f, n′).

272



ii. If is ret((T |t)(i−1)) holds, we know the code of the thread t is in the
client code. Still we can let it execute to the method call of f using
the argument n, generating the event (t, f, n′).

(b) T (k + 1) = (t, ret, n′).
Suppose T (k + 1) = (T |t)(i). Similar to the previous case, we know
is inv((T |t)(i−1)) holds. Suppose (T |t)(i−1) = e = (t, f, n) andΠA(f) =
(x, ⟨C⟩). Thus the code of the thread t is either ⟨C⟩;noret or fret(n′′)
(for some n′′).
i. The code of t is ⟨C⟩;noret.

Thus last(T1|t) = e. Suppose |T (1..k)|t| = n1. From the operational
semantics and the generation of T1, we know |Ta(1..k1)|t| = n1 − 1.
For the bijection π in (ii) which maps events in T to events of Ta, we
let k2 = π(k+1). Since T |t = Ta|t, we know k2 > k1. Let k′ = k2−k1.
Suppose Ta(k1 + 1..k2) = e1 :: . . . :: ek′ . Since ⌊T1|[]⌋ = Ta(1..k1),
by the operational semantics and the generation of T1, we know
is ret(Ta(k1)). Since seq(Ta), we know seq(e1 :: . . . ::ek′) and k′ = 2j.
Suppose the threads of the events e1, . . . , ek′ are t1, . . . , tj respec-
tively where tj = t. Below we prove that for any i such that 1 ≤
i ≤ j, the current code of the thread ti is ⟨Ci⟩;noret (for some
method body ⟨Ci⟩), and e2i−1 = last(T (1..k)|ti). The proof is by
contradiction. Suppose e2i−1 = T (i′) and i′ > k. Since T (k + 1) =
(t, ret, n′) and is inv(e2i−1), we know i′ > k + 1. By (ii), we know
π(i′) > π(k + 1) = k2, which contradicts the fact that e2i−1 is an
event in Ta(k1 + 1..k2). Thus, i′ ≤ k, and since ⌊T1|[]⌋ = Ta(1..k1),
by the operational semantics and the generation of T1, we know
e2i−1 = last(T1|ti). Thus we are done.
We let the threads t1, . . . , tj execute one step in order, generating
the event trace T ′

2 which only contains the atom-invocation and
atom-return events, and then the thread tj execute one more step
generating ek′ = Ta(k2) = Ta(π(k + 1)) = T (k + 1). Since Ta ∈
H!(let ΠA in MGCn), (∅,σa,!)", we know this execution is possi-
ble, and moreover we have ⌊T2|[]⌋ = ⌊T ′

2⌋ = Ta(k1 + 1..k2).
ii. The code of t is fret(n′′).

Thus last(T1|t) = [t, ret, n′′]. Since ⌊T1|[]⌋ = Ta(1..k1), we know
last(Ta(1..k1)|t) = (t, ret, n′′). Suppose |Ta(1..k1)|t| = n1.
From the operational semantics and the generation of T1, we know
|get hist(T1|t)| = |T (1..k)|t| = n1 − 1. Since T |t = Ta|t, we know
n′ = n′′. The code of t is fret(n′). We let it execute one step and
generate the event (t, ret, n′).

Thus (B.6) holds and we are done. ⊓*

From Π ≼MGC
ϕ ΠA, we know

∀n,σo,σa, T. T ∈ H!(let Π in MGCn), (∅,σo,!)" ∧ (ϕ(σo) = σa)
=⇒ ∃Tc, Ta. Tc ∈ completions(T ) ∧ Ta ∈ H!(let ΠA in MGCn), (∅,σa,!)"

∧ seq(Ta) ∧ Tc ≼lin Ta

From Lemma 5, we know

273



∀n,σo,σa, T. T ∈ H!(let Π in MGCn), (∅, σo,!)" ∧ (ϕ(σo) = σa)
=⇒ ∃Tc. Tc ∈ completions(T ) ∧ Tc ∈ H!(let ΠA in MGCn), (∅,σa,!)"

Since Tc ∈ completions(T ), we know there exists Te such that Tc = truncate(Te)
and Te ∈ extensions(T ). By the definition of truncate(Te), we can prove:

Te ∈ H!(let ΠA in MGCn), (∅,σa,!)"

Then, by the definition of Te ∈ extensions(T ), we can prove:

T ∈ H!(let ΠA in MGCn), (∅,σa,!)"

Thus we get Π "ϕΠA.

B.2 Proofs of Figures 1 and 7

Lemma 6 (Figure 7). Assume T ∈ Tω!(let Π in C1∥ . . .∥Cn), (σc,σo,!)" .

1. wait-free(T ) ⇐⇒ prog-t(T ) ∨ non-sched(T ) ∨ abt(T ) ⇐⇒ non-sched(T ) ∨
abt(T ) ;

2. lock-free(T ) ⇐⇒ prog-s(T ) ∨ non-sched(T ) ∨ abt(T ) ⇐⇒ wait-free(T ) ∨
prog-s(T ) ;

3. obstruction-free(T ) ⇐⇒ prog-t(T ) ∨ non-sched(T ) ∨ ¬iso(T ) ∨ abt(T ) ⇐⇒
lock-free(T ) ∨ ¬iso(T ) ;

4. deadlock-free(T ) ⇐⇒ prog-s(T ) ∨ ¬fair(T ) ∨ abt(T ) ⇐⇒ lock-free(T ) ∨
¬fair(T ) ;

5. starvation-free(T ) ⇐⇒ prog-t(T ) ∨ ¬fair(T ) ∨ abt(T ) ⇐⇒ wait-free(T ) ∨
¬fair(T ) .

Proof. 1. By definition.

wait-free(T ) ⇐⇒ ( ∀i, e. e ∈ pend inv(T (1..i))
=⇒ (∃j. j > i ∧match(e, T (j)))

∨(∃j. j > i ∧ (∀k ≥ j. tid(T (k)) ̸= tid(e))) )
∨ abt(T )

⇐⇒ ( ∀i, e. e ∈ pend inv(T (1..i)) ∧ ¬(∃j. j > i ∧match(e, T (j)))
=⇒ (∃j. j > i ∧ (∀k ≥ j. tid(T (k)) ̸= tid(e))) )

∨ abt(T )

⇐⇒ ( ∀e. e ∈ pend inv(T ) =⇒ (∃j. ∀k ≥ j. tid(T (k)) ̸= tid(e)) )
∨ abt(T )

⇐⇒ non-sched(T ) ∨ abt(T )

Also, we can prove prog-t(T ) =⇒ non-sched(T ) as follows.

prog-t(T ) ⇐⇒ (∀i, e. e ∈ pend inv(T (1..i)) =⇒ ∃j. j > i ∧match(e, T (j)) )

⇐⇒ (∀i, e. e ∈ pend inv(T (1..i)) =⇒ e ̸∈ pend inv(T ) )

⇐⇒ ( pend inv(T ) = ∅ )

=⇒ non-sched(T )

274



2. We only need to prove the first equivalence. The second is trivial from the
first one.

lock-free(T ) ⇐⇒ ( ∀i, e. e ∈ pend inv(T (1..i))
=⇒ (∃j. j > i ∧ is ret(T (j)))

∨(∃j. j > i ∧ (∀k ≥ j. is clt(T (k)))) )
∨ abt(T )

⇐⇒ prog-s(T )
∨ ( ∃j. ∀k ≥ j. is clt(T (k)) )
∨ abt(T )

From ∃j. ∀k ≥ j. is clt(T (k)) and the operational semantics generating T ,
we know non-sched(T ) holds.
If non-sched(T ) holds, we know there exists j such that ∀k ≥ j. tid(T (k)) ̸∈
tid(pend inv(T )), where tid(pend inv(T )) gets the set of thread IDs of the
pending invocations in T . Then by the operational semantics and the gen-
eration of T , we know either ∃j. ∀k ≥ j. is clt(T (k)) or prog-s(T ) holds.

3. For obstruction-freedom, we only need to prove the following:
(1) ∀T. iso(T ) ∧ obstruction-free(T ) =⇒ wait-free(T ) ;
(2) ∀T. wait-free(T ) =⇒ obstruction-free(T ) ;
(3) ∀T. ¬iso(T ) =⇒ obstruction-free(T ) ;
(4) ∀n,C1, . . . , Cn,σc,σo, T.

T ∈ Tω!(let Π in C1∥ . . .∥Cn), (σc,σo,!)" ∧ prog-s(T )
=⇒ obstruction-free(T ) .

For (1) ∀T. iso(T ) ∧ obstruction-free(T ) =⇒ wait-free(T ) :

Proof. By obstruction-free(T ), we know one of the following holds:
(a) there exists i such that is abt(T (i)) holds; or
(b) for any i and e, if e ∈ pend inv(T (1..i)), then one of the following holds:

(i) there exists j > i such that match(e, T (j)); or
(ii) ∀j > i. ∃k. k ≥ j ∧ tid(T (k)) ̸= tid(e).

For (a), we know wait-free(T ).
For (b), for any i and e, where e ∈ pend inv(T (1..i)), we let t = tid(e). Since
iso(T ), we know

|T | ̸= ω ∨ ∃t, i. (∀j. j ≥ i =⇒ tid(T (j)) = t) .

If |T | ̸= ω, we know (ii) cannot hold. Thus (i) must hold.
Otherwise, we know there exists t0 and i0 such that

∀j. j ≥ i0 =⇒ tid(T (j)) = t0 .

If t0 = t, we know (ii) does not hold, and hence (i) holds. Otherwise, if t0 ̸= t,
we know

∀k. k ≥ i0 =⇒ tid(T (k)) ̸= tid(e) .

Thus we know wait-free(T ).

For (2) ∀T. wait-free(T ) =⇒ obstruction-free(T ) :

275



Proof. From wait-free(T ), we know one of the following holds:
(i) there exists i such that is abt(T (i)) holds; or
(ii) for any i and e, if e ∈ pend inv(T (1..i)), then one of the following holds:

(1) there exists j > i such that ∀k ≥ j. tid(T (k)) ̸= tid(e); or
(2) there exists j > i such that match(e, T (j)).

For (i), we know obstruction-free(T ) holds.
For (ii), for any i and e, where e ∈ pend inv(T (1..i)), if (1) holds, we know

∀j > i. ∃k. k ≥ j ∧ tid(T (k)) ̸= tid(e).

Thus we know obstruction-free(T ).

For (3) ∀T. ¬iso(T ) =⇒ obstruction-free(T ) :

Proof. From ¬iso(T ), we know

|T | = ω ∧ ∀t, i. ∃j. j ≥ i ∧ tid(T (j)) ̸= t .

Thus, for any i and e, where e ∈ pend inv(T (1..i)), we know

∀j. ∃k. k ≥ j ∧ tid(T (k)) ̸= tid(e) .

Thus we have proved obstruction-free(T ).

For (4) ∀n,C1, . . . , Cn,σc,σo, T. T ∈ Tω!(let Π in C1∥ . . .∥Cn), (σc,σo,!)"∧
prog-s(T ) =⇒ obstruction-free(T ) :

Proof. From prog-s(T ), we know: for any i, if pend inv(T (1..i)) ̸= ∅, then
there exists j > i such that is ret(T (j)).
If |T | ̸= ω, by Lemma 17, we know obstruction-free(T ) hold. Otherwise,
|T | = ω. For any i and e such that e ∈ pend inv(T (1..i)), we know one of the
following must hold:
(1) there exists j > i such that match(e, T (j)); or
(2) ∀j. j > i ⇒ ¬match(e, T (j)) .
For (2), we know

∀j. j > i ⇒ e ∈ pend inv(T (1..j)) .

Thus we have

∀j. j > i ⇒ ∃k. k > j ∧ is ret(T (k)) .

Then we know

∀j > i. ∃k. k > j ∧ is ret(T (k)) ∧ tid(T (k)) ̸= tid(e) .

Thus we know obstruction-free(T ).

4. The first equivalence is trivial from definition. For the second equivalence,
we only need to prove the following:

non-sched(T ) ∧ ¬prog-s(T ) =⇒ ¬fair(T ) .

From the proof of the equivalences for wait-freedom, we know

276



(pend inv(T ) = ∅) ⇐⇒ prog-t(T ).

Thus we only need to prove the following.
(1) non-sched(T ) ∧ (pend inv(T ) ̸= ∅) =⇒ ¬fair(T ) ;
(2) prog-t(T ) =⇒ prog-s(T ) .
For (1), from the premises, we know

∃e, i. e ∈ pend inv(T ) ∧ ∀j ≥ i. tid(T (j)) ̸= tid(e) .

Thus from the operational semantics and the generation of T , we know

|T | = ω ∧ ∃t ∈ [1..tnum(T )]. |(T |t)| ≠ ω ∧ last(T |t) ̸= (t, term) .

Thus ¬fair(T ) holds.
(2) is trivial from definition.

5. The first equivalence is trivial from definition. For the second equivalence,
we only need to prove the following:

non-sched(T ) ∧ ¬prog-t(T ) =⇒ ¬fair(T ) .

It has been proved in the proofs for the equivalences for deadlock-freedom.
⊓+

From Lemma 6, we can get most of the implications in the lattice of Figure 1.
To prove the remaining implications on sequential termination, we first prove
some equivalences in the sequential setting below.

Lemma 7 (Equivalences in Sequential Setting). For any C1, σc, σo and
T , if T ∈ Tω!(let Π in C1), (σc,σo,!)", then

1. fair(T ) and iso(T ) holds ;
2. lock-free(T ) ⇐⇒ wait-free(T ) ⇐⇒ obstruction-free(T ) ⇐⇒ deadlock-free(T )

⇐⇒ starvation-free(T ) .

Proof. 1. Since T ∈ Tω!(let Π in C1), (σc,σo,!)", by the operational seman-
tics we know T (1) = (spawn, 1) and

∀i. 2 ≤ i ≤ |T | =⇒ tid(T (i)) = 1 .

If |T | = ω, we know |(T |1)| = |T | = ω. Thus fair(T ) and iso(T ).
2. By Lemma 6 and the above case. ⊓+

From Lemmas 6 and 7, we get the following theorem.

Theorem 3 (Figure 1).

1. wait-freeϕ(Π) =⇒ lock-freeϕ(Π) ;
2. wait-freeϕ(Π) =⇒ starvation-freeϕ(Π) ;
3. lock-freeϕ(Π) =⇒ obstruction-freeϕ(Π) ;
4. lock-freeϕ(Π) =⇒ deadlock-freeϕ(Π) ;
5. starvation-freeϕ(Π) =⇒ deadlock-freeϕ(Π) ;
6. obstruction-freeϕ(Π) =⇒ seq-termϕ(Π) ;
7. deadlock-freeϕ(Π) =⇒ seq-termϕ(Π) .

277



B.3 Proofs of Theorem ??

Lemma 8 (Finite trace must be lock-free). For any T , if

T ∈ Tω!(let Π in C1∥ . . .∥Cn), (σc,σo,!)"

and |T | ̸= ω, then lock-free(T ) must hold.

Proof. Suppose T = (spawn, n) ::T ′. We know one of the following holds:

(i) (⌊let Π in C1∥ . . .∥Cn⌋, (σc,σo,!))
T ′

%−→∗ abort; or

(ii) (⌊let Π in C1∥ . . .∥Cn⌋, (σc,σo,!))
T ′

%−→∗ (skip, ).

For either case, we can prove lock-free(T ) by the operational semantics. ⊓)

We define the MGC version of lock-freedom.

Definition 7. lock-freeMGC
ϕ (Π), iff

∀n,σo, T. T ∈ Tω!(let Π in MGCn), (∅,σo,!)" ∧ (σo ∈ dom(ϕ))
=⇒ (∃i. is obj abt(T (i))) ∨ (∀i. ∃j. j ≥ i ∧ is ret(T (j)))

We use get objevt(T ) to project T to the sub-trace of object events (including
method invocation, return, object fault, and normal object actions). Thus we
know:

∀T, T ′. (get objevt(T ) = get objevt(T ′)) =⇒ (get hist(T ) = get hist(T ′)) .

The following lemma is similar to Lemma 1 (MGC is the most general). But
here we take into account infinite traces generated by complete executions.

Lemma 9. For any T , if

T ∈ Tω!(let Π in C1∥ . . .∥Cn), (σc,σo,!)",

then one of the following holds:

(1) |T | ̸= ω; or

(2) there exists i such that ∀j ≥ i. is clt(T (j)); or
(3) there exists Tm such that

Tm ∈ Tω!(let Π in MGCn), (∅,σo,!)" ,

and get objevt(T ) = get objevt(Tm).

Proof. By co-induction over T ∈ Tω!W,S", where

(⌊let Π in C1∥ . . .∥Cn⌋, ( , ,!)) %−→∗ (W,S) ∧ (W ̸= skip) .

278



In other words, (W,S) is a “well-formed” configuration. We only need to prove
the following (B.7):

for any T , W , S, Wm and Sm, if

(a) (W,S) !MGC (Wm,Sm),

(b) (W,S)
T

!−→ω ·, and
(c) ∀i. ∃j. j ≥ i ∧ ¬is clt(T (j)) ∧ T (j) ̸= ( , term),

then there exists Tm such that (Wm,Sm)
Tm!−→ω · and get objevt(T ) =

get objevt(Tm).
(B.7)

Here !MGC is defined in Figure 11(a). We first prove !MGC is a simulation:

If (W,S) !MGC (Wm,Sm) and (W,S)
e

!−→ (W ′,S ′), then

there exist T,W ′
m,S ′

m such that (Wm,Sm)
T

!−→∗ (W ′
m,S ′

m) ,
get objevt(e) = get objevt(T ) and
(W ′,S ′) !MGC (W ′

m,S ′
m) .

(B.8)

This is proved by case analysis of e.

– If e = (t,out, n) or e = (t, clt) or e = (t, term), we know the call stack
of the current thread t (which makes the step) is ◦, before and after the
step. Then we simply let (Wm,Sm) go zero step, and hence T = ϵ. Thus
get objevt(e) = get objevt(T ) and we can prove (W ′,S ′) !MGC (Wm,Sm).

– If e = (t, fi, n), we know the call stack of the thread t is ◦ before the
step and is (σl, x, C

′) after the step. Then we know the code of t in Wm

must be MGT. We let it go two steps. After the first step, the code of t
becomes frand(m)(rand());MGT. We evaluate rand(m) to i and rand()
to n, and make the second step. Thus the resulting configuration satisfies
(W ′,S ′) !MGC (W ′

m,S ′
m), and T = e.

– If e = (t, ret, n), we know the call stack of the thread t is (σl, x, C
′) before

the step and is ◦ after the step. Then we let the code of t in Wm go two steps.
After the first step, the code of t becomes skip;MGT. After the second step,
we have (W ′,S ′) !MGC (W ′

m,S ′
m). Also we know the first step generates the

event e, and thus get objevt(e) = get objevt(T ).
– If e = (t,obj), we know the call stack of the thread t is not ◦ before or after

the step. We let the code of t in Wm go one step, and hence T = (t,obj)
and (W ′,S ′) !MGC (W ′

m,S ′
m).

Thus we have proved (B.8).
From (B.8), we can prove the following by induction over the steps of T :

If (W,S) !MGC (Wm,Sm) , (W,S)
T

!−→+ (W ′,S ′) and
(∃i. ¬is clt(T (i)) ∧ T (i) ̸= ( , term)) , then

there exist Tm,W ′
m,S ′

m such that (Wm,Sm)
Tm!−→+ (W ′

m,S ′
m) ,

get objevt(T ) = get objevt(Tm) and (W ′,S ′) !MGC (W ′
m,S ′

m) .

279



Then we can get (B.7) by co-induction.
When (W,S) = (⌊let Π in C1∥ . . .∥Cn⌋, (σc,σo,!)), we know (W,S) "MGC

(⌊let Π in MGCn⌋, (∅,σo,!)). Thus we are done. ⊓%

We prove that the MGC version is equivalent to the original version of lock-
freedom.

Lemma 10. lock-freeϕ(Π) ⇐⇒ lock-freeMGC
ϕ (Π) .

Proof. 1. lock-freeϕ(Π) =⇒ lock-freeMGC
ϕ (Π) :

We prove the following:

∀n,σo, T. T ∈ Tω!(let Π in MGCn), (∅,σo,!)" ∧ (σo ∈ dom(ϕ)) ∧ lock-free(T )
=⇒ (∃i. is obj abt(T (i))) ∨ (∀i. ∃j. j ≥ i ∧ is ret(T (j)))

(B.9)

We unfold Tω!(let Π in MGCn), (∅,σo,!)", then we have three cases:

(1) (⌊let Π in MGCn⌋, (∅,σo,!))
T

(−→ω

(2) (⌊let Π in MGCn⌋, (∅,σo,!))
T

(−→∗ (skip, )

(3) (⌊let Π in MGCn⌋, (∅,σo,!))
T

(−→∗ abort
We know from the operational semantics that (2) is impossible.
For (3), we know from the operational semantics that last(T ) = ( ,obj, abort).
Thus ∃i. is obj abt(T (i)).
For (1), we prove the following by contradiction:

∀n, σo, T. (⌊let Π in MGCn⌋, (∅,σo,!))
T

+−→ω

=⇒ ∀i. ∃j. j ≥ i ∧ (is inv(T (j)) ∨ is ret(T (j)) ∨ T (j) = ( ,obj))
(B.10)

Then, ∀i. ∃j. j ≥ i∧(is ret(T (j))∨pend inv(T (1..j)) ̸= ∅). Thus by lock-free(T ),
we are done.

2. lock-freeMGC
ϕ (Π) =⇒ lock-freeϕ(Π) :

For any T ∈ Tω!(let Π in C1∥ . . .∥Cn), (σc,σo,!)", by Lemma 9, we know
one of the following holds:
(1) |T | ̸= ω; or
(2) there exists i such that ∀j ≥ i. is clt(T (j)); or
(3) there exists Tm such that

Tm ∈ Tω!(let Π in MGCn), (∅,σo,!)" ,
and get objevt(T ) = get objevt(Tm).

For (1), by Lemma 8, we know lock-free(T ).
For (2), we know lock-free(T ) holds immediately by definition.
For (3), from lock-freeMGC

ϕ (Π), we know

(∃i. is obj abt(Tm(i))) ∨ (∀i. ∃j. j ≥ i ∧ is ret(Tm(j))).

Thus we have:

(∃i. is obj abt(T (i))) ∨ (∀i. ∃j. j ≥ i ∧ is ret(T (j))).

If ∃i. is obj abt(T (i)), we know lock-free(T ). Otherwise, we know

280



∀i. ∃j. j ≥ i ∧ is ret(T (j)).

Thus, for any i, if pend inv(T (1..i)) ̸= ∅, then there exists j > i such that
is ret(T (j)). Therefore lock-free(T ) and we are done.

⊓(

Then, we only need to prove the following (B.11), (B.12) and (B.13):

Π ⊑ω
ϕ ΠA =⇒ Π ⊑ϕ ΠA (B.11)

Π ⊑ω
ϕ ΠA =⇒ lock-freeMGC

ϕ (Π) (B.12)

Π ⊑ϕ ΠA ∧ lock-freeϕ(Π) =⇒ Π ⊑ω
ϕ ΠA (B.13)

Proofs of (B.11) For any n, C1, . . . , Cn, σc, σo and σa such that ϕ(σo) = σa,
for any T if

T ∈ O!(let Π in C1∥ . . .∥Cn), (σc,σo,!)",

we know there exists T1 such that T = get obsv(T1) and

T1 ∈ T !(let Π in C1∥ . . .∥Cn), (σc,σo,!)" .

Thus there exists T ′
1 and T ′′

1 such that T ′′
1 = T1 :: T ′

1 and one of the following
holds:

(i) (⌊let Π in C1∥ . . .∥Cn⌋, (σc,σo,!))
T ′′

1.−→ω ·; or

(ii) (⌊let Π in C1∥ . . .∥Cn⌋, (σc,σo,!))
T ′′

1.−→∗ (skip, ); or

(iii) (⌊let Π in C1∥ . . .∥Cn⌋, (σc,σo,!))
T ′′

1.−→∗ abort.

That is,

T ′′
1 ∈ Tω!(let Π in C1∥ . . .∥Cn), (σc,σo,!)" .

Since Π ⊑ω
ϕ ΠA, we know there exists T ′′

2 such that

T ′′
2 ∈ Tω!(let ΠA in C1∥ . . .∥Cn), (σc,σa,!)" ,

and

get obsv(T ′′
2 ) = get obsv(T ′′

1 ) = T ::get obsv(T ′
1) .

Thus there exists T2 such that

T2 ∈ T !(let ΠA in C1∥ . . .∥Cn), (σc,σa,!)" ,

and get obsv(T2) = T . Thus

T ∈ O!(let ΠA in C1∥ . . .∥Cn), (σc,σa,!)" ,

and we are done.

281



Proofs of (B.12) We construct another most general client as follows:

MGTp1
def

= while (true){ frand(m)(rand()); print(1); }

MGCp1n
def

=
!
i∈[1..n]MGTp1

The following lemma describes the relationship between MGCp1 and MGC:

Lemma 11. (1) For any T , if

T ∈ Tω"(let Π in MGCn), (∅,σo,!)#,

then there exists Tp such that

Tp ∈ Tω"(let Π in MGCp1n), (∅,σo,!)#,

Tp\( ,out, 1) = T and

∀i, t. Tp(i) = (t, ret, ) ⇔ Tp(i+ 1) = (t,out, 1) .

(2) For any Tp, if

Tp ∈ Tω"(let Π in MGCp1n), (∅,σo,!)#,

then there exists T such that

T ∈ Tω"(let Π in MGCn), (∅,σo,!)#

and Tp\( ,out, 1) = T .
Here we use Tp\( ,out, 1) to mean a sub-trace of Tp which removes all the

events of the form ( ,out, 1).

Proof. By constructing simulations between executions of let Π in MGCn and
let Π in MGCp1n. ⊓&

Lemma 12. Suppose ΠA is total.
For any n, σa and T , if T ∈ Oω"(let ΠA in MGCp1n), (∅,σa,!)#, then T is an
infinite trace of ( ,out, 1).

Proof. We need to prove: for any T such that
T ∈ Oω"(let ΠA in MGCp1n), (∅,σa,!)#, the following hold:

(1) |T | = ω;
(2) for any i, T (i) = ( ,out, 1).

For (1): we can prove for any T ′ such that

T ′ ∈ Tω"(let ΠA in MGCp1n), (∅,σa,!)#,

we have |T ′| = ω. If |T | ̸= ω, we know there exists i such that

∀j ≥ i. is inv(T ′(j)) ∨ is ret(T ′(j)) ∨ T ′(j) = ( ,obj) ∨ T ′(j) = ( , clt).

282



Since ΠA is total, from the code and the operational semantics, we know this is
impossible.

(2) is easily proved from |T | = ω and that the code can only produce
( ,out, 1) as observable events. ⊓"

To prove lock-freeMGC
ϕ (Π), we want to show: for any n, σo, σa and T , if

T ∈ Tω!(let Π in MGCn), (∅,σo,!)" and ϕ(σo) = σa, then

(∃i. is obj abt(T (i))) ∨ (∀i. ∃j. j ≥ i ∧ is ret(T (j))) (B.14)

First, if T ∈ Tω!(let Π in MGCn), (∅,σo,!)", by Lemma 11(1), there exists
Tp such that Tp ∈ Tω!(let Π in MGCp1n), (∅,σo,!)" and Tp\( ,out, 1) = T .

Since Π ⊑ω
ϕ ΠA, we know

Oω!(let Π in MGCp1n), (∅,σo,!)" ⊆ Oω!(let ΠA in MGCp1n), (∅,σa,!)" .

From Lemma 12, we know for any T , if T ∈ Oω!(let Π in MGCp1n), (∅,σo,!)",
then T is an infinite trace of ( ,out, 1).

Then we know: get obsv(Tp) is an infinite trace of ( ,out, 1).
Thus |Tp| = ω and

∀i. ∃j. j ≥ i ∧ Tp(j) = ( ,out, 1) . (B.15)

We prove the following:

∀i. ∃j. j ≥ i ∧ is ret(Tp(j)) . (B.16)

This is proved as follows. From |Tp| = ω and (B.15), we know for any i, there
exist j1, . . . , jn+1 such that i ≤ j1 < . . . < jn+1 and ∀k ∈ [1..n + 1]. Tp(jk) =
( ,out, 1). Then, by the pigeonhole principle, we know there exists a thread t
producing two (t,out, 1)-s. Suppose jk and jl are the indexes of the two events
produced by t and jk < jl. By the operational semantics, we know there exists
j′ such that i ≤ jk < j′ < jl and is ret(Tp(j′)). Thus we have proved (B.16).

Since Tp\( ,out, 1) = T , from (B.16), we know (B.14) holds and we are done.

Proofs of (B.13) We need to prove that if Π ⊑ϕ ΠA and lock-freeϕ(Π), then
for any n, C1, . . . , Cn, σc, σo and σa such that ϕ(σo) = σa, we have

Oω!(let Π in C1∥ . . .∥Cn), (σc,σo,!)"
⊆ Oω!(let ΠA in C1∥ . . .∥Cn), (σc,σa,!)" .

Thus we only need to prove: for any T ,

(1) If (⌊let Π in C1∥ . . .∥Cn⌋, (σc,σo,!))
T

/−→∗ abort,
then there exists Ta such that

(⌊let ΠA in C1∥ . . .∥Cn⌋, (σc,σa,!))
Ta/−→∗ abort and

get obsv(T ) = get obsv(Ta).

283



(2) If (⌊let Π in C1∥ . . .∥Cn⌋, (σc,σo,!))
T

#−→∗ (skip, ),
then there exists Ta such that

(⌊let ΠA in C1∥ . . .∥Cn⌋, (σc,σa,!))
Ta#−→∗ (skip, ) and

get obsv(T ) = get obsv(Ta).

(3) If (⌊let Π in C1∥ . . .∥Cn⌋, (σc,σo,!))
T

#−→ω ·,
then there exists Ta such that

(⌊let ΠA in C1∥ . . .∥Cn⌋, (σc,σa,!))
Ta#−→ω · and

get obsv(T ) = get obsv(Ta).

Actually neither (1) or (2) depends on progress properties. We can prove the
following lemma.

Lemma 13. If Π ⊑ϕ ΠA, then for any n, C1, . . . , Cn, σc, σo, σa and T such
that ϕ(σo) = σa, we have

1. If (⌊let Π in C1∥ . . .∥Cn⌋, (σc,σo,!))
T

#−→∗ abort,
then there exists Ta such that

(⌊let ΠA in C1∥ . . .∥Cn⌋, (σc,σa,!))
Ta#−→∗ abort and

get obsv(T ) = get obsv(Ta).

2. If (⌊let Π in C1∥ . . .∥Cn⌋, (σc,σo,!))
T

#−→∗ (skip, ),
then there exists Ta such that

(⌊let ΠA in C1∥ . . .∥Cn⌋, (σc,σa,!))
Ta#−→∗ (skip, ) and

get obsv(T ) = get obsv(Ta).

Proof. 1. We know is abt(last(T )). By Π ⊑ϕ ΠA, we know there exists Ta such
that

Ta ∈ T !(let ΠA in C1∥ . . .∥Cn), (σc,σa,!)"

and get obsv(T ) = get obsv(Ta). Thus is abt(last(Ta)), and by the opera-
tional semantics, we know

(⌊let ΠA in C1∥ . . .∥Cn⌋, (σc,σa,!))
Ta#−→∗ abort,

and we are done.
2. (a) If n = 1, we know

(let Π in {C; end}, (σc,σo,!))
T

#−→∗ (skip, ).
Thus there exists T ′′ such that T = T ′′ :: (1, term). Let

T ′ = T ′′ :: (1, clt) :: (1,out, “done”):: (1, clt) :: (1, term),
where we assume (1,out, “done”) is different from all the events in T ,
then

(let Π in {C;print(“done”); end}, (σc,σo,!))
T ′

#−→∗ (skip, ).
Since Π ⊑ϕ ΠA, we know there exists T ′

a such that
T ′
a ∈ T !(let ΠA in {C;print(“done”); end}), (σc,σa,!)"

and get obsv(T ′) = get obsv(T ′
a). Thus we know there exists T ′′

a such
that

T ′
a = T ′′

a :: (1,out, “done”):: (1, clt) :: (1, term),

284



and by the operational semantics, we know there exists Ta such that
T ′′
a = Ta :: (1, clt) and

(let ΠA in {C; end}, (σc,σa,!)) !
Ta::(1,term)

−−−−−−−−→∗ (skip, ).

Also we have get obsv(T ) = get obsv(Ta).
(b) If n > 1, we construct another program let Π in C ′

1∥ . . .∥C
′
n as follows:

we pick n− 1 fresh variables: d2, . . . , dn,
C ′

1 = (C1; if (d2&& . . .&&dn) print(“done”); )
C′

i = (Ci; di := true) ∀i ∈ [2..n]
and also let

σ′
c = σc % {d2 ❀ false, . . . , dn ❀ false} .

Then, if

(⌊let Π in C1∥ . . .∥Cn⌋, (σc,σo,!))
T

(−→∗ (skip, ),

let T ′′ be the result after removing all the termination markers in T , and
T ′ = T ′′ :: (2, clt) :: (2, clt) :: . . . :: (n, clt) :: (n, clt)

:: (1, clt) :: (1, clt) :: (1,out, “done”)
:: (1, clt) :: (1, term) :: . . . :: (n, clt) :: (n, term)

where we still assume (1,out, “done”) is different from all the events in
T , we can prove:

(⌊let Π in C′
1∥ . . .∥C

′
n⌋, (σ

′
c,σo,!))

T ′

(−→∗ (skip, ).

Since Π ⊑ϕ ΠA, we know there exists T ′
a such that

T ′
a ∈ T !(let ΠA in C′

1∥ . . .∥C
′
n), (σ

′
c,σa,!)"

and get obsv(T ′) = get obsv(T ′
a). Thus we know there exists i such that

T ′
a(i) = (1,out, “done”). Then we know

(⌊let ΠA in C′
1∥ . . .∥C

′
n⌋, (σ

′
c,σa,!))

T ′

a(−→∗ (skip, ).

We can remove all the actions of the newly added commands, construct
a simulation between the two executions, and prove: there exists Ta such
that

(⌊let ΠA in C1∥ . . .∥Cn⌋, (σc,σa,!))
Ta(−→∗ (skip, ),

and get obsv(Ta) = get obsv(T ′′
a ) = get obsv(T ).

Thus we are done. ⊓+

For (3), we define the simulation relation " in Figure 11(d), and prove the
following (B.17) by case analysis and the operational semantics:

For any W1, S1, W2, S2, W3, S3 and e1,
if (W1,S1) " (W2,S2;W3,S3) and (W1,S1)

e1(−→ (W ′
1,S

′
1),

then there exist T2, W ′
2, S

′
2, T3, W ′

3 and S ′
3 such that

(W2,S2)
T2(−→∗ (W ′

2,S
′
2), (W3,S3)

T3(−→∗ (W ′
3,S

′
3),

T3\( ,obj) = e1\( ,obj) and (W ′
1,S

′
1) " (W ′

2,S
′
2;W

′
3,S

′
3).

(B.17)

With (B.17), we can prove the following (B.18) by induction over the length of
T1:

285



For any W1, S1, W2, S2, W3, S3 and T1,

if (W1,S1) ! (W2,S2;W3,S3), (W1,S1)
T1!−→+ (W ′

1,S
′
1) and

last(T1) ̸= ( ,obj),
then there exist T2, W ′

2, S
′
2, T3, W ′

3 and S ′
3 such that

(W2,S2)
T2!−→∗ (W ′

2,S
′
2), (W3,S3)

T3!−→+ (W ′
3,S

′
3),

T1\( ,obj) = T3\( ,obj) and (W ′
1,S

′
1) ! (W ′

2,S
′
2;W

′
3,S

′
3).

(B.18)

With (B.18), we can prove the following (B.19):

For any W , S, W1, S1, W2, S2, W3, S3, T0 and T1,

if (W,S) is well-formed and out of method calls, (W,S)
T0!−→∗ (W1,S1),

(W1,S1) ! (W2,S2;W3,S3), (W1,S1)
T1!−→ω · and lock-free(T0 ::T1),

then there exists T3 such that (W3,S3)
T3!−→ω · and

T1\( ,obj) = T3\( ,obj).
(B.19)

We prove (B.19) as follows. Let T = T0 ::T1. Since lock-free(T ), we know one of
the following holds:

(i) there exists i such that ∀j ≥ i. is clt(T (j)); or
(ii) for any i, if pend inv(T (1..i)) ̸= ∅, then there exists j > i such that is ret(T (j)).

For (i), we know there exist W ′
1, S

′
1, T

′
1 and T ′′

1 such that

(W1,S1) !
T ′

1−→+ (W ′
1,S

′
1) , (W ′

1,S
′
1)

T ′′

1!−→ω · ,
T1 = T ′

1 ::T
′′
1 , T ′

1 = T1(1..i) , is clt(last(T ′
1)) , ∀j. is clt(T ′′

1 (j)) .

By (B.18), we know: there exist T2, W ′
2, S

′
2, T

′
3, W

′
3 and S ′

3 such that

(W2,S2)
T2!−→ ∗ (W ′

2,S
′
2), (W3,S3)

T ′

3!−→ + (W ′
3,S

′
3), T

′
1\( ,obj) = T ′

3\( ,obj) and
(W ′

1,S
′
1) ! (W ′

2,S
′
2;W

′
3,S

′
3). Then by coinduction over T1 and from (B.18), we

get: there exists T ′′
3 such that

(W ′
3,S

′
3)

T ′′

3!−→ω · and T ′′
1 \( ,obj) = T ′′

3 \( ,obj).

Let T3 = T ′
3 ::T

′′
3 , and we know

(W3,S3)
T3!−→ω · and T1\( ,obj) = T3\( ,obj).

Suppose (i) does not hold. Thus we know

∀i. ∃j. j ≥ i ∧ is obj(T (j)) .

By the operational semantics, we know

∀i. ∃j. j ≥ i ∧ pend inv(T (1..j)) ̸= ∅ .

Since (ii) holds, we know

∀i. ∃j. j > i ∧ is ret(T (j)) .

286



Then by coinduction and from (B.18), we know there exists T3 such that

(W3,S3)
T3!−→ω · and T1\( ,obj) = T3\( ,obj).

Thus we have proved (B.19). On the other hand, for any n, C1, . . . , Cn, σc, σo

and σa, by Lemma 1, we know

H!(let Π in C1∥ . . .∥Cn), (σc,σo,!)" ⊆ H!(let Π in MGCn), (∅,σo,!)" .

From Π ⊑ϕ ΠA, by Lemma 3, we know Π "ϕΠA. Thus, if ϕ(σo) = σa, then

H!(let Π in MGCn), (∅,σo,!)" ⊆ H!(let ΠA in MGCn), (∅,σa,!)" .

Then we know

(let Π in C1∥ . . .∥Cn, (σc,σo,!))
# (let ΠA in MGCn, (∅,σa,!);

let ΠA in C1∥ . . .∥Cn, (σc,σa,!)),

Thus, if (⌊let Π in C1∥ . . .∥Cn⌋, (σc,σo,!))
T

!−→ω ·, by lock-freeϕ(Π), we know
lock-free(T ). Then from (B.19) we get: there exists Ta such that

(⌊let ΠA in C1∥ . . .∥Cn⌋, (σc,σa,!))
Ta!−→ω ·

and T \( ,obj) = Ta\( ,obj). Thus get obsv(T ) = get obsv(Ta) and we are done.

B.4 Proofs of Theorem ??

Similar to Lemma 8, we can prove the following lemma.

Lemma 14 (Finite trace must be wait-free). For any T , if

T ∈ Tω!(let Π in C1∥ . . .∥Cn), (σc,σo,!)"

and |T | ̸= ω, then wait-free(T ) must hold.

We define the MGC version of wait-freedom, and prove it is equivalent to the
original version.

Definition 8. wait-freeMGC
ϕ (Π), iff

∀n,σo, T. T ∈ Tω!(let Π in MGCn), (∅,σo,!)" ∧ (σo ∈ dom(ϕ))
=⇒ wait-free(T )

Lemma 15. wait-freeϕ(Π) ⇐⇒ wait-freeMGC
ϕ (Π) .

Proof. 1. wait-freeϕ(Π) =⇒ wait-freeMGC
ϕ (Π) :

Trivial.
2. wait-freeMGC

ϕ (Π) =⇒ wait-freeϕ(Π) :
For any T ∈ Tω!(let Π in C1∥ . . .∥Cn), (σc,σo,!)", by Lemma 9, we know
one of the following holds:

287



(1) |T | ̸= ω; or
(2) there exists i such that ∀j ≥ i. is clt(T (j)); or
(3) there exists Tm such that

Tm ∈ Tω!(let Π in MGCn), (∅,σo,!)" ,
and get objevt(T ) = get objevt(Tm).

For (1), by Lemma 14, we know wait-free(T ) holds.
For (2), we know |T | = ω.
For any k and e, if e ∈ pend inv(T (1..k)), we know one of the following must
hold:
(i) ∃j. j > k ∧match(e, T (j)).
(ii) ∀j. j > k ⇒ ¬match(e, T (j)). Thus we can prove:

∀j ≥ k. e ∈ pend inv(T (1..j)).
Let l = max(i, k). Then we know:

∀j ≥ l. is clt(T (j)) ∧ e ∈ pend inv(T (1..j)).
Thus by the operational semantics, we can prove:

∀j > l. tid(T (j)) ̸= tid(e).
Thus we know wait-free(T ).
For (3), suppose (1) does not hold for T , and we only need to prove the
following:

for any i and e, if e ∈ pend inv(T (1..i)), then there exists j > i such
that either ∀k ≥ j. tid(T (k)) ̸= tid(e) or match(e, T (j)).

From get objevt(T ) = get objevt(Tm), we know

¬∃i. is obj abt(Tm(i)).

Then by the operational semantics and the generation of Tm, we know

¬∃i. is abt(Tm(i)).

From wait-freeMGC
ϕ (Π), we know wait-free(Tm), then we have

for any i and e, if e ∈ pend inv(Tm(1..i)), then there exists j > i such
that either ∀k ≥ j. tid(Tm(k)) ̸= tid(e) or match(e, Tm(j)).

For any i and e, if e ∈ pend inv(T (1..i)), since get objevt(T ) = get objevt(Tm),
we know there exists im such that

e ∈ pend inv(Tm(1..im)) and get objevt(T (1..i)) = get objevt(Tm(1..im)).

We know there exists jm > im such that one of the following holds:
(i) match(e, Tm(jm)); or
(ii) ∀k ≥ jm. tid(Tm(k)) ̸= tid(e).
For (i), since get objevt(T ) = get objevt(Tm), we know there exists j > i
such that match(e, T (j)).
For (ii), suppose

∀j > i. ¬match(e, T (j)) and ∀j > i. ∃k ≥ j. tid(T (k)) = tid(e) .

Since e ∈ pend inv(T (1..i)), by the operational semantics, we know

∀j > i. ∃k ≥ j. T (k) = (tid(e),obj) .

288



Since get objevt(T ) = get objevt(Tm), we know

∀j > im. ∃k ≥ j. Tm(k) = (tid(e),obj) ,

which contradicts (ii). Thus we get wait-free(T ) and we are done.
⊓%

Then, we only need to prove the following (B.20), (B.21) and (B.22):

Π ⊑tω
ϕ ΠA =⇒ Π ⊑ω

ϕ ΠA (B.20)

Π ⊑tω
ϕ ΠA =⇒ wait-freeMGC

ϕ (Π) (B.21)

Π ⊑ϕ ΠA ∧ wait-freeϕ(Π) =⇒ Π ⊑tω
ϕ ΠA (B.22)

Proofs of (B.20) For any n, C1, . . . , Cn, σc, σo and σa such that ϕ(σo) = σa,
for any T , suppose

T ∈ Tω!(let Π in C1∥ . . .∥Cn), (σc,σo,!)" .

Since Π ⊑tω
ϕ ΠA, we know there exists Ta such that

Ta ∈ Tω!(let ΠA in C1∥ . . .∥Cn), (σc,σa,!)" ,
get obsv(Ta) = get obsv(T ) and div tids(Ta) = div tids(T ) .

Thus we are done.

Proofs of (B.21) Just like the proofs of (B.12), we use the most general client
MGCp1. We first prove the following lemma:

Lemma 16. Suppose ΠA is total.
For any n, σa, T and S, if (T, S) ∈ Otω!(let ΠA in MGCp1n), (∅,σa,!)", then
div tids(T ) = S.

Proof. We know there exists T1 such that

T1 ∈ Tω!(let ΠA in MGCp1n), (∅,σa,!)",
T = get obsv(T1) and S = div tids(T1).

It’s easy to see that div tids(T ) ⊆ S.
On the other hand, for all t ∈ S, we know:

∀i. ∃j. j ≥ i ∧ tid(T1(j)) = t .

By the operational semantics and the generation of T1, we know

∀i. ∃j. j ≥ i ∧ T1(j) = (t,out, 1) .

Thus we can prove:

∀i. ∃j. j ≥ i ∧ tid(T (j)) = t .

289



Thus t ∈ div tids(T ), and we are done. ⊓#

For any n, σo, σa and T such that ϕ(σo) = σa, if

T ∈ Tω!(let Π in MGCn), (∅,σo,!)",

by Lemma 11(1), there exists Tp such that

Tp ∈ Tω!(let Π in MGCp1n), (∅,σo,!)" and Tp\( ,out, 1) = T .

Suppose ¬∃i. is abt(T (i)).
Then for any i and e, if e ∈ pend inv(T (1..i)), we know there exists ip such that

e ∈ pend inv(Tp(1..ip)) and (Tp(1..ip))\( ,out, 1) = T (1..i).

Let t = tid(e), we suppose

∀j > i. ∃k ≥ j. tid(T (k)) = tid(e) = t .

Since Tp\( ,out, 1) = T , we know:

∀j > ip. ∃k ≥ j. tid(Tp(k)) = t .

Thus we know

t ∈ div tids(Tp) .

On the other hand, since Π ⊑tω
ϕ ΠA, we know:

Otω!(let Π in MGCp1n), (∅,σo,!)" ⊆ Otω!(let ΠA in MGCp1n), (∅,σa,!)" .

Then from Lemma 16, we know

div tids(Tp) = div tids(get obsv(Tp)).

Thus

t ∈ div tids(get obsv(Tp)),

and then we can prove:

∀j. ∃k ≥ j. Tp(k) = (t,out, 1) .

Then since e ∈ pend inv(Tp(1..ip)) and by the operational semantics, we know

there must exist j such that j > ip and match(e, Tp(j)).

Since Tp\( ,out, 1) = T , we know:

there exists j such that j > i and match(e, T (j)).

Thus wait-free(T ) and we are done.

290



Proofs of (B.22) We need to prove that if Π ⊑ϕ ΠA and wait-freeϕ(Π), then
for any n, C1, . . . , Cn, σc, σo and σa such that ϕ(σo) = σa, we have

Otω!(let Π in C1∥ . . .∥Cn), (σc,σo,!)"
⊆ Otω!(let ΠA in C1∥ . . .∥Cn), (σc,σa,!)" .

Thus we only need to prove: for any T ,

(1) If (⌊let Π in C1∥ . . .∥Cn⌋, (σc,σo,!))
T

%−→∗ abort,
then there exists Ta such that

(⌊let ΠA in C1∥ . . .∥Cn⌋, (σc,σa,!))
Ta%−→∗ abort and

get obsv(T ) = get obsv(Ta).

(2) If (⌊let Π in C1∥ . . .∥Cn⌋, (σc,σo,!))
T

%−→∗ (skip, ),
then there exists Ta such that

(⌊let ΠA in C1∥ . . .∥Cn⌋, (σc,σa,!))
Ta%−→∗ (skip, ) and

get obsv(T ) = get obsv(Ta).

(3) If (⌊let Π in C1∥ . . .∥Cn⌋, (σc,σo,!))
T

%−→ω ·,
then there exists Ta such that

(⌊let ΠA in C1∥ . . .∥Cn⌋, (σc,σa,!))
Ta%−→ω ·,

get obsv(T ) = get obsv(Ta) and div tids(T ) = div tids(Ta).

(1) and (2) are proved in Lemma 13.
For (3), we define the simulation relation " in Figure 11(d), and as in the

proof for (B.13), we can get the following (B.23) from (B.19) and the fact that
wait-free(T0 ::T1) implies lock-free(T0 ::T1):

For any W , S, W1, S1, W2, S2, W3, S3, T0 and T1,

if (W,S) is well-formed and out of method calls, (W,S)
T0%−→∗ (W1,S1),

(W1,S1) " (W2,S2;W3,S3), (W1,S1)
T1%−→ω · and wait-free(T0 ::T1),

then there exists T3 such that (W3,S3)
T3%−→ω · and

T1\( ,obj) = T3\( ,obj).
(B.23)

On the other hand, for any n, C1, . . . , Cn, σc, σo and σa, by Lemma 1, we know

H!(let Π in C1∥ . . .∥Cn), (σc,σo,!)" ⊆ H!(let Π in MGCn), (∅,σo,!)" .

From Π ⊑ϕ ΠA, by Lemma 3, we know Π #ϕΠA. Thus, if ϕ(σo) = σa, then

H!(let Π in MGCn), (∅,σo,!)" ⊆ H!(let ΠA in MGCn), (∅,σa,!)" .

Then we know

(let Π in C1∥ . . .∥Cn, (σc,σo,!))
" (let ΠA in MGCn, (∅,σa,!);

let ΠA in C1∥ . . .∥Cn, (σc,σa,!)),

Thus, if (⌊let Π in C1∥ . . .∥Cn⌋, (σc,σo,!))
T

%−→ω ·, by wait-freeϕ(Π), we know
wait-free(T ). Then from (B.23) we get: there exists Ta such that

291



(⌊let ΠA in C1∥ . . .∥Cn⌋, (σc,σa,!))
Ta#−→ω · and T \( ,obj) = Ta\( ,obj).

Thus we know get obsv(T ) = get obsv(Ta).
Below we prove: div tids(T ) = div tids(Ta).

(a) div tids(T ) ⊆ div tids(Ta):
For any i, since T \( ,obj) = Ta\( ,obj), we know there exists i′ such that
T (1..i′)\( ,obj) = Ta(1..i)\( ,obj). For any t ∈ div tids(T ), we know

∃j′. j′ ≥ i′ ∧ tid(T (j′)) = t .

If T (j′) ̸= (t,obj), since T \( ,obj) = Ta\( ,obj), we know there exists j ≥ i
such that Ta(j) = T (j′).
Otherwise, T (j′) = (t,obj). By the operational semantics and the generation
of T , we know there exists e such that

e ∈ pend inv(T (1..j′ − 1)) and tid(e) = t .

Since wait-free(T ), we know one of the following holds:
(i) there exists l ≥ j′ such that ∀k ≥ l. tid(T (k)) ̸= t; or
(ii) there exists j′′ ≥ j′ such that match(e, T (j′′)).
Suppose (i) holds. Since t ∈ div tids(T ), we know

∃j′′. j′′ ≥ l ∧ tid(T (j′′)) = t ,

which is a contradiction.
Thus (ii) must hold. Thus T (j′′) = (t, ret, ) and j′′ ≥ i′. Since T \( ,obj) =
Ta\( ,obj), we know there exists j ≥ i such that Ta(j) = T (j′′).
Thus we have proved

∃j. j ≥ i ∧ tid(Ta(j)) = t .

Therefore t ∈ div tids(Ta).
(b) div tids(Ta) ⊆ div tids(Ta):

For any i′, since T \( ,obj) = Ta\( ,obj), we know there exists i such that
T (1..i′)\( ,obj) = Ta(1..i)\( ,obj). For any t ∈ div tids(Ta), we know

∃j. j ≥ i ∧ tid(Ta(j)) = t .

If Ta(j) ̸= (t,obj), since T \( ,obj) = Ta\( ,obj), we know there exists
j′ ≥ i′ such that Ta(j) = T (j′).
Otherwise, Ta(j) = (t,obj). By the operational semantics and the generation
of Ta, we know one of the following holds:
(i) ∀k > j. tid(Ta(k)) ̸= t; or
(ii) there exists j′′ ≥ j such that match(e, Ta(j′′)).
Suppose (i) holds. Since t ∈ div tids(Ta), we know

∃j′′. j′′ > j ∧ tid(Ta(j′′)) = t ,

which is a contradiction.
Thus (ii) must hold. Thus Ta(j′′) = (t, ret, ) and j′′ ≥ i. Since T \( ,obj) =
Ta\( ,obj), we know there exists j′ ≥ i′ such that Ta(j′′) = T (j′).
Thus we have proved

∃j′. j′ ≥ i′ ∧ tid(T (j′)) = t .

Therefore t ∈ div tids(T ).

Thus we are done.

292



B.5 Proofs of Theorem ??

Lemma 17 (Finite trace must be obstruction-free). For any T , if

T ∈ Tω!(let Π in C1∥ . . .∥Cn), (σc,σo,!)"

and |T | ̸= ω, then obstruction-free(T ) must hold.

We define the MGC version of obstruction-freedom, and prove it is equivalent
to the original version.

Definition 9. obstruction-freeMGC
ϕ (Π), iff

∀n,σo, T. T ∈ Tω!(let Π in MGCn), (∅,σo,!)" ∧ iso(T ) ∧ (σo ∈ dom(ϕ))
=⇒ (∃i. is obj abt(T (i))) ∨ (∀i. ∃j. j ≥ i ∧ is ret(T (j))) .

Lemma 18. obstruction-freeϕ(Π) ⇐⇒ obstruction-freeMGC
ϕ (Π) .

Proof. From Figure 7, we know obstruction-freeϕ(Π) is equivalent to the follow-
ing:

∀n,C1, . . . , Cn,σc,σo, T.
T ∈ Tω!(let Π in C1∥ . . .∥Cn), (σc,σo)" ∧ iso(T ) ∧ (σo ∈ dom(ϕ))
=⇒ lock-free(T )

By Lemma 10, we know it is equivalent to the following:

∀n,σo, T. T ∈ Tω!(let Π in MGCn), (∅, σo,!)" ∧ iso(T ) ∧ (σo ∈ dom(ϕ))
=⇒ (∃i. is obj abt(T (i))) ∨ (∀i. ∃j. j ≥ i ∧ is ret(T (j))) .

Thus we are done. ⊓,

Then, we only need to prove the following (B.24), (B.25) and (B.26):

Π ⊑iω
ϕ ΠA =⇒ Π ⊑ϕ ΠA (B.24)

Π ⊑iω
ϕ ΠA =⇒ obstruction-freeMGC

ϕ (Π) (B.25)

Π ⊑ϕ ΠA ∧ obstruction-freeϕ(Π) =⇒ Π ⊑iω
ϕ ΠA (B.26)

Proofs of (B.24) For any n, C1, . . . , Cn, σc, σo and σa such that ϕ(σo) = σa,
for any T if

T ∈ O!(let Π in C1∥ . . .∥Cn), (σc,σo,!)",

we know there exists T1 such that T = get obsv(T1) and

T1 ∈ T !(let Π in C1∥ . . .∥Cn), (σc,σo,!)" .

Thus there exists T ′
1 and T ′′

1 such that T ′′
1 = T1 :: T ′

1, where iso(T ′
1) holds, and

one of the following holds:

(i) (⌊let Π in C1∥ . . .∥Cn⌋, (σc,σo,!))
T ′′

10−→ω ·; or

293



(ii) (⌊let Π in C1∥ . . .∥Cn⌋, (σc,σo,!))
T ′′

1#−→∗ (skip, ); or

(iii) (⌊let Π in C1∥ . . .∥Cn⌋, (σc,σo,!))
T ′′

1#−→∗ abort.

Thus,

T ′′
1 ∈ Tω!(let Π in C1∥ . . .∥Cn), (σc,σo,!)" and iso(T ′′

1 ) .

Since Π ⊑iω
ϕ ΠA, we know there exists T ′′

2 such that

T ′′
2 ∈ Tω!(let ΠA in C1∥ . . .∥Cn), (σc,σa,!)" ,

and

get obsv(T ′′
2 ) = get obsv(T ′′

1 ) = T ::get obsv(T ′
1) .

Thus there exists T2 such that

T2 ∈ T !(let ΠA in C1∥ . . .∥Cn), (σc,σa,!)" ,

and get obsv(T2) = T . Thus

T ∈ O!(let ΠA in C1∥ . . .∥Cn), (σc,σa,!)" ,

and we are done.

Proofs of (B.25) The proof is similar to the proof of (B.12).
To prove obstruction-freeMGC

ϕ (Π), we want to show: for any n, σo, σa and T , if
T ∈ Tω!(let Π in MGCn), (∅,σo,!)", iso(T ) and ϕ(σo) = σa, then the following
(B.14) holds:

(∃i. is obj abt(T (i))) ∨ (∀i. ∃j. j ≥ i ∧ is ret(T (j))) .

First, if T ∈ Tω!(let Π in MGCn), (∅,σo,!)" and iso(T ), by Lemma 11(1),
there exists Tp such that

Tp ∈ Tω!(let Π in MGCp1n), (∅,σo,!)", Tp\( ,out, 1) = T
and ∀i, t. Tp(i) = (t, ret, ) ⇔ Tp(i + 1) = (t,out, 1).

Since iso(T ), we know

|T | = ω =⇒ ∃t, i. (∀j. j ≥ i =⇒ tid(T (j)) = t) .

If |Tp| = ω, by the generation of Tp and Tp\( ,out, 1) = T , we know |T | = ω.
Thus there exist t0 and i such that

∀j. j ≥ i =⇒ tid(T (j)) = t0 .

Since Tp\( ,out, 1) = T , we know there exists ip such that

∀j. j ≥ ip =⇒ tid(Tp(j)) = t0 ∨ Tp(j) = ( ,out, 1) .

By the generation of Tp, we know there exists i′ such that

294



∀j. j ≥ i′ =⇒ tid(Tp(j)) = t0 .

Thus iso(Tp) holds.
Since Π ⊑iω

ϕ ΠA, we know

Oiω!(let Π in MGCp1n), (∅,σo,!)" ⊆ Oω!(let ΠA in MGCp1n), (∅,σa,!)" .

From Lemma 12, we know for any T , if T ∈ Oiω!(let Π in MGCp1n), (∅,σo,!)",
then T is an infinite trace of ( ,out, 1).

Then we know: get obsv(Tp) is an infinite trace of ( ,out, 1). Thus |Tp| = ω

and the following (B.15) holds:

∀i. ∃j. j ≥ i ∧ Tp(j) = ( ,out, 1) .

As in the proof of (B.12), we prove the following (B.16) from (B.15):

∀i. ∃j. j ≥ i ∧ is ret(Tp(j)) .

Since Tp\( ,out, 1) = T , from (B.16), we know (B.14) holds and we are done.

Proofs of (B.26) We need to prove that if Π ⊑ϕ ΠA and obstruction-freeϕ(Π),
then for any n, C1, . . . , Cn, σc, σo and σa such that ϕ(σo) = σa, we have

Oiω!(let Π in C1∥ . . .∥Cn), (σc,σo,!)"
⊆ Oω!(let ΠA in C1∥ . . .∥Cn), (σc,σa,!)" .

Thus we only need to prove: for any T ,

(1) If (⌊let Π in C1∥ . . .∥Cn⌋, (σc,σo,!))
T

,−→∗ abort,
then there exists Ta such that

(⌊let ΠA in C1∥ . . .∥Cn⌋, (σc,σa,!))
Ta,−→∗ abort and

get obsv(T ) = get obsv(Ta).

(2) If (⌊let Π in C1∥ . . .∥Cn⌋, (σc,σo,!))
T

,−→∗ (skip, ),
then there exists Ta such that

(⌊let ΠA in C1∥ . . .∥Cn⌋, (σc,σa,!))
Ta,−→∗ (skip, ) and

get obsv(T ) = get obsv(Ta).

(3) If (⌊let Π in C1∥ . . .∥Cn⌋, (σc,σo,!))
T

,−→ω · and iso(T ),
then there exists Ta such that

(⌊let ΠA in C1∥ . . .∥Cn⌋, (σc,σa,!))
Ta,−→ω · and

get obsv(T ) = get obsv(Ta).

(1) and (2) are proved in Lemma 13.
For (3), as in the proofs for (B.13), we define the simulation relation " in

Figure 11(d), and prove the following (B.19):

For any W , S, W1, S1, W2, S2, W3, S3, T0 and T1,

if (W,S) is well-formed and out of method calls, (W,S)
T0,−→ ∗ (W1,S1),

(W1,S1) " (W2,S2;W3,S3), (W1,S1)
T1,−→ω · and lock-free(T0 ::T1),

then there exists T3 such that (W3,S3)
T3,−→ω · and

T1\( ,obj) = T3\( ,obj).

295



On the other hand, for any n, C1, . . . , Cn, σc, σo and σa, by Lemma 1, we know

H!(let Π in C1∥ . . .∥Cn), (σc,σo,!)" ⊆ H!(let Π in MGCn), (∅,σo,!)" .

From Π ⊑ϕ ΠA, by Lemma 3, we know Π "ϕΠA. Thus, if ϕ(σo) = σa, then

H!(let Π in MGCn), (∅,σo,!)" ⊆ H!(let ΠA in MGCn), (∅,σa,!)" .

Then we know

(let Π in C1∥ . . .∥Cn, (σc,σo,!))
# (let ΠA in MGCn, (∅,σa,!);

let ΠA in C1∥ . . .∥Cn, (σc,σa,!)),

Thus, if (⌊let Π in C1∥ . . .∥Cn⌋, (σc,σo,!))
T

&−→ω · and iso(T ),
by obstruction-freeϕ(Π), we know lock-free(T ). Then from (B.19) we get: there
exists Ta such that

(⌊let ΠA in C1∥ . . .∥Cn⌋, (σc,σa,!))
Ta&−→ω ·

and T \( ,obj) = Ta\( ,obj). Thus get obsv(T ) = get obsv(Ta) and we are done.

B.6 Proofs of Theorem ??

We define the MGC version of deadlock-freedom, and prove it is equivalent to
the original version.

Definition 10. deadlock-freeMGC
ϕ (Π), iff

∀n,σo, T. T ∈ Tω!(let Π in MGCn), (∅,σo,!)" ∧ objfair(T ) ∧ (σo ∈ dom(ϕ))
=⇒ (∃i. is obj abt(T (i))) ∨ (∀i. ∃j. j ≥ i ∧ is ret(T (j))) ,

where objfair(T ) says object steps are fairly scheduled:

objfair(T )
def

= |T | = ω

=⇒ (∀t ∈ [1..tnum(T )]. ∀n. |(T |t)| = n
=⇒ is ret((T |t)(n)) ∨ is clt((T |t)(n)) ∨ (T |t)(n) = (t, term)) .

It’s easy to see:

∀T. fair(T ) =⇒ objfair(T ) .

Lemma 19. For any T and Tm, if fair(T ), get objevt(T ) = get objevt(Tm),
|T | = ω and

T ∈ Tω!(let Π in C1∥ . . .∥Cn), (σc,σo,!)" ,

then objfair(Tm).

Proof. Suppose |(Tm|t)| = n and the index of (Tm|t)(n) in Tm is l. If is ret(Tm(l))
or is clt(Tm(l)) or Tm(l) = (t, term), we are done. Otherwise, we know

is inv(Tm(l)) or Tm(l) = (t,obj) .

296



Since get objevt(T ) = get objevt(Tm), we know there exists i such that

T (i) = Tm(l) and get objevt(T (1..i)) = get objevt(Tm(1..l)) .

Thus tid(T (i)) = t and

is inv(T (i)) or T (i) = (t,obj) .

From fair(T ), we know

∃j. j > i ∧ tid(T (j)) = t .

By the generation of T and the operational semantics, we know

∃j. j > i ∧ tid(T (j)) = t ∧ is obj(T (j)) .

Since get objevt(T ) = get objevt(Tm), we know

∃j. j > l ∧ tid(Tm(j)) = t ∧ is obj(Tm(j)) ,

which contradicts the assumption that |(Tm|t)| = n and the index of (Tm|t)(n)
in Tm is l. Thus neither is inv(Tm(l)) nor Tm(l) = (t,obj) holds, and we are
done. ⊓$

Lemma 20. deadlock-freeϕ(Π) ⇐⇒ deadlock-freeMGC
ϕ (Π) .

Proof. 1. deadlock-freeϕ(Π) =⇒ deadlock-freeMGC
ϕ (Π) :

As in the proof for Lemma 10, we can prove the following (B.9):

∀n,σo, T. T ∈ Tω!(let Π in MGCn), (∅,σo,!)" ∧ (σo ∈ dom(ϕ)) ∧ lock-free(T )
=⇒ (∃i. is obj abt(T (i))) ∨ (∀i. ∃j. j ≥ i ∧ is ret(T (j)))

Then we only need to prove the following (B.27):

∀n,σo, T. T ∈ Tω!(let Π in MGCn), (∅, σo,!)"
∧ objfair(T ) ∧ (σo ∈ dom(ϕ)) ∧ deadlock-freeϕ(Π)
=⇒ lock-free(T )

(B.27)

For T such that T ∈ Tω!(let Π in MGCn), (∅,σo,!)" and objfair(T ), if |T | ̸=
ω, then we know fair(T ). By the definition of deadlock-freeϕ(Π), we know
lock-free(T ). Otherwise, we know |T | = ω, and let

S
def

= {t | ∃n. |(T |t)| = n ∧ (T |t)(n) ̸= (t, term)}
= {t | |(T |t)| ≠ ω} .

Then we construct another program W = let Π in C1 ∥ . . .∥Cn as follows:
for any t ∈ [1..n],

t ̸∈ S ⇒ Ct = MGT
t ∈ S
⇒ Ct = local it; it := 0;

while (it < nt){ frand(m)(rand()); it := it + 1 }
where nt = |get hist(T |t)|/2

297



Let σc = {it ❀ 0 | t ∈ S}.
We can construct a simulation between let Π in MGCn and W , and show
that there exists T ′ such that

T ′ ∈ Tω!W, (σc,σo,!)" , fair(T ′) and get objevt(T ) = get objevt(T ′) .

From deadlock-freeϕ(Π), we know lock-free(T ′). We can prove the following
(B.28):

If |T | = ω, get objevt(T ) = get objevt(T ′) and lock-free(T ′) ,
then lock-free(T ) .

(B.28)

Then we know lock-free(T ) and hence (B.27) holds.
We prove (B.28) as follows. Since |T | = ω, we know one of the following
must hold:
(i) there exists i such that ∀j ≥ i. is clt(T (j));
(ii) ∀i. ∃j. j ≥ i ∧ is obj(T (j)).
For (i), we know lock-free(T ).
For (ii), since get objevt(T ) = get objevt(T ′), we know

∀i. ∃j. j ≥ i ∧ is obj(T ′(j)).

Since lock-free(T ′), we know
for any i′, if pend inv(T ′(1..i′)) ̸= ∅, then there exists j′ > i′ such
that is ret(T ′(j′)).

For T , for any i, we know there exists i′ such that

get objevt(T (1..i)) = get objevt(T ′(1..i′)) .

If pend inv(T (1..i)) ̸= ∅, we know

pend inv(T ′(1..i′)) ̸= ∅ .

Then we get:

there exists j′ > i′ such that is ret(T ′(j′)).

Thus we know:

there exists j > i such that is ret(T (j)).

Therefore lock-free(T ) and we have proved (B.28).
2. deadlock-freeMGC

ϕ (Π) =⇒ deadlock-freeϕ(Π) :
For any T such that

T ∈ Tω!(let Π in C1∥ . . .∥Cn), (σc,σo,!)",

by Lemma 9, we know one of the following holds:
(1) |T | ̸= ω; or
(2) there exists i such that ∀j ≥ i. is clt(T (j)); or
(3) there exists Tm such that

Tm ∈ Tω!(let Π in MGCn), (∅,σo,!)" ,

298



and get objevt(T ) = get objevt(Tm).
For (1), by Lemma 8, we know lock-free(T ).
For (2), we know lock-free(T ) holds immediately by definition.
For (3), suppose (1) does not hold. If fair(T ), by Lemma 19, we know
objfair(Tm) holds. Then from deadlock-freeMGC

ϕ (Π), we know

(∃i. is obj abt(Tm(i))) ∨ (∀i. ∃j. j ≥ i ∧ is ret(Tm(j))).

Thus we have:

(∃i. is obj abt(T (i))) ∨ (∀i. ∃j. j ≥ i ∧ is ret(T (j))).

If ∃i. is obj abt(T (i)), we know lock-free(T ). Otherwise, we know

∀i. ∃j. j ≥ i ∧ is ret(T (j)).

Thus, for any i, if pend inv(T (1..i)) ̸= ∅, then there exists j > i such that
is ret(T (j)). Therefore lock-free(T ) and we are done.

⊓)

Then, we only need to prove the following (B.29), (B.30) and (B.31):

Π ⊑fω
ϕ ΠA =⇒ Π ⊑ϕ ΠA (B.29)

Π ⊑fω
ϕ ΠA =⇒ deadlock-freeMGC

ϕ (Π) (B.30)

Π ⊑ϕ ΠA ∧ deadlock-freeϕ(Π) =⇒ Π ⊑fω
ϕ ΠA (B.31)

Proofs of (B.29) For any n, C1, . . . , Cn, σc, σo and σa such that ϕ(σo) = σa,
for any T if

T ∈ O!(let Π in C1∥ . . .∥Cn), (σc,σo,!)",

we know there exists T1 such that T = get obsv(T1) and

T1 ∈ T !(let Π in C1∥ . . .∥Cn), (σc,σo,!)" .

Thus there exists T ′
1 and T ′′

1 such that T ′′
1 = T1 ::T ′

1, where fair(T ′
1) holds, and

one of the following holds:

(i) (⌊let Π in C1∥ . . .∥Cn⌋, (σc,σo,!))
T ′′

1/−→ω ·; or

(ii) (⌊let Π in C1∥ . . .∥Cn⌋, (σc,σo,!))
T ′′

1/−→∗ (skip, ); or

(iii) (⌊let Π in C1∥ . . .∥Cn⌋, (σc,σo,!))
T ′′

1/−→∗ abort.

Thus,

T ′′
1 ∈ Tω!(let Π in C1∥ . . .∥Cn), (σc,σo,!)" and fair(T ′′

1 ) .

Since Π ⊑fω
ϕ ΠA, we know there exists T ′′

2 such that

T ′′
2 ∈ Tω!(let ΠA in C1∥ . . .∥Cn), (σc,σa,!)" ,

299



and

get obsv(T ′′
2 ) = get obsv(T ′′

1 ) = T ::get obsv(T ′
1) .

Thus there exists T2 such that

T2 ∈ T !(let ΠA in C1∥ . . .∥Cn), (σc,σa,!)" ,

and get obsv(T2) = T . Thus

T ∈ O!(let ΠA in C1∥ . . .∥Cn), (σc,σa,!)" ,

and we are done.

Proofs of (B.30) The proof is similar to the proof of (B.12), except that we
need to first prove the following lemma:

Lemma 21. Suppose ΠA is total. If Π ⊑fω
ϕ ΠA, then

Oofω!(let Π in MGCp1n), (∅,σo,!)" ⊆ Oω!(let ΠA in MGCp1n), (∅,σa,!)" ,

where

Oofω!W,S"
def

= {get obsv(T ) | T ∈ Tω!W,S" ∧ objfair(T )
∧∀i, t. T (i) = (t, ret, ) ⇔ T (i+ 1) = (t,out, 1)} .

Proof. For any T and To such that

T ∈ Tω!(let Π in MGCp1n), (∅,σo,!)", objfair(T ),
∀i, t. T (i) = (t, ret, ) ⇔ T (i+ 1) = (t,out, 1),

and To = get obsv(T ), if |T | ̸= ω, we know fair(T ) holds, thus

To ∈ Ofω!(let Π in MGCp1n), (∅,σo,!)".

From Π ⊑fω
ϕ ΠA, we know

To ∈ Oω!(let ΠA in MGCp1n), (∅,σa,!)".

Otherwise, we know |T | = ω, and let

S
def

= {t | ∃n. |(T |t)| = n ∧ (T |t)(n) ̸= (t, term)}
= {t | |(T |t)| ̸= ω} .

Since |T | = ω, we know there exists t such that |(T |t)| = ω and hence t ̸∈ S.
Then we construct another program W = let Π in C1 ∥ . . .∥Cn as follows: for
any t ∈ [1..n],

t ̸∈ S ⇒ Ct = MGTp1
t ∈ S
⇒ Ct = local it; it := 0;

while (it < nt){
frand(m)(rand());print(1); it := it + 1;

}
where nt = |get hist(T |t)|/2

300



Let σc = {it ❀ 0 | t ∈ S}.
We can construct a simulation between let Π in MGCp1n and W , and show
that there exists T ′ such that

T ′ ∈ Tω!(let Π in C1∥ . . .∥Cn), (σc,σo,!)" ,
fair(T ′) and get obsv(T ) = get obsv(T ′) = To .

Since Π ⊑fω
ϕ ΠA, we know

To ∈ Oω!(let ΠA in C1∥ . . .∥Cn), (σc,σa,!)".

Thus there exists T ′′ such that

T ′′ ∈ Tω!(let ΠA in C1∥ . . .∥Cn), (σc,σa,!)" , and get obsv(T ′′) = To .

Since there exists t such that Ct = MGCp1, we can construct a simulation and
show that there exists T ′′′ such that

T ′′′ ∈ Tω!(let ΠA in MGCp1n), (∅,σa,!)" ,
and get obsv(T ′′) = get obsv(T ′′′) = To .

Thus we are done. ⊓%

To prove deadlock-freeMGC
ϕ (Π), we want to show: for any n, σo, σa and T ,

if T ∈ Tω!(let Π in MGCn), (∅,σo,!)", objfair(T ) and ϕ(σo) = σa, then the
following (B.14) holds:

(∃i. is obj abt(T (i))) ∨ (∀i. ∃j. j ≥ i ∧ is ret(T (j))) .

First, if T ∈ Tω!(let Π in MGCn), (∅,σo,!)" and objfair(T ), by Lemma 11(1),
there exists Tp such that

Tp ∈ Tω!(let Π in MGCp1n), (∅,σo,!)", Tp\( ,out, 1) = T
and ∀i, t. Tp(i) = (t, ret, ) ⇔ Tp(i + 1) = (t,out, 1).

Since objfair(T ), we know objfair(Tp) also holds.
Since Π ⊑fω

ϕ ΠA, by Lemma 21, we know

Oofω!(let Π in MGCp1n), (∅,σo,!)" ⊆ Oω!(let ΠA in MGCp1n), (∅,σa,!)" .

From Lemma 12, we know for any T , if T ∈ Oofω!(let Π in MGCp1n), (∅,σo,!)",
then T is an infinite trace of ( ,out, 1).

Then we know: get obsv(Tp) is an infinite trace of ( ,out, 1). Thus |Tp| = ω

and the following (B.15) holds:

∀i. ∃j. j ≥ i ∧ Tp(j) = ( ,out, 1) .

As in the proof of (B.12), we prove the following (B.16) from (B.15):

∀i. ∃j. j ≥ i ∧ is ret(Tp(j)) .

Since Tp\( ,out, 1) = T , from (B.16), we get (B.14) and thus we are done.

301



Proofs of (B.31) We need to prove that if Π ⊑ϕ ΠA and deadlock-freeϕ(Π),
then for any n, C1, . . . , Cn, σc, σo and σa such that ϕ(σo) = σa, we have

Ofω!(let Π in C1∥ . . .∥Cn), (σc,σo,!)"
⊆ Oω!(let ΠA in C1∥ . . .∥Cn), (σc,σa,!)" .

Thus we only need to prove: for any T ,

(1) If (⌊let Π in C1∥ . . .∥Cn⌋, (σc,σo,!))
T

%−→∗ abort,
then there exists Ta such that

(⌊let ΠA in C1∥ . . .∥Cn⌋, (σc,σa,!))
Ta%−→∗ abort and

get obsv(T ) = get obsv(Ta).

(2) If (⌊let Π in C1∥ . . .∥Cn⌋, (σc,σo,!))
T

%−→∗ (skip, ),
then there exists Ta such that

(⌊let ΠA in C1∥ . . .∥Cn⌋, (σc,σa,!))
Ta%−→∗ (skip, ) and

get obsv(T ) = get obsv(Ta).

(3) If (⌊let Π in C1∥ . . .∥Cn⌋, (σc,σo,!))
T

%−→ω · and fair(T ),
then there exists Ta such that

(⌊let ΠA in C1∥ . . .∥Cn⌋, (σc,σa,!))
Ta%−→ω · and

get obsv(T ) = get obsv(Ta).

(1) and (2) are proved in Lemma 13.
For (3), as in the proofs for (B.13), we define the simulation relation " in

Figure 11(d), and prove the following (B.19):

For any W , S, W1, S1, W2, S2, W3, S3, T0 and T1,

if (W,S) is well-formed and out of method calls, (W,S)
T0%−→ ∗ (W1,S1),

(W1,S1) " (W2,S2;W3,S3), (W1,S1)
T1%−→ω · and lock-free(T0 ::T1),

then there exists T3 such that (W3,S3)
T3%−→ω · and

T1\( ,obj) = T3\( ,obj).

On the other hand, for any n, C1, . . . , Cn, σc, σo and σa, by Lemma 1, we know

H!(let Π in C1∥ . . .∥Cn), (σc,σo,!)" ⊆ H!(let Π in MGCn), (∅,σo,!)" .

From Π ⊑ϕ ΠA, by Lemma 3, we know Π #ϕΠA. Thus, if ϕ(σo) = σa, then

H!(let Π in MGCn), (∅,σo,!)" ⊆ H!(let ΠA in MGCn), (∅,σa,!)" .

Then we know

(let Π in C1∥ . . .∥Cn, (σc,σo,!))
" (let ΠA in MGCn, (∅,σa,!);

let ΠA in C1∥ . . .∥Cn, (σc,σa,!)),

Thus, if (⌊let Π in C1∥ . . .∥Cn⌋, (σc,σo,!))
T

%−→ω · and fair(T ),
by deadlock-freeϕ(Π), we know lock-free(T ). Then from (B.19) we get: there
exists Ta such that

(⌊let ΠA in C1∥ . . .∥Cn⌋, (σc,σa,!))
Ta%−→ω ·

and T \( ,obj) = Ta\( ,obj). Thus get obsv(T ) = get obsv(Ta) and we are done.

302



B.7 Proofs of Theorem ??

We define the MGC version of starvation-freedom, and prove it is equivalent to
the original version.

Definition 11. starvation-freeMGC
ϕ (Π), iff

∀n,σo, T. T ∈ Tω!(let Π in MGCn), (∅,σo,!)" ∧ objfair(T ) ∧ (σo ∈ dom(ϕ))
=⇒ wait-free(T )

Lemma 22. starvation-freeϕ(Π) ⇐⇒ starvation-freeMGC
ϕ (Π) .

Proof. 1. starvation-freeϕ(Π) =⇒ starvation-freeMGC
ϕ (Π) :

We only need to prove the following (B.32):

∀n,σo, T. T ∈ Tω!(let Π in MGCn), (∅, σo,!)"
∧ objfair(T ) ∧ (σo ∈ dom(ϕ)) ∧ starvation-freeϕ(Π)
=⇒ wait-free(T )

(B.32)

For T such that T ∈ Tω!(let Π in MGCn), (∅,σo,!)" and objfair(T ), if |T | ̸=
ω, then we know fair(T ). By the definition of starvation-freeϕ(Π), we know
wait-free(T ). Otherwise, we know |T | = ω, and let

S
def

= {t | ∃n. |(T |t)| = n ∧ (T |t)(n) ̸= (t, term)}
= {t | |(T |t)| ≠ ω} .

Then we construct another program W = let Π in C1 ∥ . . .∥Cn as follows:
for any t ∈ [1..n],

t ̸∈ S ⇒ Ct = MGT
t ∈ S
⇒ Ct = local it; it := 0;

while (it < nt){ frand(m)(rand()); it := it + 1 }
where nt = |get hist(T |t)|/2

Let σc = {it ❀ 0 | t ∈ S}.
We can construct a simulation between let Π in MGCn and W , and show
that there exists T ′ such that

T ′ ∈ Tω!W, (σc,σo,!)" , fair(T ′) and get objevt(T ) = get objevt(T ′) .

From starvation-freeϕ(Π), we know wait-free(T ′). We can prove the following
(B.33):

If |T | = ω, get objevt(T ) = get objevt(T ′) and wait-free(T ′) ,
then wait-free(T ) .

(B.33)

Then we know wait-free(T ) and hence (B.32) holds.
We prove (B.33) as follows. Since get objevt(T ) = get objevt(T ′), for any i,
we know there exists i′ such that

303



get objevt(T (1..i)) = get objevt(T ′(1..i′)) .

For any e, if e ∈ pend inv(T (1..i)), we know

e ∈ pend inv(T ′(1..i′)) .

From wait-free(T ′), we know one of the following holds:

(i) there exists j′ > i′ such that match(e, T ′(j′)).
(ii) there exists j′ > i′ such that ∀k′ ≥ j′. tid(T ′(k′)) ̸= tid(e).

For (i), since get objevt(T ) = get objevt(T ′), we know

there exists j > i such that match(e, T (j)).

For (ii), assume (i) does not hold. Then we know e ∈ pend inv(T ′). Since
get objevt(T ) = get objevt(T ′), we can prove

e ∈ pend inv(T ) .

Let t = tid(e). Suppose

∀j > i. ∃k ≥ j. tid(T (k)) = t .

Then, by the operational semantics and the generation of T , we know

∀j > i. ∃k ≥ j. T (k) = (t,obj) .

Since get objevt(T ) = get objevt(T ′), we know

∀j′ > i′. ∃k′ ≥ j′. T ′(k′) = (t,obj) ,

which contradicts (ii). Thus we know

∃j > i. ∀k ≥ j. tid(T (k)) ̸= t .

Therefore wait-free(T ) and we have proved (B.33).
2. starvation-freeMGC

ϕ (Π) =⇒ starvation-freeϕ(Π) :
Almost the same as the proof for Lemma 15, except that we need to apply
Lemma 19.

⊓(

Then, we only need to prove the following (B.34), (B.35) and (B.36), where
(B.34) is trivial from definitions:

Π ⊑ftω
ϕ ΠA =⇒ Π ⊑fω

ϕ ΠA (B.34)

Π ⊑ftω
ϕ ΠA =⇒ starvation-freeMGC

ϕ (Π) (B.35)

Π ⊑ϕ ΠA ∧ starvation-freeϕ(Π) =⇒ Π ⊑ftω
ϕ ΠA (B.36)

304



Proofs of (B.35) For any n, σo, σa and T such that ϕ(σo) = σa, if T ∈
Tω!(let Π in MGCn), (∅,σo,!)" and objfair(T ), suppose

¬∃i. is abt(T (i)),

then by the operational semantics, we only need to prove:

for any i and e, if e ∈ pend inv(T (1..i)), then there exists j > i such that
match(e, T (j)).

Suppose it does not hold. Then we know there exists t0 such that

∃i. ∀j. j ≥ i ⇒ (T |t0)(j) = (t0,obj) .

By Lemma 11(1), there exists Tp such that

Tp ∈ Tω!(let Π in MGCp1n), (∅,σo,!)" , Tp\( ,out, 1) = T
and ∀i, t. Tp(i) = (t, ret, ) ⇔ Tp(i + 1) = (t,out, 1).

By the operational semantics, we know

∃i. ∀j. j ≥ i ⇒ (Tp|t0)(j) = (t0,obj) .

Let

S
def

= {t | ∃n. |(Tp|t)| = n ∧ (Tp|t)(n) ̸= (t, term)}
= {t | |(Tp|t)| ̸= ω} .

Thus we know

t0 ̸∈ S, and t0 ∈ div tids(Tp).

We construct another program W = let Π in C1 ∥ . . . ∥Cn as follows: for any
t ∈ [1..n],

t ̸∈ S ⇒ Ct = MGTp1
t ∈ S
⇒ Ct = local it; it := 0;

while (it < nt){
frand(m)(rand());print(1); it := it + 1;

}
where nt = |get hist(T |t)|/2

Let σc = {it ❀ 0 | t ∈ S}. We can construct a simulation between let Π in MGCp1n
and W , and show that there exists T ′

p such that

T ′
p ∈ Tω!(let Π in C1∥ . . .∥Cn), (σc,σo,!)" , fair(T ′

p) ,
get objevt(Tp) = get objevt(T ′

p) and get obsv(Tp) = get obsv(T ′
p) .

Thus we know there exists i such that

∀j. j ≥ i ⇒ (T ′
p|t0)(j) = (t0,obj) .

305



Thus we have

t0 ∈ div tids(T ′
p) and |(get obsv(T ′

p)|t0)| < i .

On the other hand, since Π ⊑ftω
ϕ ΠA, we know:

Oftω!(let Π in C1∥ . . .∥Cn), (σc,σo,!)"
⊆ Otω!(let ΠA in C1∥ . . .∥Cn), (σc,σa,!)" .

Thus there exists T ′′
p such that

T ′′
p ∈ Tω!(let ΠA in C1∥ . . .∥Cn), (σc,σa,!)" ,

get obsv(T ′′
p ) = get obsv(T ′

p) and div tids(T ′′
p ) = div tids(T ′

p) .

Since Ct0 = MGTp1 and t0 ∈ div tids(T ′′
p ), we know

|(T ′′
p |t0)| = ω ,

and also

|(get obsv(T ′
p)|t0)| = |(get obsv(T ′′

p )|t0)| = ω ,

which contradicts the fact that |(get obsv(T ′
p)|t0)| < i. Thus we know wait-free(T )

and we are done.

Proofs of (B.36) We need to prove that if Π ⊑ϕ ΠA and starvation-freeϕ(Π),
then for any n, C1, . . . , Cn, σc, σo and σa such that ϕ(σo) = σa, we have

Oftω!(let Π in C1∥ . . .∥Cn), (σc,σo,!)"
⊆ Otω!(let ΠA in C1∥ . . .∥Cn), (σc,σa,!)" .

Thus we only need to prove: for any T ,

(1) If (⌊let Π in C1∥ . . .∥Cn⌋, (σc,σo,!))
T

&−→∗ abort,
then there exists Ta such that

(⌊let ΠA in C1∥ . . .∥Cn⌋, (σc,σa,!))
Ta&−→∗ abort and

get obsv(T ) = get obsv(Ta).

(2) If (⌊let Π in C1∥ . . .∥Cn⌋, (σc,σo,!))
T

&−→∗ (skip, ),
then there exists Ta such that

(⌊let ΠA in C1∥ . . .∥Cn⌋, (σc,σa,!))
Ta&−→∗ (skip, ) and

get obsv(T ) = get obsv(Ta).

(3) If (⌊let Π in C1∥ . . .∥Cn⌋, (σc,σo,!))
T

&−→ω · and fair(T ),
then there exists Ta such that

(⌊let ΠA in C1∥ . . .∥Cn⌋, (σc,σa,!))
Ta&−→ω ·,

get obsv(T ) = get obsv(Ta) and div tids(T ) = div tids(Ta).

(1) and (2) are proved in Lemma 13.
For (3), as in the proofs for (B.22), we define the simulation relation " in

Figure 11(d), and prove the following (B.23):

306



For any W , S, W1, S1, W2, S2, W3, S3, T0 and T1,

if (W,S) is well-formed and out of method calls, (W,S)
T0!−→ ∗ (W1,S1),

(W1,S1) ! (W2,S2;W3,S3), (W1,S1)
T1!−→ω · and wait-free(T0 ::T1),

then there exists T3 such that (W3,S3)
T3!−→ω · and

T1\( ,obj) = T3\( ,obj).

On the other hand, for any n, C1, . . . , Cn, σc, σo and σa, by Lemma 1, we know

H!(let Π in C1∥ . . .∥Cn), (σc,σo,")" ⊆ H!(let Π in MGCn), (∅,σo,")" .

From Π ⊑ϕ ΠA, by Lemma 3, we know Π #ϕΠA. Thus, if ϕ(σo) = σa, then

H!(let Π in MGCn), (∅,σo,")" ⊆ H!(let ΠA in MGCn), (∅,σa,")" .

Then we know

(let Π in C1∥ . . .∥Cn, (σc,σo,"))
! (let ΠA in MGCn, (∅,σa,");

let ΠA in C1∥ . . .∥Cn, (σc,σa,")),

Thus, if (⌊let Π in C1∥ . . .∥Cn⌋, (σc,σo,"))
T

!−→ω · and fair(T ),
by starvation-freeϕ(Π), we know wait-free(T ). Then from (B.23) we get: there
exists Ta such that

(⌊let ΠA in C1∥ . . .∥Cn⌋, (σc,σa,"))
Ta!−→ω · , and T \( ,obj) = Ta\( ,obj).

Thus we know get obsv(T ) = get obsv(Ta).
Below we prove: div tids(T ) = div tids(Ta). Since fair(T ) and |T | = ω, we

know for any t,

either |(T |t)| = ω, or last(T |t) = (t, term) .

(a) last(T |t) = (t, term):
Since T \( ,obj) = Ta\( ,obj) and by the operational semantics, we know
last(Ta|t) = (t, term).

(b) |(T |t)| = ω:
Since T \( ,obj) = Ta\( ,obj), we know

(T |t)\(t,obj) = (Ta|t)\(t,obj) .

Suppose |(Ta|t)| ≠ ω. Then we know |(Ta|t)\(t,obj)| ≠ ω. Thus

∃i. ∀j. j ≥ i ⇒ (T |t)(j) = (t,obj) .

By the operational semantics, we know there exists i such that

tid(T (i)) = t , is inv(T (i)) , and ∀j. j ≥ i ⇒ ¬match(T (i), T (j)) .

By wait-free(T ), we know

∃j. ∀k ≥ j. tid(T (k)) ̸= t ,

which contradicts the assumption that |(T |t)| = ω.
Thus we know |(Ta|t)| = ω.

Thus div tids(T ) = div tids(Ta) holds and we are done.

307



B.8 Proofs of Theorem ??

Proofs of Theorem ??(1) For any σo, σa and T such that ϕ(σo) = σa, if

T ∈ Tω!(let Π in C1), (σc,σo,!)",

by Lemma 9, we know one of the following holds:

(1) |T | ̸= ω; or
(2) there exists i such that ∀j ≥ i. is clt(T (j)); or
(3) there exists Tm such that

Tm ∈ Tω!(let Π in MGT), (∅,σo,!)" ,

and get objevt(T ) = get objevt(Tm).

For (1), by the operational semantics, we can prove prog-t(T ) or abt(T ) holds.
For (2), for any k and e, if e ∈ pend inv(T (1..k)), since there exists i > k such
that is clt(T (i)), by the operational semantics we know there exists j such that
k < j < i and match(e, T (j)). Thus prog-t(T ) holds.
For (3), by Lemma 11(1), there exists Tp such that

Tp ∈ Tω!(let Π in MGTp1), (∅,σo,!)" and Tp\( ,out, 1) = T .

Since Π ⊑1ω
ϕ ΠA, we know

Oω!(let Π in MGTp1), (∅,σo,!)" ⊆ Oω!(let ΠA in MGTp1), (∅,σa,!)" .

From Lemma 12, we know get obsv(Tp) is an infinite trace of ( ,out, 1). Thus
|Tp| = ω and the following (B.15) holds:

∀i. ∃j. j ≥ i ∧ Tp(j) = ( ,out, 1) .

As in the proof of (B.12), we prove the following (B.16) from (B.15):

∀i. ∃j. j ≥ i ∧ is ret(Tp(j)) .

Since Tp\( ,out, 1) = T , we know

∀i. ∃j. j ≥ i ∧ is ret(T (j)) .

Thus for any i and e, if e ∈ pend inv(T (1..i)), then there exists j > i such that
is ret(T (j)) holds. By the operational semantics and the generation of T , we
know match(e, T (j)) holds. Thus prog-t(T ) holds. Then we are done.

Proofs of Theorem ??(2) We need to prove that ifΠ ⊑ϕ ΠA and seq-termϕ(Π),
then for any C1, σc, σo and σa such that ϕ(σo) = σa, we have

Oω!(let Π in C1), (σc,σo,!)" ⊆ Oω!(let ΠA in C1), (σc,σa,!)" .

Thus we only need to prove: for any T ,

308



(1) If (⌊let Π in C1⌋, (σc,σo,!))
T

#−→∗ abort,
then there exists Ta such that

(⌊let ΠA in C1⌋, (σc,σa,!))
Ta#−→∗ abort and get obsv(T ) = get obsv(Ta).

(2) If (⌊let Π in C1⌋, (σc,σo,!))
T

#−→∗ (skip, ),
then there exists Ta such that

(⌊let ΠA in C1⌋, (σc,σa,!))
Ta#−→∗ (skip, ) and get obsv(T ) = get obsv(Ta).

(3) If (⌊let Π in C1⌋, (σc,σo,!))
T

#−→ω ·,
then there exists Ta such that

(⌊let ΠA in C1⌋, (σc,σa,!))
Ta#−→ω · and get obsv(T ) = get obsv(Ta).

(1) and (2) are proved in Lemma 13.
For (3), as in the proofs for (B.13), we define the simulation relation " in

Figure 11(d), and prove the following (B.19):

For any W , S, W1, S1, W2, S2, W3, S3, T0 and T1,

if (W,S) is well-formed and out of method calls, (W,S)
T0#−→ ∗ (W1,S1),

(W1,S1) " (W2,S2;W3,S3), (W1,S1)
T1#−→ω · and lock-free(T0 ::T1),

then there exists T3 such that (W3,S3)
T3#−→ω · and

T1\( ,obj) = T3\( ,obj).

On the other hand, for any n, C1, . . . , Cn, σc, σo and σa, by Lemma 1, we know

H!(let Π in C1), (σc,σo,!)" ⊆ H!(let Π in MGC1), (∅,σo,!)" .

From Π ⊑ϕ ΠA, by Lemma 3, we know Π #ϕΠA. Thus, if ϕ(σo) = σa, then

H!(let Π in MGC1), (∅,σo,!)" ⊆ H!(let ΠA in MGC1), (∅,σa,!)" .

Then we know

(let Π in C1, (σc,σo,!))
" (let ΠA in MGC1, (∅,σa,!);

let ΠA in C1, (σc,σa,!)),

Thus, if (⌊let Π in C1⌋, (σc,σo,!))
T

#−→ω ·, by seq-termϕ(Π), we know lock-free(T ).
Then from (B.19) we get: there exists Ta such that

(⌊let ΠA in C1⌋, (σc,σa,!))
Ta#−→ω ·

and get obsv(T ) = get obsv(Ta), thus we are done.

309



A Separation Logic for Enforcing Declarative
Information Flow Control Policies

David Costanzo and Zhong Shao

Yale University

Abstract. In this paper, we present a program logic for proving that a
program does not release information about sensitive data in an unin-
tended way. The most important feature of the logic is that it provides
a formal security guarantee while supporting “declassification policies”
that describe precise conditions under which a piece of sensitive data
can be released. We leverage the power of Hoare Logic to express the
policies and security guarantee in terms of state predicates. This allows
our system to be far more specific regarding declassification conditions
than most other information flow systems.
The logic is designed for reasoning about a C-like, imperative language
with pointer manipulation and aliasing. We therefore make use of ideas
from Separation Logic to reason about data in the heap.

1 Introduction

Information Flow Control (IFC) is a field of computer security concerned with
tracking the propagation of information through a system. A primary goal of
IFC reasoning is to formally prove that a system does not inadvertently leak
high-security data to a low-security observer. A major challenge is to precisely
define what ”inadvertently” should mean here.

A simple solution to this challenge, taken by many IFC systems (e.g., [4, 5,
11, 16, 19]), is to define an information-release policy using a lattice of security
labels. A noninterference property is imposed: information cannot flow down
the lattice. Put another way, any data that the observer sees can only have been
influenced by data with label less than or equal to the observer’s label in the
lattice. This property is sometimes called pure noninterference.

Purely-noninterfering systems are unfortunately not very useful. Almost all
real-world systems need to violate noninterference sometimes. For example, con-
sider one of the most standard security-sensitive situations: password authen-
tication. In order for a password to be useful, there must be a way for a user
to submit a guess at the password. If the guess is incorrect, then the user will
be informed as such. However, the information that the guess was incorrect is
dependent on the password itself; the user (who might be a malicious attacker)
learns that the password is definitely not the one that was guessed. This repre-
sents a flow of information (albeit a minor one) from the high-security password
to the low-security user, thus violating noninterference. In a purely noninterfer-
ing system, sensitive data has no way whatsoever of affecting the outcome of a

310



computation, and so the situation is essentially equivalent to the data not being
present in the system at all.

There have been numerous attempts at refining the notion of inadvertent
information release beyond the rules of a strict lattice structure. IFC systems
commonly allow for some method of declassification, a term used to describe an
information leak (i.e., an information flow moving down the security lattice) that
is understood to be in some way “acceptable” or “purposeful” (as opposed to
“inadvertent”). These declassifications violate the pure noninterference property
described above. Ideally, an IFC system should still provide some sort of security
guarantee even in the presence of declassification. It is quite rare, however, for a
system to have a satisfactory formal guarantee. Those that do usually must make
significant concessions that limit the generality and usefulness of the system.

Our goal is to leverage the strengths of a program logic to devise a powerful
IFC system that provides formal security guarantees even in the presence of
declassification. It turns out that we can use state predicates to refine the pure
noninterference property into one that cleanly describes exactly how a piece of
high-security data could affect observable output. Instead of simply saying that
an observer cannot distinguish between any values of the high-security data, we
say that the observer cannot distinguish between any values among a particular
set — the set described by the state predicate.

Our contributions in this paper are as follows:

– We define a novel, security-aware semantics for a simple imperative language
with pointer arithmetic and aliasing that tracks information flow through
label propagation. We show that this semantics is sensible by relating its
executions back to a standard (security-ignorant) small-step operational se-
mantics.

– We present a program logic for formally verifying the safety of a program
under the security-aware semantics. The logic builds on ideas from Hoare
Logic [6] and Separation Logic [13, 14].

– We prove a strong security guarantee for any program that is verified using
our program logic. This guarantee is a generalization of traditional pure
noninterference.

– All of the technical work in this paper is fully formalized and proved in the
Coq proof assistant.

The remainder of this paper is organized as follows: Section 2 informally
discusses how our system works and highlights contributions; Section 3 defines
our language, state model, and operational semantics; Section 4 describes the
program logic and its soundness theorem relative to the operational semantics;
Section 5 describes the noninterference-based security guarantee provided by the
program logic; and Section 6 describes related work and concludes.

2 Informal Discussion

In this section, we will describe our system informally in order to provide some
high-level motivation. We pick a starting point of a C-like, imperative language

311



with pointer arithmetic and aliasing, as we would like our logic to be applicable
to low-level systems code. The main operations of our language are variable
assignment x := E, heap dereference/load x := [E], and heap dereference/store
[E] := E′. The expressions E can be any standard mathematical expressions
on program variables, so pointer arithmetic is allowed. Aliasing is also clearly
allowed since [x] and [y] refer to the same heap location if x and y contain the
same value.

2.1 Security Labels

Our language semantics will track information flow by attaching a security label
to every value in the program state. For simplicity of presentation, we will assume
that the only labels are Lo and Hi (a more general version of our system allows
labels to be any set of elements that form a lattice structure). Unlike many IFC
systems, we attach the label to the value rather than the location. This means
that a program is allowed to, for example, overwrite some Lo data stored in
variable x with some other Hi data. Many other systems would instead label the
location x as Lo, meaning that Hi data could never be written into it. Supporting
label overwrites allows our system to verify a wider variety of programs.

Label propagation is done in a mostly obvious way. If we have a direct as-
signment such as x := y, then the label of y’s data propagates into x along
with the data itself. We compute the composite label of an expression such as
2∗x+z to be the least upper bound of the labels of its constituent parts (for the
two-element lattice of Lo and Hi, this will be Lo if and only if each constituent
label is Lo). For the heap-read command x := [E], we must propagate both the
label of E and the label of the data located at heap address E into x. In other
words, if we read some low-security data from the heap using a high-security
pointer, the result must be tainted as high security in order for our information
flow tracking to be accurate. Similarly, the heap-write command [E] := E′ must
propagate both the label of E′ and the label of pointer E into the location E in
the heap. As a general rule for any of these atomic commands, we compute the
composite label of the entire read-set, and propagate that into all locations in
the write-set.

2.2 Noninterference

As discussed in Section 1, the ultimate goal of our IFC system is to prove a formal
security guarantee that holds for any verified program. The standard security
guarantee is noninterference, which says that the initial values of Hi data have
no effect on the “observable behavior” of a program’s execution. We choose to
define observable behavior in terms of a special output channel. We include an
output command in our language, and an execution’s observable behavior is
defined to be exactly the sequence of values that the execution outputs.

The standard way to express this noninterference property formally is in
terms of two executions: a program is deemed to be noninterfering if two ex-
ecutions of the program from observably equivalent initial states always yield

312



identical outputs. Two states are defined to be observably equivalent when only
their high-security values differ. Thus this property describes what one would
expect: changing the value of any high-security data in the initial state will cause
no change in the program’s output.

One of our key insights is that this noninterference property can be refined by
requiring a precondition to hold on the initial state of an execution. That is, we
alter the property to say that two executions will yield identical outputs if they
start from two observably equivalent states that both satisfy some state predicate
P . This weakening of noninterference is interesting for two reasons. First, it
provides a link between information flow security and Hoare Logic (a program
logic that derives pre/postconditions as state predicates). Second, this property
describes a certain level of dependency between high-security inputs and low-
security outputs, rather than the complete independence of pure noninterference.
This means that a program that satisfies this weaker noninterference may be
semantically declassifying data. In this sense, we can use this property as an
interesting security guarantee for a program that may declassify some data.

To better understand this weaker version of noninterference, let us consider
a few examples.

Public Parity Suppose we have a variable x that contains some high-security
data. We wish to specify a declassification policy which says that only the parity
of the Hi value can be released to the public. We will accomplish this by verifying
the security of some program with a precondition P that says “x contains high
data, y contains low data, and y = x%2”. Our security property then says that
if we have an execution from some state satisfying P , then changing the value of
x will not affect the output as long as the new state also satisfies P . Since y is
the parity of x and is unchanged in the two executions, this means that as long
as we change x to some other value that has the same parity, the output will be
unchanged. Indeed, this is exactly the property that one would expect to have
with a policy that releases only the parity of a secret value: only the secret’s
parity can influence the observable behavior.

Public Average Suppose we have three secrets stored in x, y, and z, and we
are only willing to release their average as public (e.g., the secrets are employee
salaries at a particular company). This is similar to the previous example, except
that we now have multiple secrets. The precondition P will say that x, y, and z
all contain Hi data, a contains Lo data, and a = (x+ y+ z)/3. In this situation,
noninterference will say that we can change the value of the set of secrets from
any triple to any other triple, and the output will be unaffected as long as the
average of the three values is unchanged.

Public Zero Suppose we have a a secret stored in x, and we are only willing to
release it if it is zero. We could take the approach of the previous two examples
and store a public boolean in another variable which is true if and only if x is 0.
However, there is an even simpler way to represent the desired policy without
using an extra variable. Our precondition P will say that either x is 0 and

313



its label is Lo, or x is nonzero and its label is Hi. This is an example of a
conditional label : a label whose value depends on some state predicate. If x is
0, then noninterference says nothing since there is no high-security data in the
state. If x is nonzero, then noninterference says that changing its value (but not
its label) will have no effect on the output as long as P still holds; in order for
P to still hold, we must be changing x to some other nonzero value. Hence all
nonzero values of x will look the same to an observer. Conditional labels are a
novelty of our system; we will see in Section 4 how they can be a powerful tool
for verifying the security of a program.

3 Language and Semantics

Our programming language is defined as follows:

(Exp) E ::= x | c | E + E | · · ·
(BExp) B ::= false | E = E | B ∧B | · · ·
(Cmd) C ::= skip | outputE | x := E | x := [E] | [E] := E | C;C

| ifB thenC elseC | whileB doC

Valid code includes variable assignment, heap load/store, if statements, while
loops, and output. Our model of a program state, consisting of a variable store
and a heap, is given by:

(Lbl) L ::= Lo | Hi
(Val) V ::= Z× Lbl

(Store) s ::= Var→ option Val
(Heap) h ::= N→ option Val
(State) σ ::= (s, h)

Given a variable store s, we define a denotational semantics JEKs that evaluates
an expression to a pair of integer and label, with the label being the least upper
bound of the labels of the constituent parts. The denotation of an expression
also may evaluate to None, indicating that the program state does not contain
the necessary resources to evaluate. We have a similar denotational semantics for
boolean expressions. The formal definitions of these semantics are omitted here
as they are standard and straightforward. Note that we will sometimes write
JEKσ as shorthand for JEK applied to the store of state σ.

Figure 1 defines our operational semantics. The semantics is security-aware,
meaning that it keeps track of security labels on data and propagates these labels
throughout execution in order to track which values might have been influenced
by some high-security data. The semantics operates on machine configurations,
which consist of program state, code, and a list of commands called the con-
tinuation stack (we use a continuation-stack approach solely for the purpose of
simplifying some proofs). The transition arrow of the semantics is annotated with
a program counter label, which is a standard IFC construct used to keep track of
information flow resulting from the control flow of the execution. Whenever an

314



JEKs = Some (n, l)

〈(s, h), x := E, K〉 −→
l′
〈(s[x 7→ (n, l t l′)], h), skip, K〉

(ASSGN)

JEKs = Some (n1, l1) h(n1) = Some (n2, l2)

〈(s, h), x := [E], K〉 −→
l′
〈(s[x 7→ (n2, l1 t l2 t l′)], h), skip, K〉

(READ)

JEKs = Some (n1, l1) h(n1) 6= None JE′Ks = Some (n2, l2)

〈(s, h), [E] := E′, K〉 −→
l′
〈(s, h[n1 7→ (n2, l1 t l2 t l′)]), skip, K〉

(WRITE)

JEKσ = Some (n, Lo)

〈σ, outputE, K〉 [n]−→
Lo
〈σ, skip, K〉

(OUTPUT)

JBKσ = Some (true, l) l v l′

〈σ, ifB thenC1 elseC2, K〉 −→
l′
〈σ, C1, K〉

(IF-TRUE)

JBKσ = Some (false, l) l v l′

〈σ, ifB thenC1 elseC2, K〉 −→
l′
〈σ, C2, K〉

(IF-FALSE)

JBKσ = Some ( , Hi)
〈mark vars(σ, ifB thenC1 elseC2), ifB thenC1 elseC2, []〉 −→n

Hi
〈σ′, skip, []〉

〈σ, ifB thenC1 elseC2, K〉 −→
Lo
〈σ′, skip, K〉

(IF-HI)

JBKσ = Some (true, l) l v l′

〈σ, whileB doC, K〉 −→
l′
〈σ, C; whileB doC, K〉

(WHILE-TRUE)

JBKσ = Some (false, l) l v l′

〈σ, whileB doC, K〉 −→
l′
〈σ, skip, K〉

(WHILE-FALSE)

JBKσ = Some ( , Hi)
〈mark vars(σ, whileB doC), whileB doC, []〉 −→n

Hi
〈σ′, skip, []〉

〈σ, whileB doC, K〉 −→
Lo
〈σ′, skip, K〉

(WHILE-HI)

〈σ, C1;C2, K〉 −→
l
〈σ, C1, C2 :: K〉

(SEQ)

〈σ, skip, C :: K〉 −→
l
〈σ, C, K〉

(SKIP) 〈σ, C, K〉 −→0
l
〈σ, C, K〉

(ZERO)

〈σ, C, K〉 o−→
l
〈σ′, C′, K′〉 〈σ′, C′, K′〉 o′−→n

l
〈σ′′, C′′, K′′〉 n > 0

〈σ, C, K〉 o++o′−→n+1
l

〈σ′′, C′′, K′′〉
(SUCC)

Fig. 1. Security-Aware Operational Semantics

315



execution enters a conditional construct, it raises the pc label by the label of the
boolean expression evaluated; the pc label then taints any assignments that are
made within the conditional construct. The transition arrow is also annotated
with a list of outputs (equal to the empty list when not explicitly written) and
the number of steps (equal to 1 when not explicitly written).

Two of the rules for conditional constructs make use of a function called
mark vars. The function mark vars(σ,C) alters σ by setting the label of each
variable in modifies(C) to Hi, where modifies(C) is a standard syntactic func-
tion returning an overapproximation of the store variables that may be modified
by C. Thus, whenever we raise the pc label to Hi, our semantics taints all store
variables that appear on the left-hand side of an assignment or heap-read com-
mand within the conditional construct, even if some of these commands do not
actually get executed. Note that regardless of which branch of an if statement
is taken, the semantics taints all the variables in both branches. This is required
for noninterference, due to the well-known fact that the lack of assignment in a
branch of an if statement can leak information about the branching expression.
Consider, for example, the following program:

1 y := 1;

2 if (x = 0) then y := 0 else skip;

3 if (y = 0) then skip else output 1;

Suppose x contains Hi data initially, while y contains Lo data. If x is 0, then y
will be assigned 0 at line 2 and tainted with a Hi label (by the pc label). Then
nothing happens at line 3, and the program produces no output. If x is nonzero,
however, nothing happens at line 2, so y still has a Lo label at line 3. Thus the
output command at line 3 executes without issue. Therefore the output of this
program depends on the Hi data in x, even though our instrumented semantics
executes safely. We choose to resolve this issue by using the mark vars function
in the semantics. Then y will be tainted at line 2 regardless of the value of x,
and so the semantics will get stuck at line 3 when x is nonzero. In other words,
we would only be able to verify this program with a precondition saying that
x = 0 — the program is indeed noninterfering with respect to this precondition
(according to our generalized noninterference definition described in Section 2).

The operational semantics presented here is mixed-step and manipulates se-
curity labels directly. In order make sense of such a non-standard semantics, we
need to relate it in some way to a standard one. A standard, single-step seman-
tics is defined in the Appendix. This semantics operates on states without labels,
and it does not use continuation stacks. Given a state σ with labels, we write σ̄
to represent the same state with all labels erased from both the store and heap.
We will also use τ to range over states without labels. Then the following two
theorems hold:

Theorem 1. Suppose 〈σ, C, []〉 o−→∗ 〈σ′, skip, []〉 in the instrumented seman-

tics. Then, for some τ , 〈σ̄, C〉 o−→∗ 〈τ, skip〉 in the standard semantics.

316



P,Q ::= emp | E 7→ | E 7→ (n, l) | B | x.lbl = l | x.lbl v l
| lbl(E) = l | ∃X . P | P ∧Q | P ∨Q | P ∗Q

JP K : P(state)

(s, h) ∈ JempK ⇐⇒ h = ∅
(s, h) ∈ JE 7→ K ⇐⇒ ∃a, n, l . JEKs = Some a ∧ h = [a 7→ (n, l)]

(s, h) ∈ JE 7→ (n, l)K ⇐⇒ ∃a . JEKs = Some a ∧ h = [a 7→ (n, l)]

(s, h) ∈ JBK ⇐⇒ JBKs = Some true

(s, h) ∈ Jx.lbl = lK ⇐⇒ ∃n . s(x) = Some (n, l)

(s, h) ∈ Jx.lbl v lK ⇐⇒ ∃n, l′ . s(x) = Some (n, l′) and l′ v l

(s, h) ∈ Jlbl(E) = lK ⇐⇒
⊔

x∈vars(E)

snd(s(x)) = l

(s, h) ∈ J∃X . P K ⇐⇒ ∃v ∈ Z + Lbl . (s, h) ∈ JP [v/X]K
(s, h) ∈ JP ∧QK ⇐⇒ (s, h) ∈ JP K ∩ JQK
(s, h) ∈ JP ∨QK ⇐⇒ (s, h) ∈ JP K ∪ JQK

(s, h) ∈ JP ∗QK ⇐⇒

∃h0, h1 . h0 ] h1 = h

and (s, h0) ∈ JP K
and (s, h1) ∈ JQK


Fig. 2. Assertion Syntax and Semantics

Theorem 2. Suppose 〈σ̄, C〉 o−→∗ 〈τ, skip〉 in the standard semantics, and

suppose 〈σ, C, []〉 never gets stuck when executed in the instrumented semantics.

Then, for some σ′, 〈σ, C, []〉 o−→∗ 〈σ′, skip, []〉 in the instrumented semantics.

These theorems together guarantee that the two semantics produce identical
observable behaviors (outputs) on terminating executions, as long as the instru-
mented semantics does not get stuck. Our program logic will of course guarantee
that the instrumented semantics does not get stuck in any execution satisfying
the precondition.

4 The Program Logic

In this section, we will present the logic that we use for verifying the security of
a program. A logic judgment takes the form l ` {P}C {Q}. P and Q are the
pre- and postconditions, C is the program to be executed, and l is the pc label
under which the program is verified. P and Q are state assertions, whose syntax
and semantics are given in Figure 2.

Note We allow assertions to contain logical variables, but we elide the details
here to avoid complicating the presentation. In Figure 2, we claim that the type

317



of JP K is a set of states — in reality, the type is a function from logical variable
environments to sets of states. In an assertion like E 7→ (n, l), the n and l may
be logical variables rather than constants.

Definition 1 (Sound judgment). We say that a judgment l ` {P}C {Q} is
sound if, for any state σ ∈ JP K, the following two properties hold:

1. The operational semantics cannot get stuck when executed from initial con-
figuration 〈σ, C, []〉 under context l.

2. If the operational semantics executes from initial configuration 〈σ, C, []〉 un-
der context l and terminates at state σ′, then σ′ ∈ JQK.

Selected inference rules for our logic are shown in Figure 3. The rules make
use of two auxiliary syntactic functions, P\x and P\x.lbl (read the backslash
operator as “delete”). P\x replaces any atomic assertions within P referring to
x by the assertion true. Similarly, P\x.lbl replaces atomic assertions referring
to x.lbl by true. We also sometimes abuse notation and write P\S or P\S.lbl,
where S is a set of variables, to indicate the iterative folding of these functions
over the set S. The important fact about these auxiliary functions is that, if P
holds on some state and we perform an assigment into x, then P\x will hold
on the resulting state. Furthermore, if we change only the label of x without
touching its data (this is done by the mark vars function described in Section 3),
then P\x.lbl will hold on the resulting state.

Here are a few interesting points to note about these inference rules:

– While the rules shown here mostly involve detailed reasoning about label
propagation, we can also prove the soundness of simpler versions of the rules
that do not reason about labels and, consequentially, do not have any label-
related proof obligations.

– The (IF) and (WHILE) rules may look rather complex, but almost all of
that is just describing how to reason about the mark vars function that
gets applied at the beginning of a conditional construct when the pc label
increases.

– An additional complexity present in the (IF) rule involves the labels lt and
lf . In fact, these labels describe a novel and interesting feature of our system:
when verifying an if statement, it might be possible to reason that the pc
label gets raised by lt in one branch and by lf in the other, based on the
fact that B holds in one branch but not in the other. This is interesting if
lt and lf are different labels. In every other static-analysis IFC system we
are aware of, a particular pc label must be determined at the entrance to
the conditional, and this pc label will propagate to both branches. We will
provide an example program later in this section that illustrates this novelty.

Given our logic inference rules, we can prove the following theorem:

Theorem 3 (Soundness). If l ` {P}C {Q} is derivable according to our in-
ference rules, then it is a sound judgment, as defined in Definition 1.

318



mark vars(P, S, l, l′)
4
=


P , if l v l′

P\S.lbl ∧

(∧
x∈S

l t l′ v x.lbl

)
, otherwise

l ` {P} skip {P}
(SKIP)

P ⇒ lbl(E) = Lo

Lo ` {P} outputE {P}
(OUTPUT)

P ⇒ lbl(E) = l

l′ ` {P}x := E {(P\x)[E/x] ∧ x.lbl = l t l′}
(ASSIGN)

P ⇒ lbl(E) = l1 P ⇒ E 7→ (n, l2)

l ` {P}x := [E] {P\x ∧ x = n ∧ x.lbl = l1 t l2 t l}
(READ)

P ⇒ lbl(E) = l1 P ⇒ lbl(E′) = l2 P ⇒ E 7→
l ` {P} [E] := E′ {P ∧ ∃n . E 7→ (n, l1 t l2 t l) ∧ E′ = n}

(WRITE)

B ∧ P ⇒ lbl(B) = lt
¬B ∧ P ⇒ lbl(B) = lf S = modifies(ifB thenC1 elseC2)

lt t l′ ` {B ∧ mark vars(P, S, lt, l
′)}C1 {Q}

lf t l′ ` {¬B ∧ mark vars(P, S, lf , l
′)}C2 {Q}

l′ ` {P} ifB thenC1 elseC2 {Q}
(IF)

P ⇒ lbl(B) = l S = modifies(whileB doC)
l t l′ ` {B ∧ mark vars(P, S, l, l′)}C {mark vars(P, S, l, l′)}

l′ ` {P} whileB doC {¬B ∧ mark vars(P, S, l, l′)}
(WHILE)

l ` {P}C1 {Q} l ` {Q}C2 {R}
l ` {P}C1;C2 {R}

(SEQ)

P ′ ⇒ P Q⇒ Q′ l ` {P}C {Q}
l ` {P ′}C {Q′}

(CONSEQ)

l ` {P1}C {Q1} l ` {P2}C {Q2}
l ` {P1 ∧ P2}C {Q1 ∧Q2}

(CONJ)

l ` {P}C {Q} modifies(C) ∩ vars(R) = ∅
l ` {P ∗R}C {Q ∗R}

(FRAME)

Fig. 3. Selected Inference Rules for the Logic

319



1 i := 0;

2 while (i < 64) do

3 x := [A+i];

4 if (x = 0)

5 then

6 output i

7 else

8 skip;

9 i := i+1

Fig. 4. Example: Alice’s Private Calendar

We will not go over the proof of this theorem here since there is not really any-
thing novel about it in regards to security. The proof is relatively straightforward
and not significantly different from soundness proofs in other Hoare/separation
logics. The primary theorem in this work is the one that says that any verified
program satisfies our noninterference property — this will be discussed in detail
in Section 5.

4.1 Example: Alice’s Calendar

In the remainder of this section, we will show how our logic can be used to verify
an interesting example. Figure 4 shows a program that we would like to prove
is secure. Alice owns a calendar with 64 time slots beginning at some location
designated by constant A. Each time slot is either 0 if she is free at that time,
or some nonzero value representing an event if she is busy. Alice decides that all
free time slots in her calendar should be considered low security, while the time
slots with events should be secret. This policy allows for others to schedule a
meeting time with her, as they can determine when she is available. Indeed, the
example program shown here prints out all free time slots.

Figure 5 gives an overview of the verification, omitting a few trivial details. In
between each line of code, we show the current pc label and a state predicate that
currently holds. The program is verified with respect to Alice’s policy, described
by the precondition P defined in the figure. This precondition is the iterated
separating conjunction of 64 calendar slots; each slot’s label is Lo if its value is
0 and Hi otherwise. A major novelty of this verification regards the conditional
statement at lines 4-8. As mentioned earlier, in other IFC systems, the label of
the boolean expression “x = 0” would have to be determined at the time of
entering the conditional, and its label would then propagate into both branches
via the pc label. In our system, however, we can reason that the expression’s
label (and hence the resulting pc label) will be different depending on which
branch is taken. If the “true” branch is taken, then we know that x is 0, and
hence we know from the state assertion that its label is Lo. This means that
the pc label is Lo, and so the output statement within this branch will not leak
high-security data. If the “false” branch is taken, however, then we can reason
that the pc label will be Hi, meaning that an output statement could result in

320



P
4
=

63∗
i=0

(A+ i 7→ (ni, li) ∧ ni = 0 ⇐⇒ li = Lo)

Lo ` {P}
1 i := 0;

Lo ` {P ∧ 0 ≤ i ∧ i.lbl = Lo}

2 while (i < 64) do

Lo ` {P ∧ 0 ≤ i < 64 ∧ i.lbl = Lo}

3 x := [A+i];

Lo ` {P ∧ 0 ≤ i < 64 ∧ i.lbl = Lo ∧
(x = 0 ⇐⇒ x.lbl = Lo)}

4 if (x = 0)

5 then

Lo ` {P ∧ 0 ≤ i < 64 ∧ i.lbl = Lo ∧
x = 0 ∧ x.lbl = Lo}

6 output i

Lo ` {P ∧ 0 ≤ i < 64 ∧ i.lbl = Lo ∧
x = 0 ∧ x.lbl = Lo}

Lo ` {P ∧ 0 ≤ i < 64 ∧ i.lbl = Lo}
7 else

Hi ` {P ∧ 0 ≤ i < 64 ∧ i.lbl = Lo ∧
x 6= 0 ∧ x.lbl = Hi}

8 skip;

Hi ` {P ∧ 0 ≤ i < 64 ∧ i.lbl = Lo ∧
x 6= 0 ∧ x.lbl = Hi}

Hi ` {P ∧ 0 ≤ i < 64 ∧ i.lbl = Lo}

Lo ` {P ∧ 0 ≤ i < 64 ∧ i.lbl = Lo}
9 i := i+1

Lo ` {P ∧ 0 ≤ i ∧ i.lbl = Lo}

Lo ` {P ∧ i ≥ 64 ∧ 0 ≤ i ∧ i.lbl = Lo}

Fig. 5. Calendar Example Verification

321



a leaky program (e.g., if the value of x were printed). This program does not
attempt to output anything within this branch, so it is still valid.

Since the program is verified with respect to precondition P , the noninterfer-
ence guarantee for this example says that if we change any high-security event
in Alice’s calendar to any other high-security event (i.e., nonzero value), then
the output will be unaffected. In other words, an observer cannot distinguish be-
tween any two events occurring at a particular time slot. This seems like exactly
the property Alice would want to have, given that her policy specifies that all
free slots are Lo and all events are Hi.

Aside on Completeness Our system is not complete — there are plenty of
programs that are noninterfering with respect to some precondition, but cannot
be verified in our logic using that precondition. For example, if we slightly modify
the program of Figure 4 by changing line 8 to output i, then the program will
always output all the numbers from 0 to 63 in order, regardless of values of high-
security data. We would not be able to verify the program, however, because the
pc label is Hi at line 8 and thus disallows any output. Interestingly, we have found
in our experience that we can always rewrite a secure-but-unverifiable program
in such a way that it produces the same output and becomes verifiable. For this
example, it suffices to rewrite the program to simply print out the numbers 0
through 63 (without branching on elements in Alice’s calendar).

A rather more complex example can be obtained by swapping lines 6 and
8 in the code of Figure 4. This program prints out all the time slots that are
not free. Changing any (nonzero) event to any other (nonzero) event will not
change this output, so the program is still secure with respect to Alice’s policy.
It is not verifiable for the same reason as before — output is disallowed at line 8.
Nevertheless, this program can be rewritten in the following way (assume we add
to the precondition that we have a 64-element array filled with Lo 0’s, starting
at location B):

1 i := 0;

2 while (i < 64) do

3 x := [A+i];

4 if (x = 0) then [B+i] := 1 else skip;

5 i := i+1;

6 i := 0;

7 while (i < 64) do

8 x := [B+i];

9 if (x = 0) then output i else skip;

10 i := i+1;

The ability to rewrite these safe-but-unverifiable programs is a completely in-
formal observation we have made. A formal result is beyond the scope of this
paper, but we hope to explore it in future work.

322



5 Noninterference

In this section, we will discuss the method for formally proving our system’s
security guarantee. Much of the work has already been done through careful
design of the security-aware semantics and the inference rules of the program
logic. The fundamental idea is that we can find a bisimulation relation for our
Lo-context instrumented semantics. This relation will guarantee that two exe-
cutions operate in lock-step, always producing the same program continuation
and output.

The bisimulation relation we will use is called observable equivalence. It intu-
itively says that the low-security portions of two states are identical; the relation
is commonly used in many IFC systems as a tool for proving noninterference.
In our system, states σ1 and σ2 are observably equivalent if: (1) they contain
equal values at all locations that are present and Lo in both states; and (2) the
presence and labels of all store variables are the same in both states. This may
seem like a rather odd notion of equivalence (in fact, it is not even transitive,
so “equivalence” is a misnomer here) — two states can be observably equivalent
even if some heap location contains Hi data in one state and Lo data in the
other. To see why we need to define observable equivalence in this way, consider
a heap-write command [x] := E where x is a Hi pointer. If we vary the value of
x, then we will end up writing to two different locations in the heap. Suppose
we write to location 100 in one execution and location 200 in the other. Then
location 100 will contain Hi data in the first execution (as the Hi pointer taints
the value written), but it may contain Lo data in the second since we never wrote
to it. Thus we design observable equivalence so that this situation is allowed.

The following definitions describe observable equivalence formally:

Definition 2 (Observable Equivalence of Stores). Suppose s1 and s2 are
variable stores. We say that they are observably equivalent, written s1 ∼ s2, if,
for all program variables x:

– If s1(x) = None, then s2(x) = None.
– If s1(x) = Some (v1, Hi), then s2(x) = Some (v2, Hi) for some v2.
– If s1(x) = Some (v, Lo), then s2(x) = Some (v, Lo).

Definition 3 (Observable Equivalence of Heaps). Suppose h1 and h2 are
heaps. We say that they are observably equivalent, written h1 ∼ h2, if, for all
natural numbers n:

– If h1(n) = Some (v1, Lo) and h2(n) = Some (v2, Lo), then v1 = v2.

We say that two states are observably equivalent (written σ1 ∼ σ2) when
both their stores and heaps are observably equivalent. Given this definition,
we define a convenient relational denotational semantics for state assertions as
follows:

(σ1, σ2) ∈ JP K2 ⇐⇒ σ1 ∈ JP K ∧ σ2 ∈ JP K ∧ σ1 ∼ σ2

323



In order to state noninterference cleanly, it helps to define a “bisimulation
semantics” consisting of the following single rule (the side condition will be
discussed below):

〈σ1, C, K〉
o−→
Lo
〈σ′1, C ′, K ′〉

〈σ2, C, K〉
o−→
Lo
〈σ′2, C ′, K ′〉 (side condition)

〈σ1, σ2, C, K〉 −→ 〈σ′1, σ′2, C ′, K ′〉

Note that this bisimulation semantics operates on configurations consisting of a
pair of states and a program. With this definition, we can split noninterference
into the following progress and preservation properties.

Theorem 4 (Progress). Suppose we derive Lo ` {P}C {Q} using our pro-
gram logic. For any (σ1, σ2) ∈ JP K2, suppose we have

〈σ1, σ2, C, K〉 −→∗ 〈σ′1, σ′2, C ′, K ′〉,

where σ′1 ∼ σ′2 and (C ′,K ′) 6= (skip, []). Then there exist σ′′1 , σ′′2 , C ′′, K ′′ such
that

〈σ′1, σ′2, C ′, K ′〉 −→ 〈σ′′1 , σ′′2 , C ′′, K ′′〉

Theorem 5 (Preservation). Suppose we have σ1 ∼ σ2 and 〈σ1, σ2, C, K〉 −→
〈σ′1, σ′2, C ′, K ′〉. Then σ′1 ∼ σ′2.

For the most part, the proofs of these theorems are relatively straightforward.
Preservation requires proving the following two simple lemmas about Hi-context
executions:

1. Hi-context executions never produce output.
2. If the initial and final values of some location differ across a Hi-context

execution, then the location must have a Hi label in the final state.

There is one significant difficulty in the proof that requires discussion. If C
is a heap-read command x := [E], then Preservation does not obviously hold.
The reason for this comes from our odd definition of observable equivalence; in
particular, the requirements for a heap location to be observably equivalent are
weaker than those for a store variable. Yet the heap-read command is copying
directly from the heap to the store. In more concrete terms, the heap location
pointed to by E might have a Hi label in one state and Lo label in the other;
but this means x will now have different labels in the two states, violating the
definition of observable equivalence for the store.

We resolve this difficulty via the side condition in the bisimulation semantics.
The side condition says that the situation we just described does not happen.
More formally, it says that if C has the form x := [E], then the heap location
pointed to by E in σ1 has the same label as the heap location pointed to by E
in σ2.

324



This side condition is sufficient for proving Preservation. However, we still
need to show that the side condition holds in order to prove Progress. This fact
comes from induction over the specific inference rules of our logic. For example,
consider the (READ) rule from Section 4:

P ⇒ lbl(E) = l1 P ⇒ E 7→ (n, l2)

l ` {P}x := [E] {P\x ∧ x = n ∧ x.lbl = l1 t l2 t l}
(READ)

In order to use this rule, we are required to show that the precondition implies
E 7→ (n, l2). Since both states σ1 and σ2 satisfy the precondition, we see that
the heap locations pointed to by E both have label l2, and so the side condition
holds. Note that the side condition holds even if l2 is a logical variable rather
than a constant.

In order to prove that the side condition holds for every verified program, we
need to show it holds for all inference rules involving a heap-read command. In
particular, this means that no heap-read rule in our logic can have a precondition
that only implies E 7→ .

Now that we have the Progress and Preservation theorems, we can easily
combine them to prove the overall noninterference theorem for our instrumented
semantics:

Theorem 6 (Noninterference, Instrumented Semantics). Suppose we de-
rive Lo ` {P}C {Q} using our program logic. Pick any state σ1 ∈ JP K, and
consider changing the values of any Hi data in σ1 to obtain some σ2 ∈ JP K.
Suppose, in the instrumented semantics, we have

〈σ1, C, []〉 o1−→∗
Lo
〈σ′1, skip, []〉

and
〈σ2, C, []〉 o2−→∗

Lo
〈σ′2, skip, []〉.

Then o1 = o2.

Finally, we can use the results from Section 3 along with the safety guaranteed
by our logic to prove the final, end-to-end noninterference theorem:

Theorem 7 (Noninterference, True Semantics). Suppose we derive Lo `
{P}C {Q} using our program logic. Pick any state σ1 ∈ JP K, and consider chang-
ing the values of any Hi data in σ1 to obtain some σ2 ∈ JP K. Suppose, in the
true semantics, we have

〈σ̄1, C〉
o1−→∗ 〈τ1, skip〉

and
〈σ̄2, C〉

o2−→∗ 〈τ2, skip〉.

Then o1 = o2.

325



6 Related Work

There are many different systems for reasoning about information flow. We will
briefly discuss some of the more closely-related ones here.

Some IFC systems with declassification, such as Hi-Star [22], Flume [8], and
RESIN [21], reason at the operating system or process level, rather than the
language level. These systems can support complex security policies, but their
formal guarantees suffer due to how coarse-grained they are.

On the language-level side of IFC [15], there are many type systems and
program logics that share similarities with our logic.

Amtoft et al. [1] develop a program logic for proving noninterference of a
program written in a simple object-oriented language. They use relational asser-
tions of the form “x is independent from high-security data.” Such an assertion is
equivalent to saying that x contains Lo data in our system. Thus their logic can
be used to prove that the final values of low-security data are independent from
initial values of high-security data — this is pure noninterference. Note that, un-
like our system, theirs does not attempt to reason about declassification. This is
the primary advantage of our system over theirs. Some other differences between
these IFC systems are:

– We allow pointer arithmetic, while they disallow it by using an object-
oriented language. Pointer arithmetic adds significant complexity to infor-
mation flow reasoning. In particular, their system uses a technique similar to
our mark vars function for reasoning about conditional constructs, except
that they syntactically check for all locations in both the store and heap
that might be modified within the conditional. With the arbitrary pointer
arithmetic of our system, it is not possible to syntactically bound which
heap locations will be written to, so we require the additional semantic tech-
nique described in Section 5 that involves enforcing a side condition on the
bisimulation semantics.

– Our model of observable behavior provides some extra leniency in verifi-
cation. Our system allows bad leaks to happen within the program state,
so long as these leaks are not made observable via an output command. In
their system (and most other IFC systems), the enforcment mechanism must
prevent those leaks within program state from happening in the first place.

Banerjee et al. [3] develop an IFC system that specifies declassification poli-
cies through state predicates in basically the same way that we do. For example,
they might have a (relational) precondition of “A(x ≥ y),” saying that two states
agree on the truth value of x ≥ y. This corresponds directly to a precondition
of “x ≥ y” in our system, and security guarantees for the two systems are both
stated relative to the precondition. The two systems have very similar goals, but
there are a number of significant differences in the basic setup that make the
systems quite distinct:

– Their system does not attempt to reason about the program heap at all. They
have some high-level discussions about how one might support pointers in
their setup, but there is nothing formal.

326



– Their system enforces noninterference primarily through a type system (rather
than a program logic). The declassification policies, specified by something
similar to a Hoare triple, are only used at specific points in the program where
explicit “declassify” commands are executed. A type system enforces pure
noninterference for the rest of the program besides the declassify commands.
Their end-to-end security guarantee then talks about how the knowledge of
an observer can only increase at those points where a declassify command
is executed (a property known in the literature as “gradual release”). Thus
their security guarantee for individual declassification commands looks very
similar to our version of noninterference, but their end-to-end security guar-
antee looks quite different. We do not believe that there is any comparable
notion of gradual release in our system, as we do not have explicit program
points where declassification occurs.

– Because they use a type system, their system must statically pick security
labels for each program variable. This means that there is no notion of
dynamically propagating labels during execution, nor is there any way to
express our novel concept of conditional labels. As a result, the calendar
example program of Section 4 would not be verifiable in their system.

Delimited Release [16] is an IFC system that allows certain prespecified ex-
pressions (called escape hatches) to be declassified. For example, a declassifica-
tion policy for high-security variable h might say that the expression h%2 should
be considered low security. Relaxed Noninterference [9] uses a similar idea, but
builds a lattice of semantic declassification policies, rather than syntactic es-
cape hatches — e.g., h would have a policy of λx . x%2. Our system can easily
express any policy from these systems, using a precondition saying that some
low-security data is equal to the escape hatch function applied to the secret data.
Our strong security guarantee is identical to the formal guarantees of both of
these systems, saying that the high-security value will not affect the observable
behavior as long as the escape hatch valuation is unchanged.

Relational Hoare Type Theory (RHTT) [12] is a logic framework for verify-
ing information-flow properties. It is based on a highly general relational logic.
The system can be used to reason about a wide variety of security-related no-
tions, including declassification, information erasure, and state-dependent access
control. One advantage of our system over RHTT is that we have fine-tuned
our system for reasoning about noninterference. A program verification in our
system requires a relatively small amount of work, since much of the noninter-
ference proof is already handled by the framework. RHTT, on the other hand,
is extremely general to the point that if you want to prove an information flow
property on a program, you need to formulate the property as a relational type
and manually prove that the program has that type. This has to be done for each
program on an individual basis — there are no overarching security properties
that hold for all verified programs.

Intransitive noninterference [10] is a declassification mechanism whereby cer-
tain specific downward flows are allowed in the label lattice. The system formally
verifies that a program obeys the explicitly-allowed flows. These special flows are

327



intransitive — e.g., we might allow Alice to declassify data to Bob and Bob to
declassify to Charlie, but that does not imply that Alice is allowed to declas-
sify to Charlie. The intransitive noninterference system is used to verify simple
imperative programs; their language is basically the same as ours, except with-
out the heap-related commands. One idea for future work is to generalize our
state predicate P into an action G that precisely describes the transformation
that a program is allowed to make on the state. If we implemented this idea,
it would be easy to embed the intransitive noninterference system. The action
G would specify exactly which special flows are allowed (e.g., the data’s label
can be changed from Alice to Bob or from Bob to Charlie, but not from Alice
to Charlie directly). Ideally, we would have a formal noninterference theorem in
terms of G that would give the same result as the formal guarantee in [10].

All of the language-based IFC systems mentioned so far, including our own
system, use static reasoning. There are also many dynamic IFC systems (e.g., [2,
7, 18, 20]) that attempt to enforce security of a program during execution. Be-
cause dynamic systems are analyzing information flow at runtime, they will incur
some overhead cost in execution time. Static IFC systems need not necessarily
incur extra costs. Indeed, in our system we have a “true machine” that executes
on states with all labels erased. The security-aware machine is for reasoning
purposes only; it will never be physically executed.

Sabelfeld and Sands [17] define a road map for analyzing declassification poli-
cies in terms of four dimensions: who can declassify, what can be declassified,
when can declassification occur, and where can it occur. Our notion of declassi-
fication can talk about any of these dimensions if we construct the precondition
in the right way. The who dimension is most naturally handled via the label lat-
tice, but one could also imagine representing principals explicitly in the program
state and reasoning about them in the logic. The what dimension is handled by
default, as the program state contains all of the data to be declassified. The when
dimension can easily be reasoned about by including a time field in the state.
Similarly, the where dimension can be reasoned about by including an explicit
program counter in the state.

7 Conclusion

In this paper, we described a novel program logic for reasoning about information
flow in a low-level language. The primary novelties of our system include:

1. Information flow reasoning (including declassification) in the presence of
pointer arithmetic.

2. Connecting the static enforcement mechanism with a dynamic semantics
that tracks propagation of security labels.

3. Reasoning about labels conditioned on state predicates. As far as we are
aware, the example program of Section 4 (which makes use of conditional
labels) cannot be verified as secure in any other IFC system.

In the future, we hope to extend our work to handle termination-sensitivity,
dynamic memory allocation/deallocation, nondeterminism, and concurrency.

328



References

1. T. Amtoft, S. Bandhakavi, and A. Banerjee. A logic for information flow in object-
oriented programs. In POPL, pages 91–102, 2006.

2. T. H. Austin and C. Flanagan. Efficient purely-dynamic information flow analysis.
In PLAS, pages 113–124, 2009.

3. A. Banerjee, D. A. Naumann, and S. Rosenberg. Expressive declassification policies
and modular static enforcement. In IEEE Symposium on Security and Privacy,
pages 339–353, 2008.

4. D. E. Denning and P. J. Denning. Certification of programs for secure information
flow. Commun. ACM, 20(7):504–513, 1977.

5. N. Heintze and J. G. Riecke. The slam calculus: Programming with secrecy and
integrity. In POPL, pages 365–377, 1998.

6. C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580, 1969.

7. C. Hritcu, M. Greenberg, B. Karel, B. C. Pierce, and G. Morrisett. All your
ifcexception are belong to us. In IEEE Symposium on Security and Privacy, pages
3–17, 2013.

8. M. N. Krohn, A. Yip, M. Z. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler, and
R. Morris. Information flow control for standard os abstractions. In SOSP, pages
321–334, 2007.

9. P. Li and S. Zdancewic. Downgrading policies and relaxed noninterference. In
POPL, pages 158–170, 2005.

10. H. Mantel and D. Sands. Controlled declassification based on intransitive nonin-
terference. In APLAS, pages 129–145, 2004.

11. A. C. Myers and B. Liskov. A decentralized model for information flow control. In
SOSP, pages 129–142, 1997.

12. A. Nanevski, A. Banerjee, and D. Garg. Verification of information flow and ac-
cess control policies with dependent types. In IEEE Symposium on Security and
Privacy, pages 165–179, 2011.

13. P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local reasoning about programs
that alter data structures. In CSL, pages 1–19, 2001.

14. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In
LICS, pages 55–74, 2002.

15. A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE
Journal on Selected Areas in Communications, 21(1):5–19, 2003.

16. A. Sabelfeld and A. C. Myers. A model for delimited information release. In ISSS,
pages 174–191, 2003.

17. A. Sabelfeld and D. Sands. Declassification: Dimensions and principles. Journal
of Computer Security, 17(5):517–548, 2009.

18. D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières. Flexible dynamic information
flow control in haskell. In Haskell, pages 95–106, 2011.

19. D. M. Volpano and G. Smith. A type-based approach to program security. In
TAPSOFT, pages 607–621, 1997.

20. J. Yang, K. Yessenov, and A. Solar-Lezama. A language for automatically enforcing
privacy policies. In POPL, pages 85–96, 2012.

21. A. Yip, X. Wang, N. Zeldovich, and M. F. Kaashoek. Improving application secu-
rity with data flow assertions. In SOSP, pages 291–304, 2009.

22. N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières. Making information
flow explicit in histar. In OSDI, pages 263–278, 2006.

329



8 Appendix

JEKs = Some n

〈(s, h), x := E〉 −→ 〈(s[x 7→ n], h), skip〉
(ASSGN)

JEKs = Some n1 h(n1) = Some n2

〈(s, h), x := [E]〉 −→ 〈(s[x 7→ n2], h), skip〉
(READ)

JEKs = Some n1 h(n1) 6= None JE′Ks = Some n2

〈(s, h), [E] := E′〉 −→ 〈(s, h[n1 7→ n2]), skip〉
(WRITE)

JEKτ = Some n

〈τ, outputE〉 [n]−→ 〈τ, skip〉
(OUTPUT)

JBKτ = Some true

〈τ, ifB thenC1 elseC2〉 −→ 〈τ, C1〉
(IF-TRUE)

JBKτ = Some false

〈τ, ifB thenC1 elseC2〉 −→ 〈τ, C2〉
(IF-FALSE)

JBKτ = Some true

〈τ, whileB doC〉 −→ 〈τ, C; whileB doC〉
(WHILE-TRUE)

JBKτ = Some false

〈τ, whileB doC〉 −→ 〈τ, skip〉
(WHILE-FALSE)

〈τ, C1〉
o−→ 〈τ ′, C′

1〉
〈τ, C1;C2〉

o−→ 〈τ ′, C′
1;C2〉

(SEQ)
〈τ, skip;C〉 −→ 〈τ, C〉

(SKIP)

Fig. 6. Standard Operational Semantics

330



C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
LD
I
*

Ar
tifact *

A
E
C

End-to-End Verification of Stack-Space Bounds for C Programs

Quentin Carbonneaux Jan Hoffmann Tahina Ramananandro Zhong Shao
Yale University

tquentin.carbonneaux, jan.hoffmann, tahina.ramananandro, zhong.shaou@yale.edu

Abstract
Verified compilers guarantee the preservation of semantic properties
and thus enable formal verification of programs at the source level.
However, important quantitative properties such as memory and time
usage still have to be verified at the machine level where interactive
proofs tend to be more tedious and automation is more challenging.

This article describes a framework that enables the formal
verification of stack-space bounds of compiled machine code at
the C level. It consists of a verified CompCert-based compiler that
preserves quantitative properties, a verified quantitative program
logic for interactive stack-bound development, and a verified stack
analyzer that automatically derives stack bounds during compilation.

The framework is based on event traces that record function calls
and returns. The source language is CompCert Clight and the target
language is x86 assembly. The compiler is implemented in the Coq
Proof Assistant and it is proved that crucial properties of event traces
are preserved during compilation. A novel quantitative Hoare logic is
developed to verify stack-space bounds at the CompCert Clight level.
The quantitative logic is implemented in Coq and proved sound with
respect to event traces generated by the small-step semantics of
CompCert Clight. Stack-space bounds can be proved at the source
level without taking into account low-level details that depend on
the implementation of the compiler. The compiler fills in these
low-level details during compilation and generates a concrete stack-
space bound that applies to the produced machine code. The verified
stack analyzer is guaranteed to automatically derive bounds for
code with non-recursive functions. It generates a derivation in the
quantitative logic to ensure soundness as well as interoperability
with interactively developed stack bounds.

In an experimental evaluation, the developed framework is
used to obtain verified stack-space bounds for micro benchmarks
as well as real system code. The examples include the verified
operating-system kernel CertiKOS, parts of the MiBench embedded
benchmark suite, and programs from the CompCert benchmarks.
The derived bounds are close to the measured stack-space usage of
executions of the compiled programs on a Linux x86 system.
Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.3.3 [Programming Lan-
guages]: Processors—Compilers
Keywords Formal Verification, Compiler Construction, Program
Logics, Stack-Space Bounds, Quantitative Verification

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PLDI ’14, June 9 - 11, 2014, Edinburgh, United Kingdom.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2784-8/14/06. . . $15.00.
http://dx.doi.org/10.1145/2594291.2594301

1. Introduction
It has been shown that formal verification can greatly improve
software quality [25, 33, 35]. Consequently, formal verification is
extensively studied in ongoing research and there exist sophisticated
tools that can verify important program properties automatically.
However, the most interesting program properties are undecidable
and user interaction is therefore inevitable in formal verification.

If a software system is (partly or entirely) developed in a high-
level language then the question arises on which language level
the verification should be carried out. Formal verification at the
source level has the advantage that a developer can interact with the
verification tools using the code she has developed. This is beneficial
because the compiled code can substantially differ from the source
code and low-level code is harder to understand. Moreover, even
fully automatic tools profit from the control-flow information and
the structure that is available at higher abstraction layers. The
disadvantage of verification at the source level is that tools such as
compilers have to be part of the trusted computing base and that the
verified properties are not directly guaranteed for the code that is
executed on the system.

Formally verified compilers [11, 24] such as the CompCert C
Compiler [27] guarantee that certain program properties of the
source programs are preserved during compilation. As a result,
CompCert enables source-level verification of the preserved proper-
ties of the compiled code without increasing the size of the trusted
computing base.1 In fact, this has been one of the main motiva-
tions for the development of CompCert [27]. However, important
quantitative properties such as memory and time consumption are
not modeled nor preserved by CompCert and other verified compil-
ers [11, 24]. Such quantitative properties are nevertheless crucial in
the verification of safety-critical embedded systems. For example,
the DO-178C standard, which is used by in the avionics industry
and by regulatory authorities, requires verification activities to show
that a program in executable form complies with its requirements
on stack usage and worst-case execution time (WCET) [28].

Quantitative program requirements such as stack usage and
WCET are usually directly checked at the machine or assembly-
code level “since only at this level is all necessary information avail-
able” [34]. For stack-space bounds there exist commercial abstract
interpretation–based tools—such as Absint’s StackAnalyzer [14]—
that operate directly on machine code. While such tools can derive
many simple bounds automatically, they rely on user annotations in
the machine code to obtain bounds for more involved programs. The
produced bounds are usually not parametric in the input, and the
analysis is not modular and only applies to specific hardware plat-
forms. Additionally, the used analysis tools rely on the correctness
of the user annotations and are not formally verified.

In this article, we present the first framework for deriving
formally verified end-to-end stack-space bounds for C programs.
Stack bounds are particularly interesting because stack overflow

1 If we assume that all verification is carried out using the same trusted base.

331



is “one of the toughest (and unfortunately common) problems
in embedded systems” [13]. Moreover, stack-memory is the only
dynamically allocated memory in many embedded systems and the
stack usage depends on the implementation of the compiler. While
we focus exclusively on stack bounds in this article, our framework
is developed with other quantitative resources in mind. Many of the
developed techniques can be applied to derive bounds for resources
such as heap memory or clock cycles. However, for clock-cycle
bounds there is a lot of additional work to be done that is beyond the
scope of this article (e.g., developing a formal model for hardware
caches and instruction pipelines).

The main innovation of our framework is that it enables the
formal verification of stack bounds for compiled x86 assembly
code at the C level. To gain the benefits of source-level verification
without the entailed disadvantages, we have to deal with three main
challenges.

1. We have to model the stack consumption of programs at the C
level and we have to formally prove that our model is consistent
with the stack consumption of the compiled code.

2. We have to design and implement a C-level verification mecha-
nism that allows users to derive parametric stack-usage bounds
in an interactive and flexible way.

3. We have to minimize user interaction during the verification to
enable the verification of large systems.

To meet Challenge 1, we use event traces and verified compilation.
Our starting point is the CompCert C Compiler. It relies on event
traces to prove that a compiled program is a refinement of the source
program. We extend event traces with events for function calls and
returns and define a weight for event traces. The weight describes
the stack-space consumption of one program execution as a function
of a cost metric that assigns a cost to individual call and return
events. The idea is that a user or an (semi) automatic analysis tool
derives bounds on the weights of event traces that depend on the
stack-frame sizes of the program functions. During compilation the
compiler produces a specific cost metric that guarantees that the
weight of an event trace under this metric is an upper bound on
the stack-space usage of the compiled assembly program which
produces this trace. As a result, we derive a verified upper bound
if we instantiate the derived memory bound with the cost metric
produced by the compiler.

We implemented the extended event traces for full CompCert C
and all intermediate languages down to x86 assembly in Coq. We
extended CompCert’s soundness theorem to take into account the
weights of traces. In addition to CompCert’s refinement theorem
for the original event traces, we prove that compiled programs
produce extended event traces whose weights are less than or equal
to the weights of the traces at the source level. This means that we
allow reordering or deletion of call and return events as long as the
weight of the trace is reduced or unchanged. To relate the weight
of traces to the execution on a system with finite stack space, we
modified the CompCert x86 assembly semantics into a more realistic
x86 assembly that features a finite stack, and reimplemented the
assembly generation pass of CompCert to our new x86 assembly
semantics.

To meet Challenge 2, we have developed and implemented a novel
quantitative Hoare logic for CompCert Clight in Coq. To account for
memory consumption, the assertions of the logic generalize the usual
boolean-valued assertions of Hoare logic. Instead of the classic true,
our quantitative assertions return a natural number that indicates
the amount of memory that is needed to execute the program. The
boolean false is represented by 8 and indicates that there are no
guarantees provided for the future execution.

We proved the soundness of our quantitative Hoare logic with
respect to Clight and CompCert’s continuation-based small-step

semantics. The soundness theorem states that Hoare triples that
are derived with our inference rules describe sound bounds on the
weights of traces. The logic can be used for interactive stack-bound
development or as a backend for verified static analysis tools. For
clarity, we do not prove the safety of programs and simply assume
that this is done using a different tool such as Appel’s separation
logic for Clight [3]. It would be possible to integrate our logic into
a separation logic for safety proofs. This would however diminish
the deployability of the quantitative logic as a backend for static
stack-bound analysis tools since they would be required to also
prove memory safety.

To meet Challenge 3, we implemented an automatic stack ana-
lyzer for C programs. To verify the soundness of the stack analyzer
each successful run generates a derivation in the quantitative Hoare
logic. Not only does this simplify the verification, but it also al-
lows interoperability with stack bounds that have been interactively
developed in the logic or derived by some other static analysis. Con-
ceptually, our stack analyzer is rather simple but we have proved
that it derives bounds for all programs without recursion and func-
tion pointers. This is already sufficient for many programs that are
used in embedded systems. Using our automatic analysis we have
created a verified C compiler that translates a program without func-
tion pointers and recursive calls to x86 assembly and automatically
derives a stack bound for each function in the program including
mainpq.

We have successfully used our framework to verify end-to-end
memory bounds for micro benchmarks and system software. Our
main example is the CertiKOS [15] operating system kernel that is
currently under development at Yale. Our automatic analyzer finds
stack bounds for all functions in the simplified development version
of CertiKOS that is currently verified. Other examples are taken
from Leroy’s CompCert benchmarks and the MiBench embedded
benchmark suite [17]. To evaluate the quality of the verified stack-
space bounds, we experimentally compared the automatically and
manually verified bounds with the actual stack-space consumption
during the execution of the compiled C programs. Our experiments
indicate that both the manually and automatically derived bounds
over-approximate the stack usage by exactly four bytes. More details
can be found in Section 6.

In summary, we make the following contributions.
• We introduce a methodology that uses cost metrics to link event

traces to resource consumption. This approach enables us to
link source-level code to the resource consumption of compiled
target-level code.

• We develop a novel quantitative Hoare logic to reason about
the resource consumption of programs at the source level. We
have formally verified the soundness of the logic with respect to
CompCert Clight in Coq.

• We introduce Quantitative CompCert, a modified version of
the verified CompCert C Compiler, in which parametric stack
bounds are preserved during compilation. Furthermore, Quanti-
tative CompCert creates a cost metric so that the instantiation of
the bounds with the metric forms an upper bound on the memory
consumption of the compiled code.

• We have implemented and verified an automatic stack analyzer.
• We have evaluated the practicability of our framework with

experiments using micro benchmarks and system code.
The complete Coq development and the implemented tools are well
documented and publically available on the authors’ websites. The
PLDI Artifact Evaluation Committee reproduced samples of our ex-
periments and tested the implemented tools on additional programs.
The reviewers unanimously stated that our implementation exceeded
their expectations. A companion technical report [9] contains addi-
tional explanation, lemmas, and examples.

332



2. An Illustrative Example
In this section, we sketch the verification of stack-space bounds for
an example program in our framework. Figure 1 shows a C program
with two integer parameters: ALEN and SEED.

This program will fill an array of size ALEN with an increasing
sequence of pseudo random integers and search through it. The
random numbers are created by a linear congruential generator
initialized by the SEED parameter. The search procedure used is a
binary search implemented in the recursive function search.

Our goal is to derive stack bounds for the compiled x86 assembly
code of the program that are verified with respect to our accurate
x86 model in Coq. The first step is to create an abstract syntax tree
of the code in Coq. This can be done automatically, for instance by
using CompCert’s parsing mechanism. The second step is to use our
quantitative Hoare logic to prove bounds on the function calls that
are performed when executing main.

To relate function calls and returns at different abstraction levels
during compilation we use call and return events. For instance, an
execution of main could produce the following trace.

callpmainq, callpinitq, callprandomq, retprandomq, retpinitq,

callpsearchq, callpsearchq, retpsearchq, retpsearchq, retpmainq

From such a trace and a metric M that maps each function name in
the program to its stack-frame size, we can obtain the stack usage
of the execution that produced the trace. For the previous example
trace, we can for instance derive the following stack usage.

Mpmainq `maxtMpinitq `Mprandomq, 2 ¨Mpsearchqu

In classical Hoare logic, assertions map program states to Booleans.
In our quantitative Hoare logic assertions map program states to
non-negative numbers. Intuitively, the meaning of a quantitative
Hoare triple tP uS tQu is the following. For every program state σ,
P pσq is an upper bound on the stack consumption of the statement
S started in state σ. Furthermore, Q describes the stack space that
has become available after the execution, as a function of the final
program state. This is similar to type systems and program logics
for amortized resource analysis [5, 21].

We implemented a function in Coq that automatically computes
a derivation in the quantitative logic for a program without recur-
sive functions. Using this automatic stack analyzer, we derive for
instance the following triple for the function call initpq.

tMpinitq `Mprandomqu initpq tMpinitq `Mprandomqu

For functions making use of recursion such as search, we derive a
quantitative triple interactively using Coq. For search we derive

tLpend´ begqu searchpelem, beg, endq tLpend´ begqu

whereLp∆q “Mpsearchq¨p2`log2p∆qq . Since the mathematical
log2 function is undefined on non-positive values, we take as
convention that log2p∆q “ `8 when ∆ ă 0 and log2p0q “ 0.
This trick allows us to simulate a logical precondition stating that
beg must be lower or equal to end before calling search.

For main we combine the previous results and derive the bound

tMpmainq `Numainpq tMpmainq `Nu

where N “ maxpMpinitq `Mprandomq,LpALENqq. To be able
to derive this bound on the main function we have to require that
0 ă ALEN ď 232

´ 1, in the Coq development this is stated as a
section hypothesis which will later be instantiated when ALEN is
chosen by the user before compiling.

The third and final step in the derivation of the stack bounds
is to compile the program with Quantitative CompCert, our mod-
ified CompCert C Compiler. The compiler produces x86 assem-
bly code and a concrete metric M0. It follows from CompCert’s
correctness theorem that the compiled code is a semantic refine-

typedef unsigned int u32;
u32 a[ALEN];
u32 seed = SEED;

u32 search(u32 elem, u32 beg, u32 end) {
u32 mid = beg + (end-beg) / 2;
if (end-beg <= 1) return beg;
if (a[mid] > elem) end = mid;
else beg = mid;

return search(elem, beg, end);
}
u32 random() {

seed = (seed * 1664525) + 1013904223;
return seed;

}
void init() {

u32 i, rnd, prev = 0;

for (i=0; i<ALEN; i++) {
rnd = random();
a[i] = prev + rnd % 17;
prev = a[i]; }

}
int main() {

u32 idx, elem;
init();
elem = random() % (17 * ALEN);
idx = search(elem, 0, ALEN);
return a[idx] == elem;

}

Figure 1. An illustrative example for static stack-bound computa-
tion. Constant stack bounds for the non-recursive functions are de-
rived automatically. The logarithmic bound for the function search
is derived with a hand-crafted proof in our quantitative Hoare logic.

ment of our source program. In addition, we have formally verified
that the metric M0 correctly relates the abstractly defined stack
consumption—using the event traces—to the actual stack consump-
tion in our abstract x86 machine. Moreover, we have verified that
applying M0 to the preconditions in the triples of the quantitative
Hoare logic results in sound stack bounds on the x86 machine. The
final bounds that we obtain for our examples are for instance 32
bytes for initpq and 112` 40 ¨ log2pALENq bytes for mainpq.

3. Quantitative CompCert: Verified Stack-Aware
Compilation

In this section, we introduce our new technique for verifying quanti-
tative compiler correctness and its implementation in Quantitative
CompCert. We focus on stack-space usage but believe that similar
techniques can be used to bound the time and heap-space require-
ments of programs. Our development is highly influenced by the
design of CompCert [27], a verified compiler for the C language.
CompCert C accepts most of the ISO-C-90 language and produces
machine code for the IA32 architecture (among others). CompCert
uses 11 intermediate languages and 20 passes to compile a C AST
to x86 assembly.

The soundness proof of CompCert is based on trace-based oper-
ational semantics for the source, target, and intermediate languages.
These semantics generate traces of events during the execution of
programs. Events include input/output and external function calls.
The soundness theorem of CompCert states that every event trace
that can be generated by the compiled program can also be generated
by the source program provided that the source program does not
go wrong. In other words, the compiled program is a refinement of
the source program with respect to the observable events.

333



Verified Compiler

Verified Quantitative 
Hoare LogicSafety Proof

Safety Proof

Source Program

s

Target Program

C (s)

Weight Bound

� : (E ! Z) ! N

C (s) v s

Event Metric

Ms : E ! Z

C (s) vQ s

Stack-Usage Bound

stack(C (s))  �(Ms)

stack(C (s))  WMs (C (s))

8M . WM(s)  �(M)

Figure 2. Overview of our quantitative verification framework. We write WM psq “ suptWM pBq | B P JsKu for the weight of the program
s under the metric M . We write stackpsq for the smallest number n so that s runs without stack overflow if executed with a stack of size n.

3.1 Quantitative Compiler Correctness
In the following, we show how to extend trace-based compiler-
correctness proofs to also cover stack-space consumption. In short,
our technique works as follows.
1. We generate events for all semantic actions that are relevant for

stack-space usage, that is, function calls and returns.
2. We define a weight function for event traces that describes the

stack-space consumption of program executions that produce
that trace. The weight of an event trace is parameterized by a
resource metric that describes the cost of each event.

3. We formally verify that for all resource metrics and for all
event traces produced by a target program, the source program
either goes wrong or produces an equivalent (see the following
definition) event trace with a greater or equal weight.

4. During compilation, we produce a cost metric that accurately
describes the memory consumption of target programs: If an
execution of a target program produces an event trace of weight n
under the produced metric then this execution can be performed
on a system with stack size n.

We now formalize and elaborate on these points.

Event Traces In CompCert, the observable events are external
function calls (e.g., I/O events) that are represented by function
identifiers together with a list of input values and an output value
as given by the following grammar. To track stack usage, we add
memory events for internal function calls and returns. In contrast
to I/O events, memory events do not have to be preserved during
compilation.

Event values v ::“ intpnq | floatpqq

I/O events ν ::“ fp~v ÞÑ vq

Memory events µ ::“ callpx q | retpx q

Event traces are defined in a similar way to CompCert. We distin-
guish finite (inductive) traces t and possibly infinite (coinductive)
traces T . A program behavior is either a converging computation
convpt, nq producing a finite event trace t and a return code n, a
diverging computation divpT q producing a finite or infinite trace
T , or a computation failptq that goes wrong and produces the finite
trace t.

Finite event traces t ::“ ε | ν ¨ t | µ ¨ t

Coinductive event traces T ::“ ε | ν ¨ T | µ ¨ T

Behaviors B ::“ convpt, nq | divpT q | failptq

We write E for the set of memory and I/O events, B for the set of
behaviors, and T for the set of traces.

Weights of Behaviors For a behaviorB, we define the set of finite
prefix traces prefspBq of B as follows.

prefspconvpt, nqq “ tt1 | t “ t1 ¨ t2u

prefspdivpT qq “ tt | T “ t ¨ T 1u

prefspfailptqq “ tt1 | t “ t1 ¨ t2u

The weight WM pBq P N Y t8u of a behavior B describes the
number of bytes that are needed in an execution that produces B. It
is parameterized by a resource metric M : E Ñ Z that maps events
to integers (bytes). The purpose of the metric in our work is to relate
memory events to the sizes of the stack frames of functions in the
target code. To this end, we only use stack metrics, that is, metrics
M such that for all functions f and for all external functions g

0 ďMpcallpfqq “ ´Mpretpfqq and Mpgp~v ÞÑ vqq “ 0 .

In the Coq implementation of our compiler, we can also deal with
nonzero stack consumption for external functions as long as the
stack consumption of each call is bounded by a constant.

Before we define the weight, we first inductively define the
valuation VM ptq of a finite trace t.

VM pεq “ 0 and VM pα ¨ tq “ VM ptq `Mpαq

We now define the weight WM pT q of a potentially infinite trace
T and the weight WM pBq of a behavior B under the metric M as
follows:

WM pT q “ suptVM ptq | T “ t ¨ T 1u

WM pBq “ suptVM ptq | t P prefspBqu

Quantitative Refinement For our description of quantitative re-
finements we leave the definition of programs abstract. A program
s P P is simply an object that is associated, through a function
J¨K : P Ñ B, with a set of behaviors JsK P B. An execution of a
program can produce different traces, either due to non-determinism
in the semantics or due to user inputs recorded in the event traces.

For a behavior B we define the pruned behavior as the behavior
B that results from deleting all memory events (callpx q or retpx q)
from B. The formal definition can be found in the TR [9].

In CompCert, compiler correctness is formalized through the
notion of refinement. A (target) program s1 is a refinement of a
(source) program s, written s1 ă s, if for every behavior B1 P Js1K
there isB P JsK such thatB “ B1 or failptq P JsK for some trace t.2

Note that memory events are not taken into account in CompCert’s
classic definition of refinement.

2 In fact, it is enough to prove that B1 „ B (bisimilarity of infinite traces),
because JsK is closed by bisimilarity.

334



C Source

Quantitative Hoare Logic

Clight Cminor Linear Mach

Automatic Stack Analyzer
CompCert 1.13

x86 ASM

x86 ASMszMach2sz

Stack Merging

wQ wQwQ wQ wQwQ

w

w

Figure 3. Our modified stack-aware CompCert C compiler. We replace CompCert’s x86 assembly with the more realistic x86 assembly
semantics ASMsz with finite stack. Pseudo assembly instructions such as Pallocframe and Pfreeframe are not needed anymore.

To also relate the memory events in the behaviors of two
programs, we define a novel quantitative refinement. A (target)
program s1 is a quantitative refinement of a (source) program s,
written s1ăQ s if the following holds. For every behavior B1 P Js1K
there exists B P JsK such that B “ B1 and WM pB

1
q ď WM pBq

for all stack metrics M , or failptq P JsK for some trace t. In
Quantitative CompCert, our modified CompCert compiler, we prove
for each compiler pass C that CpsqăQ s for every program s.

Verifying Stack-Space Usage Figure 2 summarizes how we verify
the stack-space usage of a program in our framework. First, we
prove a bound β : pE Ñ Zq Ñ N on the weights of the event
traces that a program can produce. This bound is parameterized by
an event metric M : E Ñ Z. Second, our verified compiler—thanks
to quantitative refinement—ensures that the computed bound also
holds for the weights of the traces of the compiled program.

Third, we have to relate the computed bound to the actual stack
usage of the compiled code. Therefore, our compiler computes not
only a target program Cpsq but also a metric Ms such that Cpsq
can be safely executed with a stack-memory size of suptWMspBq |
B P JCpsqKu bytes. As a result, the initially derived bound for the
source code can be instantiated with the metric Ms to obtain the
wanted stack-space bound Mspβq for the target program.

In this overview picture, we assume that the semantics of the
target and source languages are both formulated with an unbounded
stack. The final step of the soundness proof (not illustrated in
Figure 2) is to relate the trace-based semantics of the target language
to a realistic assembly semantics in which the program is executed
with a fixed stack size. To this end, we prove that an execution
of Cpsq with bounded stack space suptWMspBq | B P JCpsqKu
is a refinement of the execution of Cpsq in the semantics with
unbounded stack (see explanation in Section 3.2).

3.2 Verification and Implementation
We implemented the verification framework that we outlined in
Section 3.1 for the CompCert C compiler using the proof assistant
Coq. The verification consists of about 5000 lines of Coq code that
we integrated into CompCert 1.13 (which originally consists of
about 90000 lines of Coq code) to obtain a modified version that we
call Quantitative CompCert. CompCert 1.13 is decomposed into 20
passes between 11 intermediate languages (see [9] for an overview).
We describe our modified Quantitative CompCert in this section.

The problem: stack consumption in CompCert For each interme-
diate language of CompCert (beyond C subsets), each function call
allocates a memory region—called the stack frame—to store its
addressable local variables, and later the spilling locations and the
function arguments to handle the calling conventions. This stack
frame is freed upon function return. However, even though each
stack frame is finite, there may well be an unbounded number of
such allocations, even for nested function calls. Indeed, in CompCert,
allocating a stack frame always succeeds, thus CompCert does not
model stack overflow.

Our solution: Quantitative CompCert In Quantitative CompCert,
we overcome this issue by modifying the semantics of the target
assembly language. We preallocate a finite memory region for the

whole stack, into which all stack frames shall be merged together
during the execution instead of being individually allocated.

By contrast, we still want the source and intermediate languages
to allocate an individual stack frame per function call. First, we
want to change CompCert only if necessary so as to still support all
features of CompCert C. Second, it would not be very meaningful
to introduce a finite stack at a high language level since it is unclear
how to model stack sizes. The only major change we bring to those
languages is to introduce our call and return events into the trace.

As shown in Figure 3, this leads us to split CompCert into
two parts. In the first part, we compile CompCert C down to
the CompCert Mach low-level language (which comes just before
assembly generation) by adapting the proofs of existing passes to
quantitative refinement. In the second part, we perform two passes
to merge all stack frames together. The key point of our work is that
this second part will require the Mach traces to not stack overflow,
which justifies the use of quantitative refinement for the first part.

Quantitative Refinement In the first part of the compiler, from
CompCert C down to Mach, we add call and return events to the
semantics of each language, at the level of each function call and
return (as described in Section 3.1). This change is uniform in all
languages between CompCert C to Mach: indeed, in each small-step
operational semantics, the rules responsible for internal function
call and return all have the same shape.

Then, thanks to these changes, we support all of CompCert 1.13
passes except two optional optimizations (see Section 3.3), and,
with no significant changes to the proofs, we prove that they exactly
preserve traces with function call events.

Generation of Target Cost Metric The semantics of CompCert
C allocates a separate memory region for each addressable local
variable. In Mach, all those variables as well as the spilling locations,
the function arguments, and the return address are stored in a
stack frame. Actually, the stack frame of a Mach function call is
completely laid out, so that no additional memory is necessary when
generating the CompCert x86 assembly code. This means that, at
the level of Mach, we already know the stack size necessary for a
function call (thanks to the fact that the original CompCert does not
support some C features, see 3.3): for a given function, this size is
constant and does not depend on the arguments nor the input. So, we
can use the sizes of Mach stack frames as cost metric for functions
to accurately estimate stack bounds at the source level.

Generation of Assembly Code Recall that CompCert x86 assem-
bly language is not realistic enough as it does not prevent a program
from allocating an infinite number of stack frames. Our goal, as one
of our main applications of our quantitative refinement, is to make
the CompCert x86 assembly language more realistic by having it
model a contiguous finite stack that is preallocated at the beginning
of the program. The semantics of our new CompCert x86 assembly
is parameterized by the size sz ` 4 3 of the whole stack (provided,
in most cases, by the host operating system). We call this new x86
semantics ASMsz . We design it in such a way that an execution goes

3 sz is the stack size actually consumed by the program starting from main,
but we have to account for the return address of the “caller” of main

335



wrong if the program tries to access more than sz bytes of stack. In
other words, stack overflow becomes possible in ASMsz .

Because the notion of function call is no longer relevant (there is
no “control stack”), we lose the ability to extend this semantics with
call and return events. So, rather than quantitative refinement, we
are actually interested in whether a CompCert C source program can
run on ASMsz without going wrong because of stack overflow. The
correctness of our Quantitative CompCert compiler is formalized by
the following theorem.
Theorem 1. Let sz ` 4 P

“

4, 232
˘

be the size of the whole target
stack. Consider a CompCert C source program S and assume the
following:
1. S does not go wrong in the ordinary setting of unbounded stack

space, that is, Et, failptq P JSK.
2. Quantitative CompCert produces a Mach intermediate target

code I , with the sizes of stack frames4 SF and the subsequent
cost metric Mpfq “ SFpfq ` 4.

3. The stack bounds of S inferred at the source level are lower than
sz under the Match cost metric M : @B P JSK,WM pBq ď sz .

4. From I , our compiler produces a target assembly code T .
Then, when run in ASMsz , T refines S in the sense of CompCert:
@B1 P JT Ksz , DB P JSK, B1 “ B. In particular, T cannot go wrong
and thus does not stack overflow.

It is important to first prove that S cannot go wrong in unbounded
stack space. Indeed, the correctness of our assembly generation
depends on the fact that the weights of Mach traces are lower than
sz . If S were to have a wrong behavior failptq then I might actually
have a behavior t ¨ B whose weight could well exceed sz even
though WM pfailptqq does not. As each pass is proved independently
of the others, it is not possible to track the behaviors of I that could
potentially come from wrong behaviors of S.

In the original CompCert x86 assembly language, the notion
of stack frame is still kept, so that this language has two pseudo-
instructions Pallocframe and Pfreeframe responsible of allocating
and freeing the corresponding memory block, even though those
pseudo-instructions are then turned into real x86 assembly instruc-
tions performing pointer arithmetics with the ESP stack pointer
register. This latter transformation cannot be proved correct in
CompCert because pointer arithmetics cannot cross block bound-
aries in the CompCert memory model. Therefore this transformation
is done in an unverified “pretty-printing” stage, after CompCert has
generated the x86 assembly code of the source program.

Our new assembly semantics overcomes this limitation. Now,
instead of allocating different memory blocks, we preallocate one
single block of size sz ` 4 at the beginning of the program to
hold the whole stack, and our assembly generation pass ensures
that the value of ESP always points within this block. Therefore
the pseudo-instructions are no longer necessary, and the pointer
arithmetics needed at function entry and exit can be performed
within our formalized ASMsz assembly language.

As an interesting side effect, accessing function arguments is
now simpler in our assembly language. Indeed, in the x86 calling
convention, a function has to look for its arguments in the stack
frame of its caller. To this purpose, the original CompCert keeps a
back pointer to link each stack frame to its parent. Thanks to our
changes, function arguments can now be provably accessed through
pointer arithmetics with no indirection, so that this back link is no
longer necessary. Because in the original CompCert, stack frames
are independent memory blocks, it was necessary for the callee to
have a pointer to the caller stack frame, called the back link, in its

4 In CompCert Mach, the syntax of a program p includes a finite map SF
such that, for any function f defined in p, the operational semantics of Mach
allocates a stack frame of SFpfq bytes whenever f is entered.

own stack frame. The callee could then access its arguments by
one indirection through this back link. In our new ASMsz assembly
language, stack frames are no longer independent, so that the callee
can access its arguments directly by pointer arithmetics within the
whole stack block.

3.3 Limitations
Neither the original CompCert nor Quantitative CompCert do
support variable stack-frame size: C features such as variable-
length arrays or dynamic stack allocation (alloca special library
functions) are not supported. Thus, the size of the stack frame of
a Mach function can be computed statically, and can be used to
define the cost metric of the program. Moreover, the subsequently
produced assembly code does not need to use push or pop, so any
change to the stack pointer is done only through pointer arithmetics.

Quantitative CompCert currently does not support the following
optional two optimization passes (that are present in the original
CompCert): tail-call recognition and function inlining. We describe
how to deal with these two optimizations in the companion TR [9]
and the implementation is underway.

4. Quantitative Hoare Logic for CompCert Clight
In this section, we describe the novel quantitative program logic
for CompCert Clight. The logic has been formalized and proved
sound using Coq. At some points, we simplify the presented logic
in comparison to the implemented version to discuss general ideas
instead of technical details.

Some particularities of the logic can be better understood with
respect to Clight and the continuation-based small-step semantics
for Clight programs that is used in CompCert.

4.1 CompCert Clight
CompCert Clight is the most abstract intermediate language used
by CompCert. Mainly, it is a subset of C in which loops can only
be exited with a break statement and expressions are free of side
effects. Using Clight instead of C simplifies the definition of our
quantitative program logic and is also in line with the design of
CompCert and the verification of CertiKOS.
Syntax We use Clight expressions in the logic. Our statements’
syntax is a subset of Clight’s to focus on the main ideas of our pro-
gram logic. For simplicity, loops are infinite unless they are termi-
nated using a break statement. We do not consider function pointers,
goto statements, continue statements, and switch statements (see
Section 4.4).

S, S1, S2 ::“ skip | x “ E | x “ fpE˚q | S1;S2 | loopS

| if pEq thenS1 elseS2 | break | returnE

Like in C, a program consists of a list of global variable declara-
tions, a list of function declarations, and the identifier of the main
statement, which is the entry point of the program.

4.2 Operational Semantics
CompCert Clight’s semantics is based on small-step transitions
and continuations. Expressions—which do not have side effects—
are evaluated in a big-step fashion. We use a simplified version of
Clight’s semantics that is sufficient for our subset. It is easy to relate
evaluations in our simplified version to evaluations in the original
semantics and we have implemented a verified compiler from our
simple Clight to Clight with CompCert’s original semantics.
Values and Memory Model A value is either an integer n or a
memory address `.

Val ::“ int n | adr `

In the Coq development we use CompCert’s memory model. How-
ever, the main ideas of the logic can be described with a simple

336



Γ $ tQsu skip tQu (Q:SKIP) Γ $ tQbu break tQu (Q:BREAK) Γ $ tλσ .Qr JEK∆
σ qu returnE tQu (Q:RETURN)

Γ $ tIsuS tIu

Γ $ tIsu loopS tpIb,K, Irqu
(Q:LOOP)

Γpfq“pPf , Qf q P “ λpθ,H q.Pf pJEK∆
pθ,H q,H q Q “ λpθ,H q.Qf pJxK∆

pθ,H q,H q

Γ $ tP `Mpfqux “ fpEq tpQ`Mpfq,K,Kqu
(Q:CALL)

Γ $ tP uS1 tpR,Q
b, Qrqu Γ $ tRuS2 tQu

Γ $ tP uS1;S2 tQu
(Q:SEQ)

c ě 0 tP uS tQu

tP ` cuS tQ` cu
(Q:FRAME)

P ě P 1 tP 1uS tQ1u Q1 ě Q

tP uS tQu
(Q:CONSEQ)

Figure 4. Selected rules of the quantitative program logic.

memory model in which locations are mapped to values and labels.

H : Mem “ Loc Ñ Val Y t‚u

The label ‚ is used to indicate that a location has been freed and can
no longer be used.

Evaluating Expressions Expressions are evaluated with respect
to a memory H : Mem and two environments

θ : VID Ñ Val and ∆ : VID Ñ Loc .

The local environment θ maps local variables to values and the
global environment ∆ maps global variables to locations. We
assume that always domp∆q X dompθq “ H.

The semantics JEK∆
pθ,H q “ v of an expression E under a global

environment ∆, a local environment θ, and a memory H is defined
by induction on the structure of E.

Continuations The small-step transition relation for statements is
based on continuations. Continuations handle the local control flow
within a function as well as the logical call stack.

K ::“ Kstop | KseqS K | KloopS K | Kcall x f θK

A continuationK is either the empty continuation Kstop, a sequence
KseqS K , a loop KloopS K , or a stack frame Kcallx f θK .

Evaluating Statements Statements are evaluated under a program
state pθ,H q P State “ pVID Ñ Valq ˆ Mem and a global
environment

pΣ,∆q : FID Ñ prVIDs ˆ Sq ˆ pVID Ñ Locq

that maps internal functions to their definitions—a list of argument
names and the function body—and global variables to values.

The small-step evaluation rules are given in the companion
TR [9]. They define a transition

pΣ,∆q $ pS,K, σq Ñtµ|ν|εu pS
1,K 1, σ1q

where µ is a memory event, ν is an I/O event, ε denotes no event,
S, S1 are statements, K,K 1 are continuations, and σ, σ1 P State .

From the small-step transition relation we derive the following
many-step relation in which t is a finite trace. We write

pΣ,∆q $ pS1,K1, σ1q Ñ
n
t pSn`1,Kn`1, σn`1q

if t “ a1, . . . , an and there exists pSi,Ki, σiq such that for all i

pΣ,∆q $ pSi,Ki, σiq Ñai pSi`1,Ki`1, σi`1q .

For a statement S and a continuation K, we define the weight
under the global environment pΣ,∆q, the program state σ, and
the metric M as pΣ,∆q $ Wpσ,MqpS,Kq “ suptVM ptq |
DS1,K 1, σ1, t, n . pΣ,∆q $ pS,K, σq Ñn

t pS
1,K 1, σ1qu .

4.3 Quantitative Hoare Logic
In the following we describe a simplified version of the quantitative
Hoare logic that we use in Coq to prove bounds on the weights
of the traces of Clight programs. For a given statement S and a
continuation K, our goal is to derive a bound pΣ,∆q $ P pσ,Mq P

N such that pΣ,∆q $ P pσ,Mq ě pΣ,∆q $Wpσ,MqpS,Kq for
all program states σ and resource metrics M . In the remainder of
this section we assume a fixed global environment pΣ,∆q.

We generalize classic Hoare logic to express not only classical
boolean-valued assertions but also assertions that talk about the fu-
ture stack-space usage. Instead of the usual assertions P : State Ñ
bool of Hoare logic we use assertions

P : State Ñ NY t8u .

This can be understood as a refinement of boolean assertions where
false is interpreted by 8 and true is refined by N. We write
Assn for State Ñ N Y t8u, and K “ p ÞÑ 8q. In the actual
implementation, assertions have the type State Ñ NÑ Prop. For
a given σ P State , such an assertion can be seen as a set B Ď N of
valid bounds. We do this only to use Coq’s support for propositional
reasoning. The presentation here is easier to read.

The continuation-based semantics of Clight requires that we
distinguish pre- and postconditions in the logic to account for
different possible ways to exit a block of code. This approach
is standard in Hoare logics and followed for instance in Appel’s
separation logic for Clight [3]. Our postconditions

Q “ pQs, Qb, Qrq : Assn ˆAssn ˆ pVal Ñ Assnq

provide one assertion Qs for the case in which the block is exited by
fall through, one assertion Qb if the block is exited by a break, and
a function Qr from values to assertions in case the block is exited
by a return. The function Qr takes the return value as argument.

Since we have to deal with (possibly recursive) functions, we
also need a function context

Γ:FIDÑppValˆMemqÑNYt8uqˆppValˆMemqÑNYt8uq

that maps function names to their specifications, that is, pre- and
postconditions. The precondition depends on the value that is passed
to the function by the caller and the memory. The postcondition
depends on the return value and the memory. We assume that a func-
tion has only one argument in this article. In the Coq implementation,
an arbitrary number of function arguments is allowed.

In summary, a quantitative Hoare triple has the form Γ $

tP uS tQu where Γ is a function context, P : Assn is a precondi-
tion, Q : Assn ˆ Assn ˆ pVal Ñ Assnq is a postcondition, and
S is a statement.

Intuitively, an assertion can be seen as a potential function that
maps a program state to a non-negative potential. The potential
of the precondition P must be sufficient to cover the cost of the
execution of the statement S and the potential Q after the execution
of S (as in amortized resource analysis [19]).

Rules Figure 4 shows selected rules of the quantitative logic. We
lift the operations ` and ě pointwise to assertions P,Q : Assn . A
constant c P NY t8u is sometimes used as the constant assertion
ÞÑ c. We fix an event metric M and a global environment pΣ,∆q.

In the Q:SKIP rule, we do not have to account for any stack
consumption. As a result, the precondition can be any (potential)

337



Γpfq “ pλpv,H q . 0, λpv,H q . 0q

Γ $ tpmf u fpq tpmf ,K,Kqu
(Q:CALL)

Γ $ tpmf `Xf u fpq tpmf `Xf ,K,Kqu
(Q:FRAME)

Γ $ tmaxpmf ,mgqu fpq tQu
(EQ)

Γpgq “ pλpv,H q . 0, λpv,H q . 0q

Γ $ tpmgu gpq tpmg ,K,Kqu
(Q:CALL)

Γ $ tpmg `Xgu gpq tpmg `Xg ,K,Kqu
(Q:FRAME)

Γ $ tmaxpmf ,mgqu gpq tQu
(EQ)

Γ $ tmaxpmf ,mgqu fpq; gpq tQu
(Q:SEQ)

where Mpcallpfqq “ mf Mpcallpgqq “ mg Q “ pmaxpmf ,mgq,K,Kq Xθ “ maxpmf ,mgq ´mθ for θ P tf, gu

Figure 5. An example derivation of a stack-space bound in the quantitative logic.

function. After the execution, the skip part of the postcondition must
be valid on the same (unchanged) program state. So we have to
make sure that we do not end up with more potential and simply use
the precondition as the skip part of the postcondition. The break and
return parts of the postcondition are not reachable and can therefore
be arbitrary. The rules Q:BREAK and Q:RETURN are similar.

In the Q:SEQ rule we have to account for early exits in statements.
For instance, if S1 contains a break statement then S2 will never be
executed so we must ensure in the break part of S1’s postcondition
that the break part of S1;S2 holds. For the same reason, the return
part of S1’s postcondition is special.

The Q:LOOP rule uses the same principles as the Q:SEQ rule
to tweak the final postcondition. In the case of Q:LOOP, we simply
ensure that the break part of the inner statement becomes the skip
part of the overall statement. We use K as the break part of the
loopS statement since its operational semantics prevent it from
terminating differently than with a skip or a return.

The Q:CALL rule accounts for the actual stack-space usage of
programs. It enforces that enough stack space is available to call the
function f by adding Mpfq to the pre- and postcondition. The pre-
and postconditions are taken from the function context Γ.

There are two weakening rules in the quantitative Hoare logic.
The framing rule Q:FRAME weakens a statement by stating that if
S needs P bytes to run and leaves Q bytes free at its end, then it can
very well run with P ` c bytes and return Q ` c bytes. It is very
handy to prove tight bounds using the max function as demonstrated
in Figure 5. The consequence Q:CONSEQ rule is directly imported
from classical Hoare logics except that instead of using the logical
implicationñ we use the quantitative ě.
Auxiliary State The main difference between the implemented
logic and the logic described here is that the latter does not have
an auxiliary state. Auxiliary state is a classic extension of Hoare
logic (see for example [30]). The auxiliary state is used to share
information between the pre- and postcondition of a triple. In a logic
without auxiliary state (or similar techniques) it is not possible to
relate program states before and after a statement. For example, you
cannot specify that the function int twice () t i = i+i;u
doubles the value of the variable i. With an auxiliary variable
Z it is possible specify this fact in Hoare logic using the triple
ti “ Zu twicepq ti “ 2 ¨ Zu.

One technical challenge with this auxiliary state is that some
triples, for example ti “ Zu c ti “ Zu and ti “ Z ´ 1u c ti “
Z´1u need to be proved equivalent by the logic to handle recursive
calls. This problem is usually solved by introducing a more complex
consequence rule, which our implemented system features. The
typical use case is when we apply the rule Q:CALL to a recursive
call. In this case, the Hoare triple for the function call is proved by
an assumption from the derivation context with a slightly different
auxiliary state. In the example derivation in Figure 6 this different
state is Z ´ 1. Adapting the derivation hypothesis to prove the
recursive call is enabled in our logic by an extended consequence
rule that we proved sound in the quantitative setting.
Stack Framing Another minor difference is in the function appli-
cation rule where we only present the rule for function calls with a

tZ “ log2phσ´lσq ñMb ¨ Zu
bsearch(x,l,h) {
if (h-l <= 1) return l;
tpZą0^ Z “ log2phσ´lσqq ñMb ¨ Zu
m = (h+l)/2;

tpZą0^ Z “ log2phσ´lσq ^mσ “
hσ`lσ

2
q ñMb ¨ Zu

if (a[m]>x) h=m else l=m;
trZ´1 “ log2phσ´lσq ñMb ¨ pZ´1qs `Mbu

return bsearch(x,l,h);
trMb ¨ pZ´1qs `Mbu

}
tMb ¨ Zu

Figure 6. Derivation with auxiliary state for the bsearch function.

single argument and without framing of stack assertions. The latter
is necessary to carry over information on the local environment from
the precondition to the postcondition of the function call.

Soundness The soundness of our quantitative logic can be simply
expressed by the following theorem.

Theorem 2. For a fixed global environment pΣ,∆q, a derivation
in our quantitative logic for a statement S implies a bound on the
weight of S, that is,

¨ $ tP uS tQu ùñ @σ,M .P pσ,Mq ěWpσ,MqpS,Kstopq.

Naturally, we have to prove a stronger statement that takes post-
conditions and continuations into account to justify the soundness
of the rules of the logic. This is not unlike as in program logics for
low-level code [22] and Hoare-style logics for CompCert Clight [3].
Furthermore, we have to assume that we have a non-empty function
context Γ; and finally, we have to step-index the correctness state-
ment in order to prove its soundness by induction. The details can
be found in the TR [9] and in the Coq development. Of course we
prove in Coq that the intuitive validity, as formulated in Theorem 2
is a consequence of our stronger formulation of validity.

Example Figure 5 contains an example derivation for the state-
ment fpq; gpq in our logic. We assume that we have already verified
that the function bodies of f and g do not allocate stack space, that
is, Γpgq “ Γpfq “ pλpv,H q . 0, λpv,H q . 0q.

Our goal is to derive a quantitative Hoare triple that expresses
that maxpmf ,mgq, the maximum of the stack frame sizes of f
and g, is a bound on the stack usage; and that after the execution
maxpmf ,mgq stack space is available. Since the effect of break
and return statements cannot leak outside of a function body, the
corresponding postconditions can be arbitrary and we simply use K.

To derive our goal, we first have to apply the rule Q:SEQ for
sequential composition. In the derivation of the function call fpq,
we first reorder the precondition to get it in a form in which we can
apply the rule Q:FRAME to eliminate the max operator. We then
have a triple that is amenable to an application of the rule Q:CALL
that uses the specification of the body of f in Γ.

338



4.4 Limitations
In our program logic described in this section, we do not consider
function pointers, goto statements, continue statements, and switch
statements, even though our Quantitative CompCert compiler still
supports all of these. It would be possible to add these features to
our logic by building on the ideas of advanced program logics like
XCAP [29].

5. Automatic Stack Analyzer
In larger C programs a manual, interactive verification with a
program logic is too tedious and time-consuming to be practical.
Therefore we have developed an automatic stack analysis tool that
operates at the Clight level to enable the analysis of real system
code. We view this automatic tool mainly as a proof of concept that
demonstrates the value of the logic for formal verification of static
analysis tools. In the future, we will extend our automatic analyzer
with advanced techniques like amortized resource analysis [5, 21].
This is however beyond the scope of this article.

The basic idea of our automatic stack analyzer is to compute
a call graph from the Clight code and to derive a stack bound
for each function in topological order. In Coq, the derivation of a
function bound is implemented by a recursive function auto bound
on the abstract syntax tree (AST) of a Clight program. The function
auto bound does not only compute a stack bound but also a
derivation in our quantitative program logic. This verifies the
correctness of the generated bound and enables the composition
of stack bounds that have been derived interactively or with other
static analysis tools. In addition to the AST, auto bound takes a
context of known function bounds together with their derivations in
the logic as an argument.

Given our verified quantitative logic, the implementation of
auto bound is straightforward. For trivial commands like as-
signments or skip, auto bound simply generates the bound 0
and a derivation like t0u skip tp0, 0, 0qu. For a sequential com-
position S1;S2 we inductively apply auto bound to S1 and S2,
and derive the bounds tBiuSi tpBsi , B

b
i , B

r
i qu for i“1, 2. We

then return the precondition maxtB1, B2u and the postcondition
pmaxtBs1 , B

s
2u,maxtBb1, B

b
2u,maxtBs1 , B

s
2uq for the command

S1;S2. The derivation of this bound is similar to the example deriva-
tion that is sketched in Figure 5. The computation of the bound
for the conditional works similar. For loops we can use the bound
derived for the loop body to obtain a bound for the loop. In the
derivation we just apply the rule Q:LOOP. Function calls are han-
dled with the context of known function bounds (recursion is not
allowed here) and the rule Q:CALL.

We envision, that the quantitative logic can be a useful backend to
verify more sophisticated static analyses. For our simple, automatic
stack analyzer the logic was already very convenient and enabled us
to verify the analyzer almost without additional effort.

We have combined our automatic stack analyzer with our Quan-
titative CompCert compiler. The result is a verified C compiler that
translates a program without function pointers and recursive calls
to x86 assembly and automatically derives a stack bound for each
function in the program including mainpq. The soundness theorem
we have proved states the following. If a given program is memory-
safe and the verified compiler successfully produces an assembly
program A then A refines the source program and runs safely on
an x86 machine with the stack size that has been computed by the
automatic stack analysis for mainpq (see Point 3 of Theorem 1).

6. Experimental Evaluation
To validate the practicality of our framework for stack-bound
verification, we have performed an experimental evaluation with
more than 3000 lines of C code from different sources including

File Name / Function Name Verified
Line Count Stack Bound

mibench{net{dijkstra.c enqueue 40 bytes
(174 LOC) dequeue 40 bytes

dijkstra 88 bytes
mibench{auto{bitcount.c bitcount 16 bytes
(110 LOC) bitstring 32 bytes
mibench{sec{blowfish.c BF encrypt 40 bytes
(233 LOC) BF options 8 bytes

BF ecb encrypt 80 bytes
mibench{sec{pgp{md5.c MD5Init 16 bytes
(335 LOC) MD5Update 168 bytes

MD5Final 168 bytes
MD5Transform 128 bytes

mibench{tele{fft.c IsPowerOfTwo 16 bytes
(195 LOC) NumberOfBitsNeeded 24 bytes

ReverseBits 24 bytes
fft float 160 bytes

certikos{vmm.c palloc 48 bytes
(608 LOC) pfree 40 bytes

mem init 72 bytes
pmap init 176 bytes
pt free 80 bytes
pt init 152 bytes
pt init kern 136 bytes
pt insert 80 bytes
pt read 56 bytes
pt resv 120 bytes

certikos{proc.c enqueue 48 bytes
(819 LOC) dequeue 48 bytes

kctxt new 72 bytes
sched init 232 bytes
tdqueue init 208 bytes
thread init 192 bytes
thread spawn 96 bytes

compcert{mandelbrot.c main 56 bytes
(92 LOC)
compcert{nbody.c advance 80 bytes
(174 LOC) energy 56 bytes

offset momentum 24 bytes
setup bodies 16 bytes
main 112 bytes

Table 1. Automatically verified stack bounds for C functions.

hand written code, programs from the CompCert test suite, programs
from the MiBench [17] embedded software benchmark suite, and
modules from the simplified development version of the CertiKOS
operating system kernel which is currently being verified.

Tables 1 and 2 show a representative compilation of the exper-
iments. Table 1 contains bounds that were automatically derived
with the stack analyzer. Table 2 contains 8 bounds that were interac-
tively derived using the quantitative logic with occasional support
of the automation. The size of the analyzed example files varies
from 8 lines of code (fib.c) to 819 lines of code (proc.c). In general,
the automatic stack-bound analysis runs very efficiently and needs
less than a second for every example file on (one core of) a Linux
workstation with 32G of RAM and a x86 processor with 16 cores at
3.10Ghz.

In Table 1, the first column shows the file name of the examples
together with the number of lines, the second column contains the
name of selected functions from that file, and the third column con-
tains the verified bound. The interactively-derived bounds in Table 2
are presented as symbolic expressions parametric in the functions’

339



Function Name Verified Stack Bound

recidpq 8a bytes
bsearchpx, lo, hiq 40p1` log2phi´ loqq bytes
fibpnq 24n bytes
qsortpa, lo, hiq 48phi´ loq bytes
filter pospa, sz, lo, hiq 48phi´ loq bytes
sumpa, lo, hiq 32phi´ loq bytes
fact sqpnq 40` 24n2 bytes
filter findpa, sz, lo, hiq 128` 48phi´ loq ` 40 log2pBLq bytes

Table 2. Manually verified stack bounds for C functions.

arguments. These symbolic expressions are slight simplifications of
the real pre- and postconditions of the functions that we proved in
Coq. The actual Hoare triples proved in Coq carry a logical meaning
which does, for instance, require that the qsort function be called
on a valid sub array. The file sizes of the manual verified examples
range from 8 to 52 lines of code.

Our main application of the automatic stack-analyzer is the
CertiKOS operating system kernel [15]. Currently, the stack in
CertiKOS is preallocated and proving the absence of stack-overflow
is essential in the verification of the reliability of the system. Since
CertiKOS does not use recursion, we can use the automatic analysis
to derive precise stack bounds. Using our Quantitative CompCert
compiler, we were, for instance, able to compile and compute bounds
for the virtual memory management module (certikos{vmm.c) and
the process management module (certikos{proc.c). Because of
the large number of functions in CertiKOS, only a sample of the
analyzed functions is displayed in Table 1.

Testing the quantitative Hoare logic and the compiler on
CompCert test suite was a natural choice since our compiler builds
on CompCert’s architecture. This also allowed us to make sure
that we did not introduce any regression with respect to the origi-
nal CompCert compiler. To stress the expressivity of the logic we
focused on test programs with recursive functions. The functions
fib and qsort in Table 2 are for instance from the CompCert test
suite. Files with automatically derived bounds for non-recursive
functions from the CompCert test suite include mandelbrot.c which
computes an approximation of the Mandelbrot set and nbody.c
which computes an n-body simulation of a part of our solar system.

We also made sure that our technique can handle safety critical
embedded software. The MiBench [17] benchmark that we used
for this purpose is free, publicly available, and representative for
embedded software. The use of recursion in MiBench programs is
relatively rare, which makes them a great target for our automatic
stack analyzer. The analyzed examples we present in Table 1
include for instance Dijkstra’s single-source shortest-path algorithm
(dijkstra.c), and the cryptographic algorithms Blowfish (blowfish.c)
and MD5 (md5.c).

Finally, Table 2 contains some recursive functions that demon-
strate the expressivity of our quantitative logic. The function bsearch
is, for example, a recursive binary search with logarithmic recursion
depth. The function fib computes the Fibonacci sequence using an
exponential algorithm and the function qsort implements a recursive
version of the quicksort algorithm. The verification of the function
fact sq shows the modularity of the logic: We first verify a linear
bound for the factorial function and then use this bound to verify
fact sqpnq, which contains the call factpn2

q. The function filter pos
takes an array and computes a new array that contains all positive
elements of the input array. Similarly, filter find uses the binary
search bsearch to filter out all elements of an input array that are
contained in another array of size BL. The modularity of the logic
enables us to reuse the logarithmic bound that we already derived
for bsearch in the proof. The verification of some functions is still

 0

 100

 200

 300

 400

 500

 600

 0  500  1000  1500  2000  2500  3000  3500  4000

measured stack consumption
40(1 + log_2(x))

 0

 50000

 100000

 150000

 200000

 250000

 0  10  20  30  40  50  60  70  80  90  100

measured stack consumption
40 + 24 x^2

Figure 7. Experimental evaluation of the accuracy of hand-derived
stack bounds. The plots compare the derived bounds (blue lines)
for the functions bsearch (at the top) and fact sq (at the bottom)
with the measured stack usage of the execution of the respective
function for different inputs (red crosses). The x-axis shows either
the value of an integer argument (fact sq) or the length of an input
array (bsearch). The y-axis shows the stack usage in bytes.

underway. The bounds for the functions recid, bsearch, fib, and
qsort are already completely verified.

Our experiments show that the automatic stack analyzer works
effectively for our main application, the CertiKOS OS kernel. The
reason is that we designed the quantitative logic to include exactly
the subset of Clight that is needed for CertiKOS. It turned out that
this subset is also sufficient for many examples in the CompCert
test suite and the MiBench embedded software benchmarks. If a
program is not interactively analyzable in our logic then this is due
to unsupported language constructs such as switch statements and
function pointers. Many of these language features could easily be
supported by relatively small additions to the logic. An exception to
this are function pointers which would require more work, following
for example XCAP [29].

We have evaluated the accuracy of the verified bounds by
comparing them with the actual stack-space consumption of the
compiled C programs. Our experiments show that our framework
is expressive enough to derive very tight bounds for recursive and
non-recursive programs. All manually and automatically derived
bounds over-approximate the actual stack-space consumption by
exactly 4 bytes. Figure 7 shows the results of two representative
experiments with hand-derived bounds for recursive programs. The
bound derived in the logic is plotted together with the actual stack
consumption of C programs measured on different inputs.

Measuring the stack consumption of C programs on modern
computers is not as trivial as we originally thought. The measure-
ment is complicated by some security mechanisms and unrestricted
manipulation of the stack pointer by the compiler. To this end, we

340



designed a small C program that uses the linux system call ptrace.
Using the this system call our tool forks the monitored process as a
child then executes it step by step while keeping track of its stack
consumption.

The reason for the 4-byte looseness of the bounds is that stack
frames always reserve four bytes for a potential function call: The
return address needs to be pushed by a call instruction in the callee.
Obviously, the last function in the function call chain does not call
any other function. So these four bytes remain unused.

7. Related Work
We now discuss research that is related to our contributions in veri-
fied compilation, program logics, and automatic resource analysis.

Verified Compilation Soundness proofs of compilers have been
extensively studied and we focus on formally verified proofs here.
Klein and Nipkow [24] developed a verified compiler from an
object-oriented, Java-like language to JVM byte code. Chlipala [11]
describes a verified compiler from the simply-typed lambda calculus
to an idealized assembly language. In contrast to our work, the
aforementioned works do not model nor preserve quantitative
properties such as stack usage.

Our verified Quantitative CompCert compiler is an extension of
the CompCert C Compiler [26, 27]. Despite being formally verified,
important quantitative properties such as memory and time usage
of programs compiled with CompCert have still to be verified at
the assembly level [6]. Admittedly, there exists a clever annotation
mechanism [6] in CompCert that allows to transport assertions
on program states from the source level to the target machine
code. However, these assertions can only contain statements about
memory states but not bounds on the number of loop iterations and
or recursion depth of functions. The novelty of our Quantitative
CompCert extension to CompCert is that it enables us to reason
about quantitative properties of event traces during compilation.
Another novelty is that we model the assembly level semantics
more realistically by using a finite stack. In particular, we do
not have to use pseudo instructions anymore. This is similar to
CompCertTSO [32]. However, we use event traces to get guarantees
on the size of the stack that is needed to ensure refinement. On the
other hand, it is always possible that the compiled code runs out of
stack space in CompCertTSO.

In the context of the Hume language [18], Jost et al. [23]
developed a quantitative semantics for a functional language and
related it to memory and time consumption of the compiled code
for the Renesas M32C/85U embedded micro-controller architecture.
In contrast to our work, the relation of the compiled code with
functional code is not formally proved.

Program Logics In the development of our quantitative Hoare
logic we have drawn inspiration from mechanically verified Hoare
logics. Nipkow’s [30] description of his implementations of Hoare
logics in Isabelle/HOL has been helpful to understand the interaction
of auxiliary variables with the consequence rule. The consequence
rule we use in our Coq implementation is a quantitative version of
a consequence rule that has been attributed to Martin Hofmann by
Nipkow [30]. Appel’s separation logic for CompCert Clight [3] has
been a blueprint for the structure of the quantitative logic. Since we
do not deal with memory safety, our logic is much simpler and it
would be possible to integrate it with Appel’s logic. The continuation
passing style that we use in the quantitative logic is not only used
by Appel [3] but also in Hoare logics for low-level code [22, 29].

There exist quantitative logics that are integrated into separation
logic [5, 20] and they are closely related to our quantitative logic.
However, the purpose of these logics is slightly different since they
focus on the verification of bounds that depend on the shape of
heap data structures. Moreover, they are only defined for idealized

languages and do not provide any guarantees for compiled code.
Also closely related to our logic is a VDM-style logic for reasoning
about resource usage of JVM byte code by Aspinall et al. [4]. Their
logic is more general and applies to different quantitative resources
while we focus on stack usage. However, it is unclear how realistic
the presented resource metrics are. On the other hand, our logic
applies to system code written in C, is verified with respect to
CompCert Clight, and derives bounds for x86 assembly.

Resource Analysis There exists a large body of research on
statically deriving stack bounds on low-level code [8, 10, 31] as
well as commercial tools such as the Bound-T Time and Stack
Analyser and Absint’s StackAnalyzer [14]. We are however not
aware of any formally verified techniques. For high-level languages
there exists a large number of systems for statically inferring or
checking quantitative requirements such as stack usage [1, 12, 19,
23]. However, they are not formally verified and do not apply to
system code that is written in C. For C programs, there exist methods
to automatically derive loop bounds [16, 36] but the proposed
methods are not verified and it is unclear if they can be used for
computing stack bounds.

We are only aware of two verified quantitative analysis systems.
Albert et al. [2] rely on the KeY tool to automatically verify
previously inferred loop invariants, size relations, and ranking
functions for Java Card programs. However, they do not have a
formal cost semantics and do not verify actual stack bounds. Blazy
et al. [7] have verified a loop bound analysis for CompCert’s RTL
intermediate language. It is however unclear how the presented
technique can be used to verify stack bounds or to formally translate
bounds to a lower-level during compilation.

8. Conclusion
Embedded software has always been a target of verified compilers.
As a result, aiding verification of quantitative properties remains a
major goal for verified compilation. In one of the earliest articles
[26] on CompCert, Leroy stated:

“[...] it is hopeless to prove a stack memory bound on the
source program and expect this resource certification to carry
out to compiled code: stack consumption, like execution time,
is a program property that is not preserved by compilation.”

Ironically, Leroy’s groundbreaking work on CompCert has been the
main inspiration in our development of a framework that enables
exactly such a resource certification of stack-consumption bounds
for compiled x86 assembly code at the C level.

We have developed Quantitative CompCert, a realistic, verified
C compiler which shows how verified compilation enables the
verification of quantitative properties of compiled programs at the
source level. We have implemented and formally verified a novel
quantitative Hoare logic for CompCert Clight which is an ideal
backend for static analysis tools. This is demonstrated through the
implementation of a verified, automatic stack-analysis tool that
computes derivations in the quantitative logic. Finally, we have
shown through experiments that our framework can be applied to
derive precise stack bounds for typical system code.

Our work opens the door for the verification of powerful static
analysis tools for quantitative properties that operate on the C
level rather than on the machine code. There are multiple future
research directions that we plan to explore on the basis of the present
development. For one thing, we want to use our quantitative Hoare
logic to verify more powerful analysis tools that can automatically
derive stack-space bounds for recursive functions. For another
thing, we plan to generalize the developed concepts to apply our
technique to other resources such as heap-memory and clock-cycle
consumption.

341



Acknowledgments
We thank Lennart Beringer, Francesco Logozzo, the anonymous
reviewers of PLDI’14, and the PLDI’14 Artifact Evaluation Com-
mittee for helpful comments and suggestions that improved this
article and the implemented tools.

This research is based on work supported in part by NSF grants
1319671 and 1065451, and DARPA grants FA8750-10-2-0254
and FA8750-12-2-0293. Any opinions, findings, and conclusions
contained in this document are those of the authors and do not reflect
the views of these agencies.

References
[1] E. Albert, P. Arenas, S. Genaim, M. Gómez-Zamalloa, and G. Puebla.

Cost Analysis of Concurrent OO Programs. In Prog. Langs. and
Systems - 9th Asian Symposium (APLAS’11), pages 238–254, 2011.

[2] E. Albert, R. Bubel, S. Genaim, R. Hähnle, and G. Román-Dı́ez.
Verified Resource Guarantees for Heap Manipulating Programs. In
Fundamental Approaches to Soft. Eng. - 15th Int. Conf. (FASE’12),
pages 130–145, 2012.

[3] A. W. Appel et al. Program Logics for Certified Compilers. Cambridge
University Press, 2013.

[4] D. Aspinall, L. Beringer, M. Hofmann, H.-W. Loidl, and
A. Momigliano. A Program Logic for Resources. Theor. Comput.
Sci., 389(3):411–445, 2007.

[5] R. Atkey. Amortised Resource Analysis with Separation Logic. In 19th
Euro. Symp. on Prog. (ESOP’10), pages 85–103, 2010.

[6] R. Bedin França, S. Blazy, D. Favre-Felix, X. Leroy, M. Pantel, and
J. Souyris. Formally Verified Optimizing Compilation in ACG-based
Flight Control Software. In Embedded Real Time Software and Systems
(ERTS 2012), 2012.

[7] S. Blazy, A. Maroneze, and D. Pichardie. Formal Verification of Loop
Bound Estimation for WCET Analysis. In Verified Software: Theories,
Tools, Experiments - 5th Int. Conf. (VSTTE’13), 2013. To appear.

[8] D. Brylow, N. Damgaard, and J. Palsberg. Static Checking of Interrupt-
Driven Software. In 23rd Int. Conf. on Soft. Engineering (ICSE’01),
pages 47–56, 2001.

[9] Q. Carbonneaux, J. Hoffmann, T. Ramananandro, and Z. Shao. End-
to-End Verification of Stack-Space Bounds for C Programs. Technical
Report YALEU/DCS/TR-1487, Yale University, March 2014.

[10] W.-N. Chin, H. H. Nguyen, C. Popeea, and S. Qin. Analysing Memory
Resource Bounds for Low-Level Programs. In 7th Int Symp. on Memory
Management (ISMM’08), pages 151–160, 2008.

[11] A. Chlipala. A Certified Type-Preserving Compiler from Lambda
Calculus to Assembly Language. In 28th Conf. on Prog. Lang. Design
and Impl. (PLDI’07), pages 54–65, 2007.

[12] K. Crary and S. Weirich. Resource Bound Certification. In 27th ACM
Symp. on Principles of Prog. Langs. (POPL’00), pages 184–198, 2000.

[13] Express Logic, Inc. Helping you avoid stack overflow crashes! White
Paper, 2014. URL http://rtos.com/images/uploads/Stack_
Analysis_White_paper.1_.pdf.

[14] C. Ferdinand, R. Heckmann, and B. Franzen. Static Memory and
Timing Analysis of Embedded Systems Code. In 3rd Europ. Symp. on
Verification and Validation of Software Systems (VVSS’07), 2007.

[15] L. Gu, A. Vaynberg, B. Ford, Z. Shao, and D. Costanzo. CertiKOS: A
Certified Kernel for Secure Cloud Computing. In Asia Pacific Workshop
on Systems (APSys’11), 2011.

[16] S. Gulwani, K. K. Mehra, and T. M. Chilimbi. SPEED: Precise and
Efficient Static Estimation of Program Computational Complexity. In

36th ACM Symp. on Principles of Prog. Langs. (POPL’09), pages
127–139, 2009.

[17] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown. MiBench: A Free, Commercially Representative
Embedded Benchmark Suite. In IEEE International Workshop on
Workload Characterization (WWC’01), pages 3–14, 2001.

[18] K. Hammond and G. Michaelson. Hume: A Domain-Specific Lan-
guage for Real-Time Embedded Systems. In Generative Progr. and
Component Eng., 2nd Int. Conf. (GPCE’03), pages 37–56, 2003.

[19] J. Hoffmann, K. Aehlig, and M. Hofmann. Multivariate Amortized
Resource Analysis. ACM Trans. Program. Lang. Syst., 2012.

[20] J. Hoffmann, M. Marmar, and Z. Shao. Quantitative Reasoning for
Proving Lock-Freedom. In 28th ACM/IEEE Symposium on Logic in
Computer Science (LICS’13), 2013.

[21] M. Hofmann and S. Jost. Static Prediction of Heap Space Usage for
First-Order Functional Programs. In 30th ACM Symp. on Principles of
Prog. Langs. (POPL’03), pages 185–197, 2003.

[22] J. B. Jensen, N. Benton, and A. Kennedy. High-Level Separation Logic
for Low-Level Code. In 40th ACM Symp. on Principles of Prog. Langs.
(POPL’13), pages 301–314, 2013.

[23] S. Jost, H.-W. Loidl, K. Hammond, N. Scaife, and M. Hofmann. Carbon
Credits for Resource-Bounded Computations using Amortised Analysis.
In 16th Symp. on Form. Meth. (FM’09), pages 354–369, 2009.

[24] G. Klein and T. Nipkow. A Machine-Checked Model for a Java-Like
Language, Virtual Machine, and Compiler. ACM Trans. Program. Lang.
Syst., 28(4):619–695, 2006.

[25] G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood. seL4: Formal Verification of an Operating-
System Kernel. Commun. ACM, 53(6):107–115, 2010.

[26] X. Leroy. Formal Certification of a Compiler Back-End, or: Program-
ming a Compiler with a Proof Assistant. In 33rd Symposium on Princi-
ples of Prog. Langs. (POPL’06), pages 42–54, 2006.

[27] X. Leroy. Formal Verification of a Realistic Compiler. Communications
of the ACM, 52(7):107–115, 2009.

[28] Y. Moy, E. Ledinot, H. Delseny, V. Wiels, and B. Monate. Testing or
Formal Verification: DO-178C Alternatives and Industrial Experience.
IEEE Software, 30(3):50–57, 2013. ISSN 0740-7459.

[29] Z. Ni and Z. Shao. Certified Assembly Programming with Embedded
Code Pointers. In 33th ACM Symp. on Principles of Prog. Langs.
(POPL’06), pages 320–333, 2006.

[30] T. Nipkow. Hoare Logics in Isabelle/HOL. In Proof and System-
Reliability, volume 62 of NATO Science Series, pages 341–367.
Springer, 2002.

[31] J. Regehr, A. Reid, and K. Webb. Eliminating Stack Overflow by
Abstract Interpretation. ACM Trans. Embed. Comput. Syst., 4(4):751–
778, 2005.

[32] J. Sevcı́k, V. Vafeiadis, F. Z. Nardelli, S. Jagannathan, and P. Sewell.
CompCertTSO: A Verified Compiler for Relaxed-Memory Concur-
rency. J. ACM, 60(3), 2013.

[33] Z. Shao. Certified software. Commun. ACM, 53(12):56–66, 2010.
[34] R. Wilhelm et al. The Worst-Case Execution-Time Problem —

Overview of Methods and Survey of Tools. ACM Trans. Embedded
Comput. Syst., 7(3), 2008.

[35] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and Understanding
Bugs in C Compilers. In 32nd Conf. on Prog. Lang. Design and Impl.
(PLDI’11), pages 283–294, 2011.

[36] F. Zuleger, M. Sinn, S. Gulwani, and H. Veith. Bound Analysis of
Imperative Programs with the Size-change Abstraction. In 18th Int.
Static Analysis Symposium (SAS’11), 2011.

342



Compositional Verification of Termination-Preserving
Refinement of Concurrent Programs

Hongjin Liang† Xinyu Feng† Zhong Shao‡

†University of Science and Technology of China ‡Yale University

lhj1018@mail.ustc.edu.cn xyfeng@ustc.edu.cn zhong.shao@yale.edu

Abstract

Many verification problems can be reduced to refinement verifica-
tion. However, existing work on verifying refinement of concurrent
programs either fails to prove the preservation of termination, al-
lowing a diverging program to trivially refine any programs, or is
difficult to apply in compositional thread-local reasoning. In this
paper, we first propose a new simulation technique, which estab-
lishes termination-preserving refinement and is a congruence with
respect to parallel composition. We then give a proof theory for the
simulation, which is the first Hoare-style concurrent program logic
supporting termination-preserving refinement proofs. We show two
key applications of our logic, i.e., verifying linearizability and lock-
freedom together for fine-grained concurrent objects, and verifying
full correctness of optimizations of concurrent algorithms.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification – Correctness proofs, Formal
methods; F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs

General Terms Theory, Verification

Keywords Concurrency, Refinement, Termination Preservation,
Rely-Guarantee Reasoning, Simulation

1. Introduction

Verifying refinement between programs is the crux of many ver-
ification problems. For instance, reasoning about compilation or
program transformations requires proving that every target pro-
gram is a refinement of its source [9]. In concurrent settings, re-
cent work [4, 12] shows that the correctness of concurrent data
structures and libraries can be characterized via some forms of con-
textual refinements, i.e., every client that calls the concrete library
methods should refine the client with some abstract atomic oper-
ations. Verification of concurrent garbage collectors [11] and OS
kernels [18] can also be reduced to refinement verification.

Refinement from the source program S to the target T , written
as T ⊑ S, requires that T have no more observable behaviors
than S. Usually observable behaviors include the traces of external
events such as I/O operations and runtime errors. The question is,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CSL-LICS 2014, July 14–18, 2014, Vienna, Austria.
Copyright c© 2014 ACM 978-1-4503-2886-9. . . $15.00.
http://dx.doi.org/10.1145/2603088.2603123

should termination of the source be preserved too by the target? If
yes, how to verify such refinement?

Preservation of termination is an indispensable requirement
in many refinement applications. For instance, compilation and
optimizations are not allowed to transform a terminating source
program to a diverging (non-terminating) target. Also, implemen-
tations of concurrent data structures are often expected to have
progress guarantees (e.g., lock-freedom and wait-freedom) in ad-
dition to linearizability. The requirements are equivalent to some
contextual refinements that preserve the termination of client pro-
grams [12].

Most existing approaches for verifying concurrent program
refinement, including simulations (e.g., [11]), logical relations
(e.g., [22]), and refinement logics (e.g., [21]), do not reason
about the preservation of termination. As a result, a program that
does an infinite loop without generating any external events, e.g.
while true do skip, would trivially refine any source program
(just like that it trivially satisfies partial correctness in Hoare logic).
Certainly this kind of refinement is not acceptable in the applica-
tions mentioned above.

CompCert [9] addresses the problem by introducing a well-
founded order in the simulation, but it works only for sequential
programs. It is difficult to apply this idea to do thread-local ver-
ification of concurrent program refinement, which enables us to
know T1 ‖ T2 ⊑ S1 ‖ S2 by proving T1 ⊑ S1 and T2 ⊑ S2.
In practice, the termination preservation in the refinement proofs of
individual threads could be easily broken by the interference from
their environments (i.e., other threads running in parallel). For in-
stance, a method call of a lock-free data structure (e.g., Treiber
stack) may never terminate when other threads call the methods
and update the shared memory infinitely often. As we will explain
in Sec. 2, the key challenge here is to effectively specify the en-
vironments’ effects on the termination preservation of individual
threads. As far as we know, no previous work can use “composi-
tional” thread-local reasoning to verify termination-preserving re-
finement between (whole) concurrent programs.

In this paper, we first propose novel rely/guarantee conditions
which can effectively specify the interference over the termina-
tion properties between a thread and its environment. Traditional
rely/guarantee conditions [8] are binary relations of program states
and they specify the state updates. We extend them with a boolean
tag indicating whether a state update may let the thread or its envi-
ronment make more moves.

With the help of our new rely/guarantee conditions, we then
propose a new simulation RGSim-T, and a new Hoare-style pro-
gram logic, both of which support compositional verification
of termination-preserving refinement of concurrent programs.
Our work is based on our previous compositional simulation
RGSim [11] (which unfortunately cannot preserve termination),
and is inspired by Hoffmann et al.’s program logic for lock-

343



(a) source code S: x++;

1 local t;
2 t := x;
3 x := t + 1;

(b) target code Tb

1 local t, done := false;
2 while (! done) {
3 t := x;
4 done := cas(&x, t, t+1);
5 }

(c) target code Tc

Figure 1. Counters.

freedom [7] (which does not support refinement verification and
has limitations on local reasoning, as we will explain in Sec. 7), but
makes the following new contributions:

• We design a simulation, RGSim-T, to verify termination-
preserving refinement of concurrent programs. As an exten-
sion of RGSim, it considers the interference between threads
and the environments by taking our novel rely/guarantee condi-
tions as parameters. RGSim-T is compositional. It allows us to
thread-locally reason about the preservation of whole-program
termination, but without enforcing the preservation of individ-
ual threads’ termination, thus can be applied to many practical
refinement applications.

• We propose the first program logic that supports compositional
verification of termination-preserving refinement of concurrent
programs. In addition to a set of compositionality (binary rea-
soning) rules, we also provide a set of unary rules (built upon
the unary program logic LRG [3]) that can reason about con-
ditional correspondence between the target and the source, a
usual situation in concurrent refinement (see Sec. 2). The logic
enables compositional verification of nested loops and sup-
ports programs with infinite nondeterminism. The soundness of
the logic ensures RGSim-T between the target and the source,
which implies the termination-preserving refinement.

• Our simulation and logic are general. They can be applied
to verify linearizability and lock-freedom together for fine-
grained concurrent objects, or to verify the full correctness of
optimizations of concurrent programs, i.e., the optimized pro-
gram preserves behaviors on both functionality and termination
of the original one. We demonstrate the effectiveness of our
logic by verifying linearizability and lock-freedom of Treiber
stack [20], Michael-Scott queue [14] and DGLM queue [2], the
full correctness of synchronous queue [16] and the equivalence
between TTAS lock and TAS lock implementations [6].

It is important to note that our simulation and logic ensure that
the target preserves the termination/divergence behaviors of the
source. The target could diverge if the source diverges. Therefore
our logic is not for verifying total correctness (i.e., partial correct-
ness + termination). It is actually more powerful and general. We
give more discussions on this point in Secs. 2.2 and 5.2.

In the rest of this paper, we first analyze the challenges and
explain our approach informally in Sec. 2. Then we formulate
termination-preserving refinement in Sec. 3. We present our new
simulation RGSim-T in Sec. 4 and our new program logic in Sec. 5.
We summarize examples that we verified in Sec. 6, and discuss the
related work and conclude in Sec. 7.

2. Informal Development

Below we informally explain the challenges and our solutions in
our design of the simulation and the logic respectively.

2.1 Simulation

Simulation is a standard technique for refinement verification. We
start by showing a simple simulation for verifying sequential re-

S S′

T T ′

+

� � or

S

T T ′

� �

(with |T ′| < |T |)

(a) T � S

S1

T1 T2

S2

T3 T4

�′ �′ �′ �′R

(with |T2| < |T1| and |T4| < |T3|)

(b) R ⊢ T �′ S

Figure 2. Simulation diagrams.

finement and then discuss its problems in termination-preserving
concurrent refinement verification.

Fig. 1(a) shows the source code S that increments x. In a
sequential setting, it can be implemented as Tb in Fig. 1(b). To
show that Tb refines S, a natural way is to prove that they satisfy
the (weak) simulation � in Fig. 2(a).

The simulation first establishes some consistency relation be-
tween the source and the target (note S and T here are whole pro-
gram configurations consisting of both code and states). Then it
requires that there is some correspondence between the execution
of the target and the source so that the relation is always preserved.
Every execution step of the target must either correspond to one
or more steps of the source (the left part of Fig. 2(a)), or corre-
spond to zero steps (the right part; Let’s ignore the requirement of
|T ′| < |T | for now).1

For our example in Fig. 1, the simulation requires that x at the
target level have the same value with x in the source. We let line 2
at Tb correspond to zero steps of S, and line 3 correspond to the
single step of S.

Such a simulation, however, has two problems for termination-
preserving concurrent refinement verification. First, it does not
require the target to preserve the termination of the source. Since
a silent step at the target level may correspond to zero steps at the
source (the right part of Fig. 2(a)), the target may execute such
steps infinitely many times and never correspond to a step at the
source. For instance, if we insert while true do skip before
line 2 in Tb, the simulation still holds, but Tb diverges now. To
address this problem, CompCert [9] introduces a metric |T | over
the target program configurations, which is equipped with a well-
founded order <. If a target step corresponds to no moves of the
source, the metric over the target programs should strictly decrease
(i.e., the condition |T ′| < |T | in Fig. 2(a)). Since the well-founded
order ensures that there are no infinite decreasing chains, execution
of the target will finally correspond to at least one step at the source.

Second, it is not compositional w.r.t. parallel compositions.
Though Tb � S holds, (Tb ‖ Tb); print(x) � (S ‖ S); print(x)
does not hold since the left side may print out 1, which is im-
possible for the source on the right. The problem is that when we
prove Tb � S, Tb and S are viewed as closed programs and the
interference from environments is ignored. To get the parallel com-
positionality, we follow the ideas in our previous work RGSim [11]
and parameterize the simulation with the interference between the
programs and their environments.

As shown in Fig. 2(b), the new simulation �′ is parameterized
with the environment interference R, i.e. the set of all possible
transitions of the environments at the target and source levels. Here
we use thin arrows for the transitions of the current thread at the
source and the target levels (e.g., from T1 to T2 and from T3 to T4

in Fig. 2(b)), and thick arrows for the possible environment steps
(e.g., from T2 to T3 and from S1 to S2 in the figure). We require
the simulation �′ to be preserved by R.

1 Note here we only discuss silent steps (a.k.a. τ -steps) which produce no
external events. The simulation also requires that every step with an external
event at the target level must correspond to one step at the source with the
same event plus zero or multiple τ -steps.

344



Then, to prove termination-preserving concurrent refinement, it
seems natural to combine the two ideas and have a simulation pa-
rameterized with environment interference and a metric decreasing
for target steps that correspond to no steps at the source. Therefore
we require |T2| < |T1| and |T4| < |T3| in the case of Fig. 2(b). But
how would the environment steps change the metric?

First attempt. Our first attempt to answer this question is to allow
environment steps to arbitrarily change the metrics associated with
the target program configurations. Therefore it is possible to have
|T2| < |T3| in Fig. 2(b).

The resulting simulation, however, is still not compositional
w.r.t. parallel compositions. For instance, for the following two
threads in the target program:

while(i==0) i--; ‖ while(i==0) i++;

we can prove that this simulation holds between each of them and
the source program skip, if we view i as local data used only
at the target level. We could define the metric as 1 if i = 0
and 0 otherwise. For the left thread, it decreases the metric if it
executes the loop body. The increment of i by its environment
(the right thread) may change i back to 0, increasing the metric.
This is allowed in our simulation. The case for the right thread is
symmetric. However, if we view the parallel composition of the two
threads as a whole program, it may not terminate, thus cannot be a
termination-preserving refinement of skip‖skip.

Second attempt. The first attempt is too permissive to have par-
allel compositionality, because we allow a thread to make more
moves whenever its environment interferes with it. Thus our sec-
ond attempt enforces the metric of a thread to decrease or stay un-
changed under environment interference. For the case of Fig. 2(b),
we require |T3| ≤ |T2| on environment steps.

This simulation is compositional, but it is too strong and can-
not be satisfied by many useful refinements. For instance, Tc in
Fig. 1(c) uses a compare-and-swap (cas) instruction to atomically
update x. It is a correct lock-free implementation of S in concur-
rent settings, but the new simulation of our second attempt does
not hold between Tc and S. If an environment step between lines 3
and 4 of Tc increments x, the cas at line 4 will return false and Tc

needs to execute another round of loop. Therefore such an environ-
ment step increases the number of silent steps of Tc that correspond
to no moves of S. However, our new simulation does not allow an
environment step to increase the metric, so the simulation cannot
be established.

Our solution. Our solution lies in the middle ground of the two
failed attempts. We specify explicitly in the parameter R which
environment steps may make the current thread move more (i.e.,
allow the thread’s metric to increase in the simulation). Here we
distinguish in R the steps that correspond to source level moves
from those that do not. We allow the metric to be increased by the
former (as in our first attempt), but not by the latter (which must
decrease or preserve the metric, as in our second attempt).

This approach is based on the observation that the failure of
cas in Tc of Fig. 1(c) must be caused by an environment step
that successfully increments x, which corresponds to a step at the
source level. Although the termination of the current thread Tc is
delayed, the whole system consisting of both the current thread and
the environment progresses by making a corresponding step at the
source level. Therefore, the delay of the termination of the current
thread should be acceptable, and we should allow such environment
steps to increase the metric of the current thread.

In this paper, we follow the idea of rely/guarantee reasoning [8]
and use the rely condition to specify environment steps. However,
we extend the traditional rely conditions with an extra boolean tag
indicating whether an environment step corresponds to a step at the

source level. Our new simulation RGSim-T extends RGSim by in-
corporating the idea of metrics to achieve termination preservation.
It is parameterized with the new rely (and guarantee) conditions so
that we know how an environment step could affect the metric. The
formal definition of RGSim-T is given in Sec. 4.

Relationships to lock-freedom, obstruction-freedom and wait-
freedom. If the source program is just a single atomic opera-
tion (e.g. x++), our new simulation RGSim-T can be viewed as a
proof technique for lock-freedom of the target, which ensures that
there always exists some thread that will complete an operation at
the source level in a finite number of steps. That is, the failure of
a thread to finish its operation must be caused by the successful
completion of source operations by its environment.

In fact, the simulations of our first and second attempts can
be viewed as proof techniques for obstruction-freedom and wait-
freedom respectively of concurrent objects. Obstruction-freedom
ensures that every thread will complete its operation whenever it is
executed in isolation (i.e., without interference from other threads).
In the simulation of our first attempt, though a thread is allowed to
not make progress under environment interference, it has to com-
plete some source operations when its environments do not inter-
fere. Wait-freedom ensures the completion of the operation of any
thread. Correspondingly in the simulation of our second attempt, a
thread has to make progress no matter what the environment does.

2.2 Program Logic

The compositionality of our new simulation RGSim-T allows us
to decompose the refinement for large programs to refinements
for small program units, therefore we could derive a set of syn-
tactic Hoare-style rules for refinement verification, as we did for
RGSim [11]. For instance, a sequential composition rule may be in
the following form:

R ⊢ {P}T1�S1{P ′} R ⊢ {P ′}T2�S2{Q}

R ⊢ {P}T1; T2�S1;S2{Q}

Here we use R ⊢ {P}T � S{Q} to represent the corresponding
syntactic judgment of RGSim-T. R denotes the environment inter-
ference. P , Q and P ′ are relational assertions that relate the pro-
gram states at the target and the source levels. The rule says if we
could establish refinements (in fact, RGSim-Ts) between T1 and
S1, and between T2 and S2, we know T1;T2 refines S1;S2. We
could give similar rules for parallel composition and other compo-
sitional commands.

However, in many cases the correspondence between program
units at the target and the source levels cannot be determined
statically. That is, just by looking at T1;T2 and S1;S2, we may
not know statically that T1 refines S1 and T2 refines S2 and then
apply the above sequential composition rule. To see the problem,
we unfold the while-loop of Tc in Fig. 1 and get the following T ′

c:

1 local t, done; 4 while (!done) {
2 t := x; 5 t := x;
3 done := cas(&x,t,t+1); 6 done := cas(&x,t,t+1);

7 }

Clearly T ′
c refines S too. However, whether the cas instruction at

line 3 fulfils the operation in S or not depends on whether the com-
parison succeeds in runtime. Thus we cannot apply the composi-
tionality rules for RGSim-T to decompose the refinement about T ′

c.
We have to refer to the semantics of the simulation definition to
prove the refinement, which would be rather ineffective for large
scale programs. Similar issues also show up in our earlier work on
RGSim [11], and in relational Hoare logic [1] and relational sepa-
ration logic [25] if they are applied to concurrent settings.

To address this problem, we extend the assertion language to
specify as auxiliary state the source code remaining to be refined.

345



In addition to the binary judgment R ⊢ {P}T �S{Q}, we intro-
duce a unary judgment in the form of R ⊢ {P ∧ arem(S)}T{Q ∧
arem(S′)} for refinements that cannot be decomposed. Here
arem(S) means S is the remaining source to be refined by the
target. Then R,G ⊢ {P ∧ arem(S)}T{Q ∧ arem(skip)} says
that T refines S, since the postcondition shows at the end of the
target T there are no remaining operations from S to be refined.
We provide the following rule to derive the binary judgment from
the unary one:

R ⊢ {P ∧ arem(S)}T{Q ∧ arem(skip)}

R ⊢ {P}T �S{Q}

On the other hand, if the final remaining source is the same as
the initial one, we know the execution steps of the target correspond
to zero source steps. Then for the T ′

c above, we can give pre- and
post-conditions for line 3 as follows:

{· · · ∧ arem(S)}
done := cas(&x, t, t+1)
{· · · ∧ (done ∧ arem(skip) ∨ ¬done ∧ arem(S))}

As the postcondition shows, whether the cas instruction refines S
or not is now conditional upon the value of done. Thanks to the
new assertions arem(S), we can reduce the relational and semantic
refinement proofs to unary and syntactic Hoare-style reasoning.

The key to verifying the preservation of termination is the rule
for while loops. One may first think of the total correctness rule for
while loops in Hoare-style logics (e.g., [19]). However, preserving
the termination does not necessarily mean that the code must termi-
nate, and the total correctness rule would not be applicable in many
cases. For example, the following T ′′

c and S′ never terminate:

T ′′
c : S′ :

local t;
while (true){ while (true)

t := x; x++;
cas(&x, t, t+1);

}

but T ′′
c � S′ holds for our RGSim-T (�) — Every iteration of T ′′

c

either corresponds to a step of S′, or is interfered by environment
steps corresponding to source moves.

Inspired by Hoffmann et al.’s logic for lock-freedom [7], we
introduce a counter n (i.e. the number of tokens assigned to the
current thread) as a while-specific metric, which means the thread
can only run the loop for no more than n rounds before it or its
environment fulfils one or more source-level moves. The counter
is treated as an auxiliary state, and decreases at the beginning of
every round of loop (i.e., we pay one token for each iteration).
If we reach a step in the loop body that corresponds to source
moves, we could reset the counter to increase the number of tokens.
Tokens could also increase under environment interference if the
environment step corresponds to source moves. Correspondingly
our WHILE rule is in the following form (we give a simplified
version to demonstrate the idea here. The actual rule is given in
Sec. 5):

P ∧B ⇒ P ′ ∗ wf(1) R ⊢ {P ′}C{P}

R ⊢ {P}while (B) C{P ∧ ¬B}

We use wf(1) to represent one token, and “∗” for normal sepa-
rating conjunction in separation logic. To verify the loop body C,
we use the precondition P ′, which has one less token than P , show-
ing that one token has been consumed to start this new round of
loop. During the execution of C, the number of token could be in-
creased if C itself or its environment steps correspond to source
moves. As usual, the loop invariant P needs to be re-established at
the end of C.

(Event) e ::= . . . (Label) ι ::= e | τ

(Store) s, s ∈ PVar ⇀ Val (Heap) h,h ∈ Addr ⇀ Val

(State) σ,Σ ::= (s, h) (Instr) c,  ::= . . .

(Expr) E,E ::= x | n | E + E | . . .

(BExp) B,B ::= true | false | E = E | !B | . . .

(Stmt) C,C ::= skip | c | 〈C〉 | C1;C2 | if (B) C1 else C2

| while (B) C | C1 ‖C2

Figure 3. Generic language at target and source levels.

To prove that T ′′
c shown above preserves the termination of S′,

we set the initial number of tokens to 1. We use up the token at
the first iteration, but could gain another token during the iteration
(either by self moves or by environment steps) to pay for the next
iteration. We can see that the above reasoning with tokens coincides
with the direct refinement proof in our simulation RGSim-T. In fact,
RGSim-T can serve as the meta-theory of our logic.

The use of tokens as an explicit metric for termination reason-
ing poses another challenge, which is to handle infinite nondeter-
minism. Consider the following target C.

C: x := 0; while(i > 0) i--;

Assume the environment R may arbitrarily update i when x is not
0, but does not change anything when x is 0. We hope to verify C
refines skip. We can see that the loop in C must terminate (thus the
refinement holds), and the number n of tokens must be no less than
the value of i at the beginning of the loop. But we cannot decide
the value of n before executing x := 0. This example cannot be
verified if we have to predetermine and specify the metric for the
while loops at the very beginning of the whole program.

To address this issue, we introduce the following hiding rule:

R ⊢ {p}C{q}

R ⊢ {⌊p⌋w}C{⌊q⌋w}

Here ⌊p⌋w discards all the knowledge about tokens in p. For the
above example, we can hide the number of tokens after we verify
the while loop. Then we do not need to specify the number of
tokens in the precondition of the whole program. We formally
present the set of logic rules in Sec. 5.

3. Formal Settings and Termination-Preserving

Refinement

In this section, we define the termination-preserving refinement ⊑,
which is the proof goal of our RGSim-T and logic.

3.1 The Language

Fig. 3 shows the programming language for both the source and
the target levels. We model the program semantics as a labeled
transition system. A label ι that will be associated with a state
transition is either an event e or τ . The latter marks a silent step
generating no events.

A state σ is a pair of a store and a heap. The store s is a fi-
nite partial mapping from program variables to values (e.g., inte-
gers and memory addresses) and a heap h maps memory addresses
to values. Statements C are either primitive instructions or compo-
sitions of them. A single-step execution of statements is modeled

as a labeled transition: (C, σ)
ι

−→ (C′, σ′). We abstract away the
form of an instruction c. It may generate an external event (e.g.,
print(E) generates an output event). It may be non-deterministic
(e.g., x := nondet assigns a random value to x). It may also be
blocked at some states (e.g., requesting a lock). We assume prim-
itive instructions are atomic in the semantics. We also provide an

346



(C, σ) −→+ abort

ETr(C, σ, )

(C, σ)
e

−→+ (C′, σ′) ETr(C′, σ′, E)

ETr(C, σ, e ::E)

(C, σ) −→∗ (skip, σ′)

ETr(C, σ,⇓)

(C, σ) −→+ (C′, σ′) ETr(C′, σ′, E)

ETr(C, σ, E)

Figure 4. Co-inductive definition of ETr(C, σ, E).

atomic block 〈C〉 to execute a piece of code C atomically. Then
the generic language in Fig. 3 is expressive enough for the source
and the target programs which may have different granularities of
state accesses. Due to the space limit, the operational semantics and
more details about the language are formally presented in TR [13].

Conventions. We usually write blackboard bold or capital letters
(s, h, Σ, , E, B and C) for the notations at the source level to
distinguish from the target-level ones (s, h, σ, c, E, B and C).

Below we use −→∗ for zero or multiple-step transitions with
no events generated, −→+ for multiple-step transitions without

events, and
e

−→ + for multiple-step transitions with only one
event e generated.

3.2 Termination-Preserving Event Trace Refinement

Now we formally define the refinement relation ⊑ that relates
the observable event traces generated by the source and the target
programs. A trace E is a finite or infinite sequence of external events
e, and may end with a termination marker ⇓ or an abortion marker
 . It is co-inductively defined as follows.

(EvtTrace) E ::= ⇓ |  | ǫ | e ::E (co-inductive)

We use ETr(C, σ, E) to say that the trace E is produced by
executing C from the state σ. It is co-inductively defined in Fig. 4.
Here skip plays the role of a flag showing the end of execution (the
normal termination). Unsafe executions lead to abort. We know
if C diverges at σ, then its trace E is either of infinite length or
finite but does not end with ⇓ or  . For instance, while (true) skip
only produces an empty trace ǫ, and while (true) {print(1)} only
produces an infinite trace of output events.

Then we define a refinement (C,σ) ⊑ (C,Σ), saying that ev-
ery event trace generated by (C, σ) at the target level can be repro-
duced by (C,Σ) at the source. Since we could distinguish traces of
diverging executions from those of terminating executions, the re-
finement definition ensures that if (C, σ) diverges, so does (C,Σ).
Thus we know the target preserves the termination of the source.

Definition 1 (Termination-Preserving Refinement).
(C, σ) ⊑ (C,Σ) iff ∀E . ETr(C, σ, E) =⇒ ETr(C,Σ, E).

4. RGSim-T: A Compositional Simulation with

Termination Preservation

Below we propose RGSim-T, a new simulation as a compositional
proof technique for the above termination-preserving refinement.
As we explained in Sec. 2, the key to compositionality is to param-
eterize the simulation with the interferences between the programs
and their environments. In this paper, we specify the interferences
using rely/guarantee conditions [8], but extend them to also specify
the effects on the termination preservation of individual threads.

Our simulation relation between C and C is in the form of
R,G, I |= {P}C � C{Q}. It takes R, G, I , P and Q as pa-
rameters. R and G are rely and guarantee conditions specifying the
interference between the current thread and its environment. The
assertion I specifies the consistency relation between states at the
target and the source levels, which needs to be preserved during
the execution. P specifies the pair of initial states at the target and

(RelAssn) P,Q, I ::= B | own(x) | emp | E 7→ E | E Z⇒ E
| P ∗Q | P ∨Q | TpU | . . .

(FullAssn) p, q ::= P | arem(C) | wf(E) | ⌊p⌋a | ⌊p⌋w
| p ∗ q | p ∨ q | . . .

(RelAct) R,G ::= [P ] | P ⋉Q | P ∝ Q | R∗R | R+ | . . .

Figure 5. Assertion language.

the source levels from which the simulation holds, and Q is about
the pair of final states when the target and the source terminate. So
before we give our definition of RGSim-T, we first introduce our
assertion language.

4.1 Assertions and New Rely/Guarantee Conditions

We show the syntax of the basic assertion language in Fig. 5,
including the state assertions P and Q, and our new rely/guarantee
conditions R and G (let’s first ignore the assertions p and q, which
will be explained in Sec. 5).

The state assertions P and Q relate the program states σ and Σ
at the target and source levels. They are separation logic assertions
over a pair of states. We show their semantics in the top part of
Fig. 6. For simplicity, we assume the program variables used in
the target code are different from the ones in the source (e.g., we
use x and X for target and source level variables respectively). B
holds if it evaluates to true at the disjoint union of the target and the
source stores s and s. We treat program variables as resources [15]
and use own(x) for the ownership of the program variable x.
The assertion E1 7→ E2 specifies a singleton heap of the target
level with E2 stored at the address E1 and requires that the stores
contain variables used to evaluate E1 and E2. Its counterpart for
source level heaps is represented as E1 Z⇒ E2, whose semantics is
defined similarly. emp describes empty stores and heaps at both
levels. Semantics of separating conjunction P ∗ Q is similar as
in separation logic, except that it is now lifted to assertions over
relational states (σ,Σ). The union of two disjoint relational states
(σ1,Σ1) and (σ2,Σ2) is defined in the middle part of Fig. 6. We
will define the assertion TpU in Sec. 5 (see Fig. 8), which ignores
the additional information other than the relational states about p.

Our new rely/guarantee assertions R and G specify the transi-
tions over the relational states (σ,Σ) and also the effects on termi-
nation preservation. Their semantics is defined in the bottom part
of Fig. 6. Here we use S for the relational states. A model con-
sists of the initial relational state S , the resulting state S ′, and an
effect bit b to record whether the target transitions correspond to
some source steps and can affect the termination preservation of
the current thread (for R) or other threads (for G).

We use [P ] for identity transitions with the relational states
satisfying P . The action P ⋉Q says that the initial relational states
satisfy P and the resulting states satisfy Q. For these two kinds
of actions, we do not care whether there is any source step in the
transition satisfying them (the effect bit b in their interpretations
could either be true or false). We also introduce a new action
P ∝ Q asserting that one or more steps are made at the source level
(the effect bit b must be true). Following LRG [3], we introduce
separating conjunction over actions to locally reason about shared
state updates. R1 ∗R2 means that the actions R1 and R2 start from
disjoint relational states and the resulting states are also disjoint.
But here we also require consistency over the effect bits for the two
disjoint state transitions. We use R+ for the transitive closure of
R, where the effect bits in consecutive transitions are accumulated.
The syntactic sugars Id, Emp and True represent arbitrary identity
transitions, empty transitions and arbitrary transitions respectively.

Since we logically split states into local and shared parts as in
LRG [3], we need a precise invariant I to fence actions over shared

347



((s, h), (s,h)) |= B iff JBKs⊎s = true

((s, h), (s,h)) |= own(x) iff dom(s ⊎ s) = {x}

((s, h), (s,h)) |= E1 7→ E2 iff h = {JE1Ks⊎s ❀ JE2Ks⊎s}

((s, h), (s,h)) |= emp iff s = h = s = h = ∅

f1⊥f2 iff (dom(f1)∩dom(f2)=∅) f1⊎f2
def
= f1∪f2 , if f1⊥f2

(s1, h1)⊥(s2, h2) iff (s1⊥s2) ∧ (h1⊥h2)

(s1, h1) ⊎ (s2, h2)
def
= (s1 ∪ s2, h1 ∪ h2) , if (s1, h1)⊥(s2, h2)

(σ1,Σ1) ⊎ (σ2,Σ2)
def
= (σ1 ⊎ σ2,Σ1 ⊎ Σ2) , if σ1⊥σ2 and Σ1⊥Σ2

S ::= (σ,Σ)

(S,S′, b) |= [P ] iff (S |= P ) ∧ (S = S′)

(S,S′, b) |= P ⋉ Q iff (S |= P ) ∧ (S′ |= Q)

(S,S′, b) |= P ∝ Q iff (S |= P ) ∧ (S′ |= Q) ∧ (b= true)

(S,S′, b) |= R1 ∗R2 iff ∃S1,S2,S′
1,S

′
2. (S = S1 ⊎ S2)∧

(S′ = S′
1
⊎ S′

2
) ∧ ((S1,S′

1
, b) |= R1) ∧ ((S2,S′

2
, b) |= R2)

(S,S′, b) |= R+ iff ((S,S′, b) |= R) ∨ (∃S′′, b′, b′′.

((S,S′′, b′) |= R) ∧ ((S′′,S′, b′′) |= R+) ∧ (b = b′ ∨ b′′))

Id
def
= [true] Emp

def
= emp ⋉ emp True

def
= true ⋉ true

I ⊲ R iff ([I] ⇒ R) ∧ (R ⇒ I ⋉ I) ∧ Precise(I)

Sta(P,R) iff ∀S,S′, b. (S |=P ) ∧ ((S,S′, b) |=R) =⇒ (S′ |=P )

Figure 6. Semantics of assertions (part I).

states, which is a state assertion like P and Q. We define the fence
I ⊲ R in a similar way as in our previous work [10] and LRG [3],
which says that I precisely determines the boundaries of the states
of the transitions in R (see Fig. 6). The formal definition of the
precise requirement Precise(I) is given in TR [13], which follows
its usual meaning as in separation logic but is now interpreted over
relational states.

4.2 Definition of RGSim-T

Our simulation RGSim-T is parameterized over the rely/guarantee
conditions R and G to specify the interferences between threads
and their environments, and a precise invariant I to logically deter-
mine the boundaries of the shared states and fence R and G.

The simulation also takes a metric M , which was referred to
as |T | in our previous informal explanations in Sec. 2. We leave
its type unspecified here, which can be instantiated by program
verifiers, as long as it is equipped with a well-founded order <.

The formal definition below follows the intuition explained in
Sec. 2. Readers who are interested only in the proof theory could
skip this definition, which can be viewed as the meta-theory of our
program logic presented in Sec. 4.3 and Sec. 5.

Definition 2 (RGSim-T). R,G, I |= {P}C�C{Q} iff
for all σ and Σ, if (σ,Σ) |= P , then there exists M such that
R,G, I |= (C, σ,M)�Q (C,Σ).

Here R,G, I |= (C, σ,M) �Q (C,Σ) is the largest rela-
tion such that whenever R,G, I |= (C,σ,M) �Q (C,Σ), then
(σ,Σ) |= I ∗ true and the following are true:

1. for any C′, σ′′, σF and ΣF , if (C, σ ⊎ σF ) −→ (C′, σ′′) and
Σ⊥ΣF , then there exist σ′, n, M ′, b, C

′ and Σ′ such that

(a) σ′′ = σ′ ⊎ σF ,

(b) (C,Σ ⊎ ΣF ) −→
n (C′,Σ′ ⊎ ΣF ),

(c) R,G, I |= (C′, σ′,M ′)�Q (C′,Σ′),

(d) ((σ,Σ), (σ′,Σ′), b) |= G+ ∗ True, and

(e) if n=0, we need M ′<M and b= false, otherwise b= true.

2. for any e, C′, σ′′, σF and σF , if (C, σ⊎σF )
e

−→ (C′, σ′′) and
Σ⊥ΣF , then there exist σ′, M ′, C

′ and Σ′ such that

(a) σ′′ = σ′ ⊎ σF ,

(b) (C,Σ ⊎ ΣF )
e

−→+ (C′,Σ′ ⊎ ΣF ),
(c) R,G, I |= (C′, σ′,M ′)�Q (C′,Σ′), and

(d) ((σ,Σ), (σ′,Σ′), true) |= G+ ∗ True.

3. for any b, σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), b) |= R+ ∗ Id, then
there exists M ′ such that

(a) R,G, I |= (C, σ′,M ′)�Q (C,Σ′), and

(b) if b = false, we need M ′ = M .

4. if C = skip, then for any ΣF such that Σ⊥ΣF , there exist n
and Σ′ such that

(a) (C,Σ ⊎ ΣF ) −→
n (skip,Σ′ ⊎ ΣF ),

(b) (σ,Σ′) |= Q,

(c) if n > 0, then ((σ,Σ), (σ,Σ′), true) |= G+ ∗ True.

5. for any σF and ΣF , if (C, σ⊎σF ) −→ abort and Σ⊥ΣF , then
(C,Σ ⊎ ΣF ) −→

+ abort.

The simulation R,G, I |= (C, σ,M) �Q (C,Σ) relates the
executions of the target configuration (C,σ) (with its metric M )
to the source (C,Σ), under the interferences with the environment
specified by R and G. It first requires that the relational state (σ,Σ)
satisfy I ∗ true, I for the shared part and true for the local part,
establishing a consistency relation between the states at the two
levels. For every silent step of (C, σ) (condition 1, let’s first ignore
the frame states σF and ΣF which will be discussed later), the
source could make n steps (n ≥ 0) correspondingly (1(b)), and the
simulation is preserved afterwards with a new metric M ′ (1(c)).
Here we use −→ n to represent n-step silent transitions. If
n = 0 in 1(b) (i.e., the source does not move), the metric must
decrease along the associated well-founded order (M ′ < M in
1(e)), otherwise we do not have any restrictions over M ′. We also
require that the related steps at the two levels satisfy the guarantee
condition G+∗True (1(d)), the transitive closure G+ for the shared
part and True for the private. If the target step corresponds to no
source moves (n = 0), we use false as the corresponding effect bit,
otherwise the bit should be true (1(e)).

If a target step produces an event e, the requirements (condition
2) are similar to those in condition 1, except that we know for
sure that target step corresponds to one or more source steps that
produce the same e.

The simulation should be preserved after environment transi-
tions satisfying R+ ∗ Id, R+ for the shared part and Id for the
private (condition 3). If the corresponding effect bit of the envi-
ronment transition is true, we know there are one or more source
moves, therefore there are no restrictions over the metric M ′ for the
resulting code (which could be larger than M ). Otherwise, the met-
ric should be unaffected under the environment interference (i.e.,
M ′ = M in 3(b)).

If C terminates (condition 4), the corresponding C must also
terminate and the resulting states satisfy the postcondition Q. Fi-
nally, if C is unsafe, then C must be unsafe too (condition 5).

Inspired by Vafeiadis [24], we directly embed the framing as-
pect of separation logic in Def. 2. At each condition, we introduce
the frame states σF and ΣF at the target and source levels to repre-
sent the remaining parts of the states owned by other threads in the
system. The commands C and C must not change the frame states
during their executions (see, e.g., conditions 1(a) and 1(b)). These
σF and ΣF quantifications in RGSim-T are crucial to admit the
parallel compositionality and the frame rules (the B-FRAME rule in
Fig. 7 and the FRAME rule in Fig. 9).

We then define R,G, I |= {P}C�C{Q} by hiding the initial
states via the precondition P and hiding the metric M .

348



R ∨G2, G1, I ⊢ {P1 ∗ P}C1�C1{Q1 ∗Q′
1
} R ∨G1, G2, I ⊢ {P2 ∗ P}C2�C2{Q2 ∗Q′

2
} P∨Q′

1
∨Q′

2
⇒ I I ⊲ R

R,G1 ∨G2, I ⊢ {P1 ∗ P2 ∗ P}C1‖C2�C1‖C2{Q1 ∗Q2 ∗ (Q′
1 ∧Q′

2)}
(B-PAR)

P ⇒ (B ⇔ B) ∗ I R,G, I ⊢ {P ∧ B}C�C{P}

R,G, I ⊢ {P}while (B) C�while (B) C{P ∧ ¬B}
(B-WHILE)

P ⇒ (E = E) ∗ I Sta(P,R ∗ Id) I ⊲ {R,G}

R,G, I ⊢ {P}print(E)�print(E){P}
(B-PRT)

R,G, I ⊢ {P}C�C{Q} Sta(P ′, R′ ∗ Id) I′ ⊲ {R′, G′} P ′ ⇒ I′ ∗ true G+ ⇒ G

R ∗R′, G ∗G′, I ∗ I′ ⊢ {P ∗ P ′}C�C{Q ∗ P ′}
(B-FRAME)

Figure 7. Selected binary inference rules (compositionality of RGSim-T).

Adequacy. RGSim-T ensures the termination-preserving refine-
ment by using the metric with a well-founded order. The proof of
the following adequacy theorem is in TR [13].

Theorem 3 (Adequacy of RGSim-T). If there exist R, G, I , Q
and a metric M (with a well-founded order <) such that R,G, I |=
(C, σ,M)�Q (C,Σ), then (C,σ) ⊑ (C,Σ).

4.3 Compositionality Rules

RGSim-T is compositional. We show some of the compositionality
rules in Fig. 7. Here we use R,G, I ⊢ {P}C � C{Q} for the
judgment to emphasize syntactic reasoning, whose semantics is
RGSim-T (Def. 2). The rules can be viewed as the binary version
of those in a traditional rely-guarantee-style logic (e.g., LRG [3]
and RGSep [23]).

The B-PAR rule shows the compositionality w.r.t. parallel com-
positions. To verify C1 ‖ C2 is a refinement of C1 ‖ C2, we ver-
ify the refinement of each thread separately. The rely condition of
each thread captures the interference from both the overall envi-
ronment (R) and its sibling thread (G1 or G2). The related steps of
C1 ‖C2 and C1 ‖ C2 should satisfy either thread’s guarantee. As
in LRG [3], P1 and P2 specify the private (relational) states of the
threads C1/C1 and C2/C2 respectively. The states P are shared by
them. When both threads have terminated, their private states sat-
isfy Q1 and Q2, and the shared states satisfy both Q′

1 and Q′
2. We

require that the shared states are well-formed (P , Q′
1 and Q′

2 imply
I) and the overall environment transitions are fenced (I ⊲ R).

The B-WHILE rule requires the boolean conditions of both sides
to be evaluated to the same value. The resources needed to evaluate
them should be available in the private part of P . The B-FRAME

rule supports local reasoning. The frame P ′ may contain shared
and private parts, so it should be stable w.r.t. R′ ∗ Id and imply
I ′ ∗ true, where I ′ is the fence for R′ and G′ (see Fig. 6 for the
definitions of fences and stability). We also require G to be closed
over transitivity. This rule is almost identical to the one in LRG [3].
Details are elided here.

We provide a few binary rules to reason about the basic program
units when they are almost identical at both sides. For instance,
the B-PRT rule relates a target print command to a source one,
requiring that they always print out the same value. For more
general refinement units, as we explained in Sec. 2, we reduce
relational verification to unary reasoning (using the U2B rule in
Fig. 9, which we will explain in the next section). Our TR [13]
contains more rules and the full soundness proofs. The soundness
theorem is shown below.

Theorem 4 (Soundness of Binary Rules).
If R,G, I ⊢{P}C�C{Q}, then R,G, I |={P}C�C{Q}.

5. A Rely-Guarantee-Style Logic for

Termination-Preserving Refinement

The binary inference rules in Fig. 7 allow us to decompose the
refinement verification of large programs into the refinement units’

w ∈ Nat D ::= C | •

(σ, w,D,Σ) |= P iff (σ,Σ) |= P

(σ, w,D,Σ) |= arem(C′) iff D = C′

((s, h), w,D,Σ) |= wf(E) iff ∃n. (JEKs = n) ∧ (n ≤ w)

(σ, w,D,Σ) |= ⌊p⌋a iff ∃D′. (σ, w,D′,Σ) |= p

(σ, w,D,Σ) |= ⌊p⌋w iff ∃w′. (σ, w′,D,Σ) |= p

(σ,Σ) |= TpU iff ∃w,D. (σ, w,D,Σ) |= p

D1⊥D2 iff (D1 = •) ∨ (D2 = •) D1 ⊎ D2
def
=

{

D2 if D1 = •
D1 if D2 = •

(σ1, w1,D1,Σ1) ⊎ (σ2, w2,D2,Σ2)
def
=

(σ1⊎σ2, w1+w2,D1⊎D2,Σ1⊎Σ2) , if σ1⊥σ2,D1⊥D2 and Σ1⊥Σ2

Sta(p,R) iff ∀σ, w,D,Σ, σ′,Σ′, b.
((σ, w,D,Σ) |= p) ∧ (((σ,Σ), (σ′,Σ′), b) |= R)
=⇒ ∃w′. (σ′, w′,D,Σ′) |= p ∧ (b = false =⇒ w′ = w)

p ⇛0 q iff p ⇒ q

p ⇛+ q iff ∀σ, w,D,Σ,ΣF . ((σ, w,D,Σ) |= p) ∧ (Σ⊥ΣF ) =⇒
∃w′,C′,Σ′. (D,Σ⊎ΣF ) −→+ (C′,Σ′⊎ΣF ) ∧ ((σ, w′,C′,Σ′) |= q)

Figure 8. Semantics of assertions (part II).

verification. In this section, we explain the unary rules for verifying
refinement units. All the binary and unary rules constitute our novel
rely-guarantee-style logic for modular verification of termination-
preserving refinement.

5.1 Assertions on Source Code and Number of Tokens

We first explain the new assertions p and q used in the unary rules
that can specify the source code and metrics in addition to states.
We define their syntax in Fig. 5, and their semantics in Fig. 8. A
full state assertion p is interpreted on (σ,w,D,Σ). Here besides
the states σ and Σ at the target and source levels, we introduce
some auxiliary data w and D. w is the number of tokens needed for
loops (see Sec. 2). D is either some source code C, or a special sign
• serving as a unit for defining semantics of p ∗ q below.

In Fig. 8 we lift the relational assertion P as a full state assertion
to specify the states. The new assertion arem(C) says that the
remaining source code is C at the current program point. wf(E)
states that the number of tokens at the current target code is no less
than E. We can see wf(0) always holds, and for any n, wf(n+ 1)
implies wf(n). We use ⌊p⌋a and ⌊p⌋w to ignore the descriptions in
p about the source code and the number of tokens respectively. TpU
lifts p back to a relational state assertion.

Separating conjunction p ∗ q has the standard meaning as in
separation logic, which says p and q hold over disjoint parts of
(σ,w,D,Σ) respectively (the formal definition elided here). How-
ever, it is worth noting the definition of disjoint union over the
quadruple states, which is shown in the middle part of Fig. 8. The
disjoint union of the numbers of tokens w1 and w2 is simply the
sum of them. The disjoint union of D1 and D2 is defined only if

349



R,G, I ⊢ {P ∧ arem(C)}C{Q ∧ arem(skip)}

R,G, I ⊢ {P}C�C{Q}
(U2B)

⊢SL [p]C[q]
(TpU ⋉ TqU) ⇒ G ∗ True I ⊲ G p ∨ q ⇒ I ∗ true

[I], G, I ⊢ {p}〈C〉{q}
(ATOM)

p ⇛a p′ ⊢SL [p′]C[q′] q′ ⇛b q + ∈ {a, b}
(TpU ∝ TqU) ⇒ G ∗ True I ⊲ G p ∨ q ⇒ I ∗ true

[I], G, I ⊢ {p}〈C〉{q}
(ATOM+)

[I], G, I ⊢ {p}〈C〉{q} Sta({p, q}, R ∗ Id) I ⊲ R

R,G, I ⊢ {p}〈C〉{q}
(ATOM-R)

p ⇒ (B = B) ∗ I
p ∧ B ⇒ p′ ∗ (wf(1) ∧ emp) R,G, I ⊢ {p′}C{p}

R,G, I ⊢ {p}while (B) C{p ∧ ¬B}
(WHILE)

R,G, I ⊢ {p}C{q}

R,G, I ⊢ {⌊p⌋w}C{⌊q⌋w}
(HIDE-W)

R,G, I ⊢ {p}C{q} Sta(p′, R′ ∗ Id) I′ ⊲ {R′, G′} p′ ⇒ I′ ∗ true G+ ⇒ G

R ∗R′, G ∗G′, I ∗ I′ ⊢ {p ∗ p′}C{q ∗ p′}
(FRAME)

Figure 9. Selected unary inference rules.

1 local t;
{

x = X ∧ arem(S′) ∧ wf(1)
}

2 while (true) {
{

x = X ∧ arem(S′)
}

3 < t := x; >
{

x = X = t ∧ arem(S′) ∨
x = X 6= t ∧ arem(S′) ∧ wf(1)

}

4 cas(&x, t, t+1);
{

x = X ∧ arem(S′) ∧ wf(1)
}

5 }

// unfolding cas

< if (x = t)
{

x = X = t ∧ arem(S′)
}

{

x = X = t ∧ arem(X++;S′)
}

x := t + 1;
{

x = X = t+ 1 ∧ arem(S′) ∧ wf(1)
}

>

(a) looping a counter: I
def
= (x = X) R = G

def
= (I ∝ I) ∨ [I]

1 local i := 100;
{

i ≥ 0 ∧ wf(i) ∧ arem(skip)
}

2 while (i > 0) {
{

i > 0 ∧ wf(i-1) ∧ arem(skip)
}

3 i--;
{

i ≥ 0 ∧ wf(i) ∧ arem(skip)
}

4 }

(b) local termination:

I
def
= emp R = G

def
= Emp

Figure 10. Proofs for two small examples.

at least one of them is the special sign •, which has no knowledge
about the remaining source code C. Therefore we know the follow-
ing holds (for any P and C):

(P ∧ arem(C) ∧ wf(1)) ∗ (wf(1) ∧ emp) ⇔ (P ∧ arem(C) ∧ wf(2))

One may think a more natural definition of the disjoint union is
to require the two Ds be the same. But this would break the FRAME

rule (see Fig. 9). For example, we can prove:

Emp,Emp, emp ⊢ {x = X ∧ arem(X++)} x++ {x = X ∧ arem(skip)}

With the FRAME rule and the separating conjunction based on
the alternative definition of disjoint union, we would derive the
following:

Emp,Emp, emp ⊢ {(x = X ∧ arem(X++)) ∗ arem(X++)}
x++ {(x = X ∧ arem(skip)) ∗ arem(X++)}

which is reduced to an invalid judgment:

Emp,Emp, emp ⊢ {x = X ∧ arem(X++)} x++ {false}

We require in p ∗ q that either p or q should not specify the source
code, therefore in this example the precondition after applying the
frame rule is invalid (thus the whole judgment is valid).

The stability of p w.r.t. an action R, defined at the bottom part of
Fig. 8, specifies how the number of tokens of a program (specified
by p) could change under R’s interferences. As a simple example,
for the following p, R1 and R2, Sta(p,R1) holds while Sta(p,R2)
does not hold:

p
def
= (10 7→ 0 ∗ 20 Z⇒ 0) ∨ ((10 7→ 1 ∗ 20 Z⇒ 0) ∧ wf(1))

R1
def
= (10 7→ 0 ∗ 20 Z⇒ 0) ∝ (10 7→ 1 ∗ 20 Z⇒ 0)

R2
def
= (10 7→ 0 ∗ 20 Z⇒ 0) ⋉ (10 7→ 1 ∗ 20 Z⇒ 0)

5.2 Unary Inference Rules

The judgment for unary reasoning is in the form of R,G, I ⊢
{p}C{q}. We present some of the rules in Fig. 9.

The U2B rule, as explained in Sec. 2, turns unary proofs to
binary ones. It says that if the remaining source code is C at the
beginning of the target C, and it becomes skip at the end of C,
then we know C is simulated by C.

The ATOM rule allows us to reason sequentially about the target
code in the atomic block. We use ⊢SL [p]C[q] to represent the total
correctness of C in sequential separation logic. The corresponding
rules are mostly standard and elided here. Note that C only accesses
the target state σ, therefore in our sequential rules we require
the source state Σ and the auxiliary data w and D in p should
remain unchanged in q. We can lift C’s total correctness to the
concurrent setting as long as its overall transition over the shared
states satisfies the guarantee G. Here we assume the environment
is identity transitions. To allow general environment behaviors, we
can apply the ATOM-R rule later, which requires that R be fenced
by I and the pre- and post-conditions be stable w.r.t. R.

The ATOM
+ rule is similar to the ATOM rule, except that it

executes the source code simultaneously with the target atomic
step. We use p ⇛+ q for the multi-step executions from the source
code specified by p to the code specified by q, which is defined
in the bottom part of Fig. 8. We also write p ⇛0 q for the usual
implication p ⇒ q. Then, the ATOM

+ rule says, we can execute the
source code before or after the steps of C, as long as the overall
transition (including the source steps and the target steps) with the
effect bit true satisfies G for the shared parts.

The WHILE rule is the key to proving the preservation of termi-
nation. As we informally explained in Sec. 2, we should be able to
decrease the number of tokens at the beginning of each loop itera-
tion. And we should re-establish the invariant p between the states
and the number of tokens at the end of each iteration. Below we
give two examples, each of which shows a typical application of
the WHILE rule.

350



Examples. The first example is the T ′′
c and S′ in Sec. 2. We show

its proof in our logic in Fig. 10(a) (for simplicity, below we always
assume the ownership of variables). We use X for the counter at
the source, and the rely/guarantee conditions say that the counters
at the two levels can be updated simultaneously with the effect bit
true. The loop invariant above line 2 says that we should have at
least one token to execute the loop. The loop body is verified with
zero tokens, and should finally restore the invariant token number
1. The gaining of the token may be due to a successful cas at line 4
that corresponds to source steps, or caused by the environment
interferences. More specifically, the assertion following line 3 says
that we can gain a token if the counters have been updated. If the
counters are not updated before the cas at line 4, the cas succeeds
and we show the detailed proof at the right part of Fig. 10(a), in
which we execute one iteration of the source code and gain a token
(applying the ATOM

+ rule).
This example shows the most straightforward understanding of

the WHILE rule: we pay a token at the beginning of an iteration
and should be able to gain another token during the execution of
the iteration. The next example is more subtle (though simpler).
As shown in Fig. 10(b), it is a locally-terminating while loop (i.e.,
a loop that terminates regardless of environment interferences).
We prove it refines skip under the environment Emp. The loop
invariant above line 2 says that the number of tokens equals the
value of i. If the loop condition (i>0) is satisfied, we pay one
token. In the proof of the loop body, we do not (and are not able
to) gain more tokens. Instead, the value of i will be decreased in
the iteration, enabling us to restore the equality between the number
of tokens and i.

Other rules and discussions. Another important rule is the
HIDE-W rule in Fig. 9. It shows that tokens are just an auxiliary
tool, which could be safely discarded (by using ⌊ ⌋w) when the
termination-preservation of a command C (say, a while loop) is
already established. As we mentioned in Sec. 2, the HIDE-W rule
is crucial to handle infinite nondeterminism. It is also important for
local reasoning, so that when we verify a thread, we do not have
to calculate and specify in the precondition the number of tokens
needed by all the while loops. For nested loops, we could use the
HIDE-W rule to hide the tokens needed by the inner loop, and use
the FRAME rule to add back the tokens needed for the outer loop
later when we compose the inner loop with other parts of the outer
loop body.

The unary FRAME rule in Fig. 9 is similar to the binary one in
Fig. 7. Other rules can be found in our TR [13], which are very
similar to those in LRG [3], but we give different interpretations to
assertions and actions.

The binary rules (in Fig. 7) and the unary rules (in Fig. 9) gives
us a full proof theory for termination-preserving refinement. We
want to remind the readers that the logic does not ensure termina-
tion of programs, therefore it is not a logic for total correctness. On
the other hand, if we restrict the source code to skip (which always
terminates), then our unary rules can be viewed as a proof theory
for the total correctness of concurrent programs.

Also note that the use of a natural number w as the while-
specific metric is to simplify the presentation only. It is easy to
extend our work to support other types of the while-specific metrics
for more complicated examples.

6. More Examples

We have seen a few small examples that illustrate the use of our
logic, in particular, the WHILE rule. In this section, we discuss other
examples that we have proved, which are summarized in Fig. 11.
Their proofs are in TR [13].

Linearizability & Lock-Freedom

Counter and its variants
Treiber stack [20]
Michael-Scott lock-free queue [14]
DGLM lock-free queue [2]

Non-Atomic Object Correctness Synchronous queue [16]
Correctness of Optimized Algo Counter vs. its variants

(Equivalence) TAS lock vs. TTAS lock [6]

Figure 11. Verified examples using our logic.

Proving linearizability and lock-freedom together for concurrent
objects. It has been shown [12] that the verification of lineariz-
ability and lock-freedom together can be reduced to verifying a
contextual refinement that preserves the termination of any client
programs. That is, for any client as the context C , the termination-
preserving refinement C [C] ⊑ C [C] should hold. Here we use C
for the concrete implementation of the object, and C for the corre-
sponding abstract atomic operations. C [C] (or C [C]) denotes the
whole program where the client accesses the object via method
calls to C (or C).

The compositionality rules of our logic (Fig. 7) allow us to ver-
ify the above contextual refinement by proving R,G, I ⊢ {P}C�
C{Q}. Then we apply the U2B rule and turn the relational ver-
ification to unary reasoning. As in a normal linearizability proof
(e.g., [10, 23]), we need to find a single step of C (i.e., the lin-
earization point) that corresponds to the atomic step of C. Here we
also have to prove lock-freedom: the failure to make progress (i.e.,
finish an abstract operation) of a thread must be caused by success-
ful progress of its environment, which can be ensured by the WHILE

rule (in Fig. 9) in our logic.
We have used the above approach to verify several lineariz-

able and lock-free objects, including Treiber stack [20], Michael-
Scott lock-free queue [14] and DGLM queue [2]. We can further
extend the logic in this paper with the techniques [10] for verify-
ing linearizability of algorithms with non-fixed linearization points,
to support more sophisticated examples such as HSY elimination-
based stack and Harris-Michael lock-free list.

Verifying concurrent objects whose abstract operations are not
atomic. Sometimes we cannot define single atomic operations as
the abstract specification of a concurrent object. For objects that
implement synchronization between threads, we may have to ex-
plicitly take into account the interferences from other threads when
defining the abstract behaviors of the current thread. For exam-
ple, the synchronous queue [16] is a concurrent transfer channel in
which each producer presenting an item must wait for a consumer
to take this item, and vice versa. The corresponding abstract opera-
tions are no longer atomic. We used our logic to prove the contex-
tual refinement between the concrete implementation (from [16],
used in Java 6) and a more abstract synchronous queue. The refine-
ment ensures that if a producer (or a consumer) is blocked at the
concrete level, it must also be blocked at the source level.

Proving equivalence between optimized algorithms and original
ones. We also use our logic to show variants of concurrent algo-
rithms are correct optimizations of the original implementations.
In this case, we show equivalence (in fact, contextual equivalence),
i.e., refinements of both directions.

For instance, we proved the TTAS lock implementation is
equivalent to the TAS lock implementation [6] for any client using
the locks. The former tests the lock bit in a nested while loop until it
appears to be free, and then uses the atomic getAndSet instruction
to update the bit; while the latter directly tries getAndSet until
success. The equivalence result between these two lock implemen-
tations shows that no client may observe their differences, includ-
ing the differences on their termination behaviors (e.g., whether a

351



client thread may acquire the lock). It gives us the full correctness
of the TTAS lock. As an optimization of TAS lock, it preserves the
behaviors on both functionality and termination of the latter.

7. Related Work and Conclusion

Hoffmann et al. [7] propose a program logic to verify lock-freedom
of concurrent objects. They reason about termination quantitatively
by introducing tokens, and model the environment’s interference
over the current thread’s termination in terms of token transfer. The
idea is simple and natural, but their logic has very limited support
of local reasoning. One needs to know the total number of tokens
needed by each thread (which may have multiple while loops) and
the (fixed) number of threads, to calculate the number of tokens for
a thread to lose or initially own. This requirement also disallows
their logic to reason about programs with infinite nondeterminism.
Here we allow a thread to set its effect bit in R/G without knowing
the details of other threads; and other threads can determine by
themselves how many tokens they gain. We also introduce the
HIDE-W rule to hide the number of tokens and to support infinite
nondeterminism. Another key difference is that our logic supports
verification of refinement, which is not supported by their logic.

Gotsman et al. [5] propose program logic and tools to verify
lock-freedom. Their approach is more heavyweight in that they
need temporal assertions in the rely/guarantee conditions to spec-
ify interference between threads, and the rely/guarantee conditions
need to be specified iteratively in multiple rounds to break circu-
lar reliance on progress. Moreover, their work relies on third-party
tools to check termination of individual threads as closed sequential
programs. Therefore they do not have a set of self-contained pro-
gram logic rules and a coherent meta-theory as we do. Like Hoff-
mann et al. [7], they do not support refinement verification either.

As we explained in Sec. 1, none of recent work on general
refinement verification of concurrent programs [11, 21, 22] and
on verifying linearizability of concurrent objects [10, 23] (which
can be viewed as a specialized refinement problem) preserves
termination. Ševčı́k et al. equipped their simulation proofs for
CompCertTSO [17] with a well-founded order, following the
CompCert approach. Their approach is similar to our second at-
tempt explained in Sec. 2, thus cannot be applied to prove lock-
freedom of concurrent objects.

Conclusion and future work. We propose a new compositional
simulation RGSim-T to verify termination-preserving refinement
between concurrent programs. We also give a rely/guarantee pro-
gram logic as a proof theory for the simulation. Our logic is the first
to support compositional verification of termination-preserving re-
finement. The simulation and logic are general. They can be used
to verify both correctness of optimizations (where the source may
not necessarily terminate) and lock-freedom of concurrent objects.
As future work, we would like to further extend them with the tech-
niques of pending thread pools and speculations [10] to verify ob-
jects with non-fixed linearization points. We also hope to explore
the possibility of building tools to automate the verification.

Acknowledgments

We thank anonymous referees for their suggestions and com-
ments. This work is supported in part by China Scholarship Coun-
cil, National Natural Science Foundation of China (NSFC) under
Grant Nos. 61229201, 61379039 and 91318301, and the National
Hi-Tech Research and Development Program of China (Grant
No. 2012AA010901). It is also supported in part by DARPA
grants FA8750-10-2-0254 and FA8750-12-2-0293, ONR grant
N000141210478, and NSF grants 0915888 and 1065451. Any
opinions, findings, and conclusions contained in this document are
those of the authors and do not reflect the views of these agencies.

References

[1] N. Benton. Simple relational correctness proofs for static analyses and
program transformations. In POPL, pages 14–25, 2004.

[2] S. Doherty, L. Groves, V. Luchangco, and M. Moir. Formal verifica-
tion of a practical lock-free queue algorithm. In FORTE, pages 97–
114, 2004.

[3] X. Feng. Local rely-guarantee reasoning. In POPL, pages 315–327,
2009.

[4] I. Filipovic, P. O’Hearn, N. Rinetzky, and H. Yang. Abstraction
for concurrent objects. Theor. Comput. Sci., 411(51-52):4379–4398,
2010.

[5] A. Gotsman, B. Cook, M. J. Parkinson, and V. Vafeiadis. Proving that
non-blocking algorithms don’t block. In POPL, pages 16–28, 2009.

[6] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming.
Morgan Kaufmann, 2008.

[7] J. Hoffmann, M. Marmar, and Z. Shao. Quantitative reasoning for
proving lock-freedom. In LICS, pages 124–133, 2013.

[8] C. B. Jones. Tentative steps toward a development method for inter-
fering programs. ACM Trans. Program. Lang. Syst., 5(4):596–619,
1983.

[9] X. Leroy. A formally verified compiler back-end. J. Autom. Reason.,
43:363–446, December 2009.

[10] H. Liang and X. Feng. Modular verification of linearizability with
non-fixed linearization points. In PLDI, pages 459–470, 2013.

[11] H. Liang, X. Feng, and M. Fu. A rely-guarantee-based simulation for
verifying concurrent program transformations. In POPL, pages 455–
468, 2012.

[12] H. Liang, J. Hoffmann, X. Feng, and Z. Shao. Characterizing progress
properties of concurrent objects via contextual refinements. In CON-
CUR, pages 227–241, 2013.

[13] H. Liang, X. Feng, and Z. Shao. Compositional verification of
termination-preserving refinement of concurrent programs (extended
version). Technical report, Univ. of Science and Technology of China,
May 2014. http://kyhcs.ustcsz.edu.cn/relconcur/rgsimt.

[14] M. M. Michael and M. L. Scott. Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms. In PODC, pages
267–275, 1996.

[15] M. Parkinson, R. Bornat, and C. Calcagno. Variables as resource in
Hoare logics. In LICS, pages 137–146, 2006.

[16] W. N. Scherer III, D. Lea, and M. L. Scott. Scalable synchronous
queues. In PPoPP, pages 147–156, 2006.

[17] J. Ševčı́k, V. Vafeiadis, F. Z. Nardelli, S. Jagannathan, and P. Sewell.
CompCertTSO: A verified compiler for relaxed-memory concurrency.
J. ACM, 60(3):22, 2013.

[18] T. A. L. Sewell, M. O. Myreen, and G. Klein. Translation validation
for a verified os kernel. In PLDI, pages 471–482, 2013.

[19] K. Stølen. A method for the development of totally correct shared-
state parallel programs. In CONCUR, pages 510–525, 1991.

[20] R. K. Treiber. System programming: coping with parallelism. Tech-
nical Report RJ 5118, IBM Almaden Research Center, 1986.

[21] A. Turon, D. Dreyer, and L. Birkedal. Unifying refinement and hoare-
style reasoning in a logic for higher-order concurrency. In ICFP, pages
377–390, 2013.

[22] A. Turon, J. Thamsborg, A. Ahmed, L. Birkedal, and D. Dreyer.
Logical relations for fine-grained concurrency. In POPL, pages 343–
356, 2013.

[23] V. Vafeiadis. Modular fine-grained concurrency verification. PhD
thesis, University of Cambridge, Computer Laboratory, 2008.

[24] V. Vafeiadis. Concurrent separation logic and operational semantics.
In MFPS, pages 335–351, 2011.

[25] H. Yang. Relational separation logic. Theoretical Computer Science,
375:308–334, 2007.

352



Compositional Verification of

Termination-Preserving Refinement of Concurrent Programs

(Technical Report)

Hongjin Liang1, Xinyu Feng1, and Zhong Shao2

1University of Science and Technology of China
2Yale University

May 26, 2015

NOTES: This TR is a supplement to our CSL-LICS’14 paper. It includes full formulations of the
technical settings (Section 1), our RGSim-T definitions (Section 2), the full program logic (Section 3), all
the examples we have verified (Section 4) and the full formal soundness proofs (Section 5).

Moreover, we introduce a new interesting assertion p 7 q which allows local reasoning about the
number of tokens that is conditional upon the shared state in runtime. See Section 2 for its semantics,
Section 3 for the related local reasoning rule and Section 4 for its use in practical examples.

We also provide a transitivity rule on the binary judgments. We introduce new assertions to specify
the compositions of two relational assertions and of two actions (see Section 2).

For more informal explanations and the high-level picture, please see our CSL-LICS’14 paper. Both
the paper and this companion TR can be found at the following url:

http://kyhcs.ustcsz.edu.cn/relconcur/rgsimt

353

http://kyhcs.ustcsz.edu.cn/relconcur/rgsimt


1 Basic Technical Settings and Termination-Preserving Refine-
ment

1.1 The Language

We show the language in Figure 1. We assume the program variables used in the target code are different
from the ones used in the source (e.g., we use x and X for target and source level variables respectively).

(Event) e ::= . . . (Label) ι ::= e | τ
(Store) s, s ∈ PVar ⇀ Val (Heap) h,h ∈ Addr ⇀ Val

(State) σ,Σ ::= (s, h)

(Instr) c, c ∈ State ⇀ P((Label× State) ∪ {abort})
(Expr) E,E ::= x | n | E + E | . . .

(BExp) B,B ::= true | false | E = E | !B | . . .
(Stmt) C,C ::= skip | c | 〈C〉 | C1;C2 | if (B) C1 else C2

| while (B) C | C1‖C2

Figure 1: Generic language at target and source levels.

We show the operational semantics in Figure 2. The semantics of E and B are defined by JEK
and JBK respectively. JEK is a partial function of type Store ⇀ Val. JBK is a partial function of type
Store ⇀ {true, false}. They are undefined if variables in E and B are not assigned values in the store
s. Their definitions are omitted here.

Conventions. We usually write blackboard bold or capital letters (s, h, Σ, c, E, B and C) for the
notations at the source level to distinguish from the target-level ones (s, h, σ, c, E, B and C). When we
discuss the transitivity, we use θ and CM for the state and the code at the middle level.

Below we use −→ ∗ for zero or multiple-step transitions with no events generated, −→ + for
multiple-step transitions without events,

e−→ + for multiple-step transitions with only one event e
generated, and −→ω · for an infinite execution without events.

354



(ι, σ′) ∈ c σ

(c, σ)
ι−→ (skip, σ′)

abort ∈ c σ
(c, σ) −→ abort

σ 6∈ dom(c)

(c, σ) −→ (c, σ)

(C, σ) −→∗ (skip, σ′)

(〈C〉, σ) −→ (skip, σ′)

(C, σ) −→∗ abort
(〈C〉, σ) −→ abort

(C, σ) −→ω ·
(〈C〉, σ) −→ (〈C〉, σ)

(C, σ) −→ (C′, σ′)

(C;C′′, σ) −→ (C′;C′′, σ′)

(C, σ)
e−→ (C′, σ′)

(C;C′′, σ)
e−→ (C′;C′′, σ′)

(skip;C′, σ) −→ (C′, σ)

(C, σ) −→ abort

(C;C′, σ) −→ abort

JBKs = true

(while (B) C, (s, h)) −→ (C;while (B) C, (s, h))

JBKs = false

(while (B) C, (s, h)) −→ (skip, (s, h))

JBKs undefined

(while (B) C, (s, h)) −→ abort

JBKs = true

(if (B) C1 else C2, (s, h)) −→ (C1, (s, h))

JBKs = false

(if (B) C1 else C2, (s, h)) −→ (C2, (s, h))

JBKs undefined

(if (B) C1 else C2, (s, h)) −→ abort

(C1, σ)
ι−→ (C′1, σ

′)

(C1‖C2, σ)
ι−→ (C′1‖C2, σ

′)

(C2, σ)
ι−→ (C′2, σ

′)

(C1‖C2, σ)
ι−→ (C1‖C′2, σ′)

(skip‖skip, σ) −→ (skip, σ)

(C1, σ) −→ abort or (C2, σ) −→ abort

(C1‖C2, σ) −→ abort

Figure 2: Operational semantics.

355



1.2 Termination-Preserving Event Trace Refinement

(EvtTrace) E ::= ⇓ |  | ε | e ::E (co-inductive interpretation)

We define ETr(C, σ, E) in Figure 3.1

(C, σ) −→∗ (skip, σ′)

ETr(C, σ,⇓)

(C, σ) −→+ abort

ETr(C, σ, )

(C, σ) −→+ (C′, σ′) ETr(C′, σ′, ε)

ETr(C, σ, ε)

(C, σ)
e−→+ (C′, σ′) ETr(C′, σ′, E)

ETr(C, σ, e ::E)

Figure 3: Co-inductive definition of ETr(C, σ, E).

Definition 1 (Termination-Preserving Refinement).
(C, σ) v (C,Σ) iff ∀E . ETr(C, σ, E) =⇒ ETr(C,Σ, E).

1We made a typo in the definition of ETr in our published paper. In the paper, the third rule is as follows.

(C, σ) −→+ (C′, σ′) ETr(C′, σ′, E)

ETr(C, σ, E)

Such a definition is incorrect because it allows any event trace to be an acceptable trace of while (true){skip}. We
corrected it by restricting the trace of an infinite loop to be empty, as shown in Figure 3.

356



2 RGSim-T

2.1 Assertion Language

We first define the assertions used in our simulation RGSim-T and our program logic. Their syntax is
shown in Figure 4, and their semantics is shown in Figures 5 and 6.

(RelAssn) P,Q, I ::= B | own(x) | emp | emp | E 7→ E | E Z⇒ E
| TpU | P ∗Q | P ∨Q | P ∧Q | P #Q | . . .

(FullAssn) p, q ::= P | arem(C) | wf(E) | bpca | bpcw
| p ∗ q | p ∨ q | p ∧ q | p7 q | . . .

(RelAct) R,G ::= P ∝ Q | P nQ | [P ] | R ∗R | R+

| R ∨R | R ∧R | R #̂R | R #̌R | . . .

Figure 4: Assertion language.

The above assertion language extends the one in our CSL-LICS paper with the following new asser-
tions.

1. p 7 q, which is like a conjunction over the concrete and the abstract states and like a separating
conjunction over the number of tokens and the abstract code. It would be useful to simplify the
verification of some specific examples (see Section 4).

2. P #Q, R #̂R and R #̌R, which are compositions of two relational assertions and of two actions. They
are used in the transitivity of the binary judgments (the trans rule in Figure 7). We use θ and
CM to represent the middle-level state and the middle-level code respectively. We also define a
predicate MPrecise(P,Q) in Figure 5, which specifies the precise property about the middle-level
states. Here P and Q are relational assertions between low-level and middle-level states and between
middle-level and high-level states respectively.

Note that our logic is already very useful without the above extensions. All the examples that we
mentioned in our CSL-LICS’14 paper can be verified without these extensions.

357



f1⊥f2 iff (dom(f1) ∩ dom(f2) = ∅)
(s1, h1)⊥(s2, h2) iff (s1⊥s2) ∧ (h1⊥h2)

(s1, h1) ] (s2, h2)
def
=

{
(s1 ∪ s2, h1 ∪ h2) if (s1, h1)⊥(s2, h2)
undefined otherwise

((s, h), (s,h)) |= B iff JBKs]s = true

((s, h), (s,h)) |= own(x) iff dom(s ] s) = {x}
((s, h), (s,h)) |= emp iff (dom(s) = ∅) ∧ (dom(h) = ∅)
((s, h), (s,h)) |= emp iff (dom(s) = ∅) ∧ (dom(h) = ∅)
((s, h), (s,h)) |= E1 7→ E2 iff ∃l, n. JE1Ks]s = l ∧ JE2Ks]s = n ∧ dom(h) = {l} ∧ h(l) = n

((s, h), (s,h)) |= E1 Z⇒ E2 iff ∃l, n. JE1Ks]s = l ∧ JE2Ks]s = n ∧ dom(h) = {l} ∧ h(l) = n

emp
def
= emp ∧ emp

(σ,Σ) |= P #Q iff ∃θ. (σ, θ) |= P ∧ (θ,Σ) |= Q

((σ,Σ), (σ′,Σ′), b) |= P ∝ Q iff (σ,Σ) |= P ∧ (σ′,Σ′) |= Q ∧ (b = true)

((σ,Σ), (σ′,Σ′), b) |= P nQ iff (σ,Σ) |= P ∧ (σ′,Σ′) |= Q

((σ,Σ), (σ′,Σ′), b) |= [P ] iff (σ,Σ) |= P ∧ (σ = σ′) ∧ (Σ = Σ′)

((σ,Σ), (σ′,Σ′), b) |= R1 ∗R2 iff
∃σ1,Σ1, σ2,Σ2, σ

′
1,Σ

′
1, σ
′
2,Σ

′
2. ((σ1,Σ1), (σ′1,Σ

′
1), b) |= R1 ∧ ((σ2,Σ2), (σ′2,Σ

′
2), b) |= R2

∧ (σ = σ1 ] σ2) ∧ (σ′ = σ′1 ] σ′2) ∧ (Σ = Σ1 ] Σ2) ∧ (Σ′ = Σ′1 ] Σ′2)

((σ,Σ), (σ′,Σ′), b) |= R+ iff
(((σ,Σ), (σ′,Σ′), b) |= R)
∨ (∃σ′′,Σ′′, b′, b′′. (((σ,Σ), (σ′′,Σ′′), b′) |= R) ∧ (((σ′′,Σ′′), (σ′,Σ′), b′′) |= R+) ∧ (b = b′ ∨ b′′))

Id
def
= [true] Emp

def
= empn emp True

def
= truen true

((σ,Σ), (σ′,Σ′), b) |= R1 #̂R2 iff
∃θ, θ′, b1, b2. ((σ, θ), (σ′, θ′), b1) |= R1 ∧ ((θ,Σ), (θ′,Σ′), b2) |= R2 ∧ (b = b1 ∧ b2)

((σ,Σ), (σ′,Σ′), b) |= R1 #̌R2 iff
∃θ, θ′, b1, b2. ((σ, θ), (σ′, θ′), b1) |= R1 ∧ ((θ,Σ), (θ′,Σ′), b2) |= R2 ∧ (b = b1 ∨ b2)

Sta(P,R) iff ∀σ,Σ, σ′,Σ′, b. ((σ,Σ) |= P ) ∧ (((σ,Σ), (σ′,Σ′), b) |= R) =⇒ ((σ′,Σ′) |= P )

Precise(P ) iff ∀σ1,Σ1, σ2,Σ2, σ
′
1,Σ

′
1, σ
′
2,Σ

′
2.

((σ1 ] σ2 = σ′1 ] σ′2) ∧ ((σ1, ) |= P ) ∧ ((σ′1, ) |= P ) =⇒ (σ1 = σ′1))
∧ ((Σ1 ] Σ2 = Σ′1 ] Σ′2) ∧ (( ,Σ1) |= P ) ∧ (( ,Σ′1) |= P ) =⇒ (Σ1 = Σ′1))

I . R iff ([I]⇒ R) ∧ (R⇒ I n I) ∧ Precise(I)

MPrecise(P,Q) iff
∀θ1, θ′1, θ2, θ′2. (θ1 ] θ2 = θ′1 ] θ′2) ∧ (( , θ1) |= P ) ∧ ((θ′1, ) |= Q) =⇒ (θ1 = θ′1)

Figure 5: Semantics of assertions (part I).

358



(HCState) D ::= C | •
(FullState) S ::= (σ,w,D,Σ) where w ∈ Nat

(σ,w,D,Σ) |= P iff (σ,Σ) |= P

(σ,w,D,Σ) |= arem(C′) iff D = C′

((s, h), w,D,Σ) |= wf(E) iff ∃n. (JEKs = n) ∧ (n ≤ w)

(σ,w,D,Σ) |= bpca iff ∃D′. (σ,w,D′,Σ) |= p

(σ,w,D,Σ) |= bpcw iff ∃w′. (σ,w′,D,Σ) |= p

(σ,w,D,Σ) |= p7 q iff ∃w1, w2,D1,D2. (σ,w1,D1,Σ) |= p ∧ (σ,w2,D2,Σ) |= q
∧ (w = w1 + w2) ∧ (D = D1 ] D2)

(σ,Σ) |= TpU iff ∃w,D. (σ,w,D,Σ) |= p

D1⊥D2 iff (D1 = •) ∨ (D2 = •)

D1 ] D2
def
=


D2 if D1 = •
D1 if D2 = •
undefined otherwise

(σ1, w1,D1,Σ1) ] (σ2, w2,D2,Σ2)

def
=

{
(σ1 ] σ2, w1 + w2,D1 ] D2,Σ1 ] Σ1) if σ1⊥σ2,D1⊥D2 and Σ1⊥Σ2

undefined otherwise

S |= p ∗ q iff ∃S1,S2. (S = S1 ] S2) ∧ (S1 |= p) ∧ (S2 |= q)

Sta(p,R) iff
∀σ,w,D,Σ, σ′,Σ′, b. ((σ,w,D,Σ) |= p) ∧ (((σ,Σ), (σ′,Σ′), b) |= R)
=⇒ ∃w′. (σ′, w′,D,Σ′) |= p ∧ (b = false =⇒ w′ = w)

Figure 6: Semantics of assertions (part II).

359



2.2 Definition of RGSim-T

Definition 2 (RGSim-T).
R,G, I |= {P}C�C{Q} iff
for all σ and Σ, if (σ,Σ) |= P , then there exists M such that R,G, I |= (C, σ,M)�Q (C,Σ).

Whenever R,G, I |= (C, σ,M)�Q (C,Σ), then (σ,Σ) |= I ∗ true and the following are true:

1. for any σF , ΣF , C ′ and σ′′, if (C, σ ] σF ) −→ (C ′, σ′′) and Σ⊥ΣF , then there exists σ′ such that
σ′′ = σ′ ] σF and one of the following holds:

(a) either, there exist M ′, C′ and Σ′ such that (C,Σ ] ΣF ) −→+ (C′,Σ′ ] ΣF ),
((σ,Σ), (σ′,Σ′), true) |= G+ ∗ True and R,G, I |= (C ′, σ′,M ′)�Q (C′,Σ′);

(b) or, there exists M ′ such that M ′ < M ,
((σ,Σ), (σ′,Σ), false) |= G+ ∗ True and R,G, I |= (C ′, σ′,M ′)�Q (C,Σ);

2. for any σF , ΣF , e, C ′ and σ′′, if (C, σ ] σF )
e−→ (C ′, σ′′) and Σ⊥ΣF , then

there exist σ′, M ′, C′ and Σ′ such that σ′′ = σ′ ] σF , (C,Σ ] ΣF )
e−→+ (C′,Σ′ ] ΣF ),

((σ,Σ), (σ′,Σ′), true) |= G+ ∗ True and R,G, I |= (C ′, σ′,M ′)�Q (C′,Σ′);

3. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), true) |= R+ ∗ Id, then
there exists M ′ such that R,G, I |= (C, σ′,M ′)�Q (C,Σ′);

4. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), false) |= R+ ∗ Id, then
R,G, I |= (C, σ′,M)�Q (C,Σ′);

5. if C = skip, then for any ΣF , if Σ⊥ΣF , one of the following holds:

(a) either, there exists Σ′ such that (C,Σ ] ΣF ) −→+ (skip,Σ′ ] ΣF ),
((σ,Σ), (σ,Σ′), true) |= G+ ∗ True and (σ,Σ′) |= Q;

(b) or, C = skip and (σ,Σ) |= Q;

6. for any σF and ΣF , if (C, σ ] σF ) −→ abort and Σ⊥ΣF , then (C,Σ ] ΣF ) −→+ abort.

Inspired by Vafeiadis [13], we directly embed the framing aspect of separation logic in Def. 2. At
each condition, we introduce the frame states σF and ΣF at the target and source levels to represent the
remaining parts of the states owned by other threads in the system. The commands C and C must not
change the frame states during their executions.

Technically, we introduce theses σF and ΣF quantifications to admit the frame rules (e.g., the b-frame
rule in Fig. 7) and the parallel compositionality. Suppose we remove the frame states in Definition 2.
Then consider the following example. We can prove

Emp,Emp, emp |= {emp} ([100] := 1)�([100] := 2) {emp} (2.1)

since both programs would abort at empty states. If the frame rule holds, we would get the following by
framing [100] 7→ 0 ∧ [100] Z⇒ 0 to (2.1):

Emp,Emp, emp |= {[100] 7→ 0 ∧ [100] Z⇒ 0} ([100] := 1)�([100] := 2) {[100] 7→ 0 ∧ [100] Z⇒ 0}

which obviously does not hold! (In our previous work RGSim [7], the frame rule we provided is more like
an invariance rule in Hoare logic. We do not have a real frame rule due to the above reason.) Similar issue
also shows up in admitting the parallel compositionality (the b-par rule in Fig. 7). The thread t would
abort if it accesses the local state of another thread t′, while the whole program may not abort with t
and t′ running in parallel. So we can construct a similar counterexample as (2.1) where the simulation
holds for each single thread but fails for the whole program.

Here we address the above issue by embedding the framing aspect directly in the simulation definition,
inspired by Vafeiadis [13]. For the simulation in Definition 2 with the σF and ΣF quantifications, the
above example (2.1) is no longer satisfied.

360



3 Logic

Inference rules are shown in Figures 7 and 8.

R,G, I ` {P}C1�C1{P ′} R,G, I ` {P ′}C2�C2{Q}
R,G, I ` {P}C1;C2�C1;C2{Q}

(b-seq)

P ⇒ (B ⇔ B) ∗ I R,G, I ` {P ∧B}C1�C1{Q} R,G, I ` {P ∧ ¬B}C2�C2{Q}
R,G, I ` {P}if (B) C1 else C2� if (B) C1 else C2{Q}

(b-if)

P ⇒ (B ⇔ B) ∗ I R,G, I ` {P ∧B}C�C{P}
R,G, I ` {P}while (B) C�while (B) C{P ∧ ¬B}

(b-while)

R ∨G2, G1, I ` {P1 ∗ P}C1�C1{Q1 ∗Q′1} R ∨G1, G2, I ` {P2 ∗ P}C2�C2{Q2 ∗Q′2}
P ∨Q′1 ∨Q′2 ⇒ I I . R

R,G1 ∨G2, I ` {P1 ∗ P2 ∗ P}C1‖C2�C1‖C2{Q1 ∗Q2 ∗ (Q′1 ∧Q′2)}
(b-par)

Emp,Emp, emp ` {P}skip�skip{P}
(b-skip)

P ⇒ (E = E)

Emp,Emp, emp ` {P}print(E)�print(E){P}
(b-prt)

R,G, I ` {P}C�C{Q} G+ ⇒ G Sta(P ′, (R′)
+ ∗ Id) I ′ . {R′, G′} P ′ ⇒ I ′ ∗ true

R ∗R′, G ∗G′, I ∗ I ′ ` {P ∗ P ′}C�C{Q ∗ P ′}
(b-frame)

R1, G1, I1 ` {P1}C�CM{Q1} R2, G2, I2 ` {P2}CM�C{Q2}
MPrecise(I1, I2) ((G1)+ #̂ (G2)+) ⇒ (G1 #̂G2)

+
(R1 #̌R2)+ ⇒ ((R1)+ #̌ (R2)+)

(R1 #̌R2), (G1 #̂G2), (I1 # I2) ` {P1 # P2}C�C{Q1 #Q2}
(trans)

R,G, I ` {P ∧ arem(C)}C{Q ∧ arem(skip)}
R,G, I ` {P}C�C{Q}

(u2b)

Figure 7: Selected binary inference rules.

Definition 3 (Abstract Step “Implication”).

p
G
=⇒+ q iff,

for any σ, w, D, Σ and ΣF , if (σ,w,D,Σ) |= p and Σ⊥ΣF , then
there exist w′, C′ and Σ′ such that (D,Σ ] ΣF ) −→+ (C′,Σ′ ] ΣF ),
((σ,Σ), (σ,Σ′), true) |= G+ ∗ True and (σ,w′,C′,Σ′) |= q.

We also define the following syntactic sugars:

pV+ q iff p
Emp
==⇒+ q p

G
=⇒0 q iff p⇒ q pV0 q iff p⇒ q

p
G
=⇒∗ q iff p

G
=⇒+ q ∨ p G

=⇒0 q pV∗ q iff pV+ q ∨ pV0 q

Note that here we introduce the ΣF quantification similar to Definition 2 for RGSim-T. In our CSL-
LICS’14 paper, we simplified the above definition and only defined p V+ q to save space. The more

general case p
G
=⇒+ q defined here is useful in the a-conseq rule, which is omitted in our CSL-LICS’14

paper.

We prove a few properties of p
G
=⇒+ q, as shown in Figure 9. For instance, the first rule says, we can

derive (P ∧arem(C)) V+ (Q∧arem(skip)∧wf(E)) by executing the source code C. And since the source

361



Emp,Emp, emp ` {p}skip{p}
(skip)

`sl [p]c[q] c is silent

Emp,Emp, emp ` {p}c{q}
(env)

`sl [p]C[q] (TpUn TqU)⇒ G ∗ True I . G p ∨ q ⇒ I ∗ true

[I], G, I ` {p}〈C〉{q}
(atom)

pVa p′ `sl [p′]C[q′] q′ Vb q + ∈ {a, b}
(TpU ∝ TqU)⇒ G ∗ True I . G p ∨ q ⇒ I ∗ true

[I], G, I ` {p}〈C〉{q}
(atom+)

[I], G, I ` {p}〈C〉{q} Sta({p, q}, R ∗ Id) I . R

R,G, I ` {p}〈C〉{q}
(atom-r)

R,G, I ` {p}C1{p′} R,G, I ` {p′}C2{q}

R,G, I ` {p}C1;C2{q}
(seq)

p⇒ (B = B) ∗ I p ∧B ⇒ p′ ∗ (wf(1) ∧ emp) R,G, I ` {p′}C{p}
R,G, I ` {p}while (B) C{p ∧ ¬B}

(while)

R,G, I ` {p}C{q}
R,G, I ` {bpcw}C{bqcw}

(hide-w)

R,G, I ` {p}C{q} Sta(p′, (R′)
+ ∗ Id) I ′ . {R′, G′} p′ ⇒ I ′ ∗ true G+ ⇒ G

R ∗R′, G ∗G′, I ∗ I ′ ` {p ∗ p′}C{q ∗ p′}
(frame)

R,G, I ` {p}C{q} Sta(p′, {R+ ∗ Id, G ∗ True})
R,G, I ` {p7 p′}C{q 7 p′}

(fr-conj)

R,G, I ` {bpca ∧ arem(C1)}C{bqca ∧ arem(C2)}
R,G, I ` {bpca ∧ arem(C1;C3)}C{bqca ∧ arem(C2;C3)}

(arem)

R,G, I ` {p1}C{q1} R,G, I ` {p2}C{q2}
R,G, I ` {p1 ∨ p2}C{q1 ∨ q2}

(disj)

p
G
=⇒∗ p′ R,G, I ` {p′}C{q′} q′

G
=⇒∗ q Sta({p, q}, R ∗ Id) p ∨ q ⇒ I ∗ true

R,G, I ` {p}C{q}
(a-conseq)

Figure 8: Selected unary inference rules.

362



code makes multiple steps, we are allowed to increase the number of tokens (wf(E)). We can also execute
the source code in trivial cases, for example, when the source code is skip;C, or it is a while loop but we
know for sure the value of the loop condition. In those cases, the step of the source code is an identity

transition. Moreover, p
G
=⇒+ q is transitive and we can also have “frame rule” (i.e., local reasoning) over

it.

C 6= skip `sl [P ]C[Q]

(P ∧ arem(C)) V+ (Q ∧ arem(skip) ∧ wf(E))

P ⇒ I ∗ true

(P ∧ arem(skip;C))
[I]
=⇒+ (P ∧ arem(C) ∧ wf(E))

P ⇒ B ∗ I

(P ∧ arem(if (B) C1 else C2))
[I]
=⇒+ (P ∧ arem(C1) ∧ wf(E))

P ⇒ (¬B) ∗ I

(P ∧ arem(if (B) C1 else C2))
[I]
=⇒+ (P ∧ arem(C2) ∧ wf(E))

P ⇒ B ∗ I

(P ∧ arem(while (B) C))
[I]
=⇒+ (P ∧ arem(C;while (B) C) ∧ wf(E))

P ⇒ (¬B) ∗ I

(P ∧ arem(while (B) C))
[I]
=⇒+ (P ∧ arem(skip) ∧ wf(E))

(P ∧ arem(C1))
G
=⇒+ (Q ∧ arem(C2) ∧ wf(E))

(P ∧ arem(C1;C3))
G
=⇒+ (Q ∧ arem(C2;C3) ∧ wf(E))

p
G
=⇒+ p′ p′

G
=⇒+ q I . G

p
G
=⇒+ q

p⇒ p′ p′
G′
=⇒+ q′ q′ ⇒ q G′ ⇒ G

p
G
=⇒+ q

p1
G
=⇒+ q1 p2

G
=⇒+ q2

(p1 ∨ p2)
G
=⇒+ (q1 ∨ q2)

p
G
=⇒+ q

(p ∗ p′) G
=⇒+ (q ∗ p′)

Figure 9: Properties of p
G
=⇒ q.

Below we discuss some interesting rules which are not shown in our CSL-LICS’14 paper due to the
space limit. The binary rules are very similar to those in our previous work RGSim [7]. The trans rule
shows the transitivity of our RGSim-T relation.

For the unary rules in Figure 8, in addition to rules for atomic blocks, we have skip and env rules
to reason about skip and primitive instructions. Here we assume the unary logic handles only programs
which do not produce external events (e.g., the env rule has a side condition saying that “c is silent”).
For commands producing events, such as the print command, we require lockstep at the target and source
levels and prove such refinement using the binary inference rules (e.g., the b-prt rule in Figure 7). It is
also possible to extend the current unary logic with assertions for event traces and provide unary rules to
reason about commands with events. Note that although the shared resource is empty in the skip and
env rules, we can derive rules allowing resource sharing from them and the frame rule in Figure 8.

363



In addition to the rules for while loops as in the CSL-LICS’14 paper, we also have unary rules for
sequential composition (the seq rule in Figure 8) and for if-then-else composition (omitted here), both
of which are in the same forms as in LRG [2]. The unary frame rule is similar to the binary one in
Figure 7. It is also in the same form as in LRG [2].

The fr-conj rule is like the frame rule in RGSep [12]. The frame p′ may specify the number of tokens
used by the context of the code C, i.e., the code C does not consume these tokens in p′. The frame p′

may also specify the shared concrete and abstract states (and the case usually occurs when the number
of tokens depends on the concrete and abstract states). So we use the new operator 7 to ensure that the
concrete and abstract states specified in p and p′ coincide.

The arem rule is like a frame rule over source code. It allows us to reason about refinement using
“local” source code, i.e., source code which is really refined by the target.

The a-conseq rule allows us to execute the source code outside of an atomic block. It requires that
the transitions of the source code over the shared states satisfy G+, but it is usually used when the steps
are simply identity transitions. For instance, we can use the rule to unfold a while loop at the source
at any time in a refinement proof (we do not have to be in an atomic block of the target code). When

p
G
=⇒∗ p′ and q′

G
=⇒∗ q are p⇒ p′ and q′ ⇒ q respectively, this rule becomes the normal conseq rule (see

RGSep [12] and LRG [2]).
We can also derive the following while-term rule from the while rule. The derivation is shown in

Section 5.

R,G, I ` {p ∧B ∧ (E = α)}C{p ∧ (E < α)} p ∧B ⇒ E > 0
p⇒ ((B = B) ∧ (E = E)) ∗ I G+ ⇒ G α is a fresh logical variable

R,G, I ` {bpcw}while (B) C{bpcw ∧ ¬B}
(while-term)

The while-term rule is similar to a total correctness while rule (e.g., see [10]). In every round of
the loop, the loop variant E decreases (but should always be positive). We can verify refinement for
such a locally-terminating loop (a loop that always terminates regardless of environment steps) without
specifying tokens. To derive this rule, we actually need to introduce the number of tokens as an auxiliary
state for the loop iterations and relate it to the loop variant E in the real state.

Soundness of the logic is proved in Section 5 (where we also define the unary judgment semantics).

364



4 Examples

In this section, we verify the examples claimed in our CSL-LICS’14 paper (see Figure 10). To simplify
the presentation of the proofs, assume we always have the ownerships of program variables.

Linearizability & Lock-Freedom

Counter and its variants
Treiber stack
Michael-Scott lock-free queue [8]
DGLM lock-free queue [1]

Non-Atomic Object Correctness Synchronous queue [9]

Correctness of Optimized Algo Counter vs. its variants
(Equivalence) TAS lock vs. TTAS lock [3]

Figure 10: Verified examples using our logic.

4.1 Counter and Its Variants

In Figure 11, we show four possible implementations of the counter. Though they are quite simple, they
illustrate different choices that programmers may make to implement a concurrent object. The abstract
atomic INC operation is shown below:

INC() { X := X + 1; }

1 inc() {

2 local t, b;

3 b := false;

4 while (!b) {

5 < t := x; >

6 b := cas(&x, t, t+1);

7 }

8 }

1 inc’() {

2 local t, b;

3 b := false;

4 < t := x; >

5 while (!b) {

6 b := cas(&x, t, t+1);

7 < t := x; >

8 }

9 }

1 incOpt() {

2 local t, b, b’;

3 b := false;

4 while (!b) {

5 b’ := false;

6 while (!b’) {

7 < t := x; >

8 < b’ := (t = x); >

9 }

10 b := cas(&x, t, t+1);

11 }

12 }

1 incOpt’() {

2 local t, b, b’;

3 b := false;

4 while (!b) {

5 < t := x; >

6 < b’ := (t = x); >

7 while (!b’) {

8 < t := x; >

9 < b’ := (t = x); >

10 }

11 b := cas(&x, t, t+1);

12 }

13 }

Figure 11: Various implementations of counter.

Below we first verify that each implementation C of the counter is correct w.r.t. to INC. Here cor-
rectness refer to linearizability and lock-freedom together. As explained in the submitted paper, we only
need to prove the following in our logic:

R,G, I ` {I} C � INC {I}

where R and G specify the possible actions (i.e., increments) on the well-formed shared data structure
(i.e., counter) fenced by I. In all these examples, they share the same R, G and I as follows:

365



I
def
= (x = X) R = G

def
= (I ∝ I) ∨ [I]

By the u2b rule, the above is reduced to proving the following unary judgment:

R,G, I ` {I ∧ arem(X := X + 1)}C{I ∧ arem(skip)}

The proofs are shown in Figures 12, 13, 14 and 15.
We can also prove the equivalence between incOpt and inc. That is, we prove:

R,G, I ` {I} incOpt � inc {I} and R,G, I ` {I} inc � incOpt {I}

Here we use the same R, G and I as above (always use x at the left side and X at the right side). The
proofs are shown in Figures 17 and 18. The equivalence between incOpt’ and inc is similar.

1 inc() {

2 local t, b;{
I ∧ arem(X := X + 1)

}
3 b := false;{

(¬b ∧ I ∧ arem(X := X + 1)) ∨ (b ∧ I ∧ arem(skip))
}

//Applying the while rule and the hide-w rule
4 while (!b) {{

¬b ∧ I ∧ arem(X := X + 1) ∧ wf(0)
}{

x = X
}
∗ (emp ∧ ¬b ∧ arem(X := X + 1) ∧ wf(0)) //Applying the frame rule

5 < t := x; >{
(x = X = t) ∨ ((x = X 6= t) ∧ wf(1))

}
∗ (emp ∧ ¬b ∧ arem(X := X + 1) ∧ wf(0)){

(¬b ∧ (x = X = t) ∧ arem(X := X + 1) ∧ wf(0))
∨ (¬b ∧ (x = X 6= t) ∧ arem(X := X + 1) ∧ wf(1))

}
6 b := cas(&x, t, t+1);{

(b ∧ I ∧ arem(skip) ∧ wf(1)) ∨ (¬b ∧ I ∧ arem(X := X + 1) ∧ wf(1))
}

7 }{
I ∧ arem(skip)

}
8 }

Figure 12: Proving inc refines INC.

1 inc’() {

2 local t, b;{
I ∧ arem(X := X + 1)

}
3 b := false;{
¬b ∧ I ∧ arem(X := X + 1)

}
4 < t := x; >

(¬b ∧ (x = X = t) ∧ arem(X := X + 1))
∨ (¬b ∧ (x = X 6= t) ∧ arem(X := X + 1))
∨ (b ∧ I ∧ arem(skip))

 //Applying the while rule and the hide-w rule

5 while (!b) {{
(¬b ∧ (x = X = t) ∧ arem(X := X + 1) ∧ wf(0)) ∨ (¬b ∧ (x = X 6= t) ∧ arem(X := X + 1) ∧ wf(1))

}
6 b := cas(&x, t, t+1);{

(b ∧ I ∧ arem(skip) ∧ wf(1)) ∨ (¬b ∧ I ∧ arem(X := X + 1) ∧ wf(1))
}

7 < t := x; >
(¬b ∧ (x = X = t) ∧ arem(X := X + 1) ∧ wf(1))
∨ (¬b ∧ (x = X 6= t) ∧ arem(X := X + 1) ∧ wf(2))
∨ (b ∧ I ∧ arem(skip) ∧ wf(1))


8 }{

I ∧ arem(skip)
}

9 }

Figure 13: Proving inc’ refines INC.

366



1 incOpt() {

2 local t, b, b’;{
I ∧ arem(X := X + 1)

}
3 b := false;{

(¬b ∧ I ∧ arem(X := X + 1)) ∨ (b ∧ I ∧ arem(skip))
}

//Applying the while rule and the hide-w rule
4 while (!b) {{

¬b ∧ I ∧ arem(X := X + 1) ∧ wf(1)
}{

(x = X) ∧ wf(1)
}
∗ (emp ∧ ¬b ∧ arem(X := X + 1)) //Applying the frame rule

5 b’ := false;{
(¬b’ ∧ (x = X) ∧ wf(1)) ∨ (b’ ∧ (x = X = t)) ∨ (b’ ∧ (x = X 6= t) ∧ wf(2))

}
//Applying the while rule

6 while (!b’) {{
(x = X) ∧ wf(0)

}
7 < t := x; >{

(x = X = t) ∨ ((x = X 6= t) ∧ wf(1))
}

8 < b’ := (t = x); >{
(b’ ∧ (x = X = t)) ∨ (b’ ∧ (x = X 6= t) ∧ wf(2)) ∨ (¬b’ ∧ (x = X 6= t) ∧ wf(1))

}
9 }{

(x = X = t) ∨ ((x = X 6= t) ∧ wf(2))
}
∗ (emp ∧ ¬b ∧ arem(X := X + 1)){

(¬b ∧ (x = X = t) ∧ arem(X := X + 1) ∧ wf(0))
∨ (¬b ∧ (x = X 6= t) ∧ arem(X := X + 1) ∧ wf(2))

}
10 b := cas(&x, t, t+1);{

(b ∧ I ∧ arem(skip) ∧ wf(1)) ∨ (¬b ∧ I ∧ arem(X := X + 1) ∧ wf(2))
}

11 }{
I ∧ arem(skip)

}
12 }

Figure 14: Proving incOpt refines INC.

1 incOpt’() {

2 local t, b, b’;{
I ∧ arem(X := X + 1)

}
3 b := false;{

(¬b ∧ I ∧ arem(X := X + 1)) ∨ (b ∧ I ∧ arem(skip))
}

//Applying the while rule and the hide-w rule
4 while (!b) {{

¬b ∧ I ∧ arem(X := X + 1) ∧ wf(0)
}{

x = X
}
∗ (emp ∧ ¬b ∧ arem(X := X + 1) ∧ wf(0)) //Applying the frame rule

5 < t := x; >{
(x = X = t) ∨ ((x = X 6= t) ∧ wf(1))

}
6 < b’ := (t = x); >{

(b’ ∧ (x = X = t)) ∨ ((x = X 6= t) ∧ wf(1))
}

//Applying the while rule
7 while (!b’) {{

(x = X) ∧ wf(0)
}

8 < t := x; >{
(x = X = t) ∨ ((x = X 6= t) ∧ wf(1))

}
9 < b’ := (t = x); >{

(b’ ∧ (x = X = t)) ∨ ((x = X 6= t) ∧ wf(1))
}

10 }{
(x = X = t) ∨ ((x = X 6= t) ∧ wf(1))

}
∗ (emp ∧ ¬b ∧ arem(X := X + 1) ∧ wf(0)){

(¬b ∧ (x = X = t) ∧ arem(X := X + 1) ∧ wf(0))
∨ (¬b ∧ (x = X 6= t) ∧ arem(X := X + 1) ∧ wf(1))

}
11 b := cas(&x, t, t+1);{

(b ∧ I ∧ arem(skip) ∧ wf(1)) ∨ (¬b ∧ I ∧ arem(X := X + 1) ∧ wf(1))
}

12 }{
I ∧ arem(skip)

}
13 }

Figure 15: Proving incOpt’ refines INC.

367



I
def
= (x = X)

R = G
def
= (∃n. (x = X = n) ∝ (x = X > n)) ∨ [I]

1 incOpt’() {

2 local t, b;{
I ∧ arem(X := X + 1)

}
3 b := false;{

(¬b ∧ I ∧ arem(X := X + 1)) ∨ (b ∧ I ∧ arem(skip))
}

//Applying the while rule and the hide-w rule
4 while (!b) {{

¬b ∧ I ∧ arem(X := X + 1) ∧ wf(0)
}{

x = X
}
∗ (emp ∧ ¬b ∧ arem(X := X + 1) ∧ wf(0)) //Applying the frame rule

5 < t := x; >{
(x = X = t = α) ∨ ((x = X > α) ∧ (t = α) ∧ wf(1))

}
6 < b’ := (t = x); >{

(b’ ∧ (x = X = t = α)) ∨ ((x = X > α) ∧ (t = α) ∧ wf(1))
}{

(b’ ∧ (x = X = t = α)) ∨ (x = X > α)
}

7 ((x = X = α) ∨ (x = X > α) ∧ wf(1))
//Applying the fr-conj rule //Applying the while rule and the hide-w rule

7 while (!b’) {{
(x = X > α) ∧ wf(0)

}
8 < t := x; >{

(x = X = t > α) ∨ ((x = X > t > α) ∧ wf(1))
}

9 < b’ := (t = x); >{
(b’ ∧ (x = X = t > α)) ∨ ((x = X > t > α) ∧ wf(1))

}{
(b’ ∧ (x = X = t ≥ α)) ∨ ((x = X > α) ∧ wf(1))

}
10 }{

(x = X = t = α) ∨ (x = X > α)
}

7 ((x = X = α) ∨ (x = X > α) ∧ wf(1)){
(x = X = t = α) ∨ ((x = X > α) ∧ wf(1))

}{
(x = X = t) ∨ ((x = X 6= t) ∧ wf(1))

}
∗ (emp ∧ ¬b ∧ arem(X := X + 1) ∧ wf(0)){

(¬b ∧ (x = X = t) ∧ arem(X := X + 1) ∧ wf(0))
∨ (¬b ∧ (x = X 6= t) ∧ arem(X := X + 1) ∧ wf(1))

}
11 b := cas(&x, t, t+1);{

(b ∧ I ∧ arem(skip) ∧ wf(1)) ∨ (¬b ∧ I ∧ arem(X := X + 1) ∧ wf(1))
}

12 }{
I ∧ arem(skip)

}
13 }

Figure 16: Proving incOpt’ refines INC (an alternative approach by using the fr-conj rule). α is a
logical variable.

368



inc
def
= (B := false; incLoop;)

incLoop
def
= (while(!B) { <T:=X>; incCas; })

incCas
def
= (B := cas(&X, T, T+1);)

1 incOpt() {

2 local t, b, b’;{
I ∧ arem(inc)

}
3 b := false;{

(¬b ∧ ¬B ∧ I ∧ arem(incLoop)) ∨ (b ∧ B ∧ I ∧ arem(skip))
}

//Applying the while rule and the hide-w rule
4 while (!b) {{

¬b ∧ ¬B ∧ I ∧ arem(incLoop) ∧ wf(0)
}

5 b’ := false;{
(¬b’ ∧ ¬b ∧ ¬B ∧ (x = X) ∧ arem(incLoop) ∧ wf(0))
∨ (b’ ∧ ¬b ∧ ¬B ∧ (x = X) ∧ (t = T) ∧ arem(incCas;incLoop) ∧ wf(0))

}
//Applying the while rule and the hide-w rule

6 while (!b’) {{
¬b’ ∧ ¬b ∧ ¬B ∧ (x = X) ∧ arem(incLoop) ∧ wf(0)

}{
¬b ∧ ¬B ∧ (x = X) ∧ arem(<T:=X>; incCas; incLoop) ∧ wf(1)

}
7 < t := x; >{

¬b ∧ ¬B ∧ (x = X) ∧ (t = T) ∧ arem(incCas; incLoop) ∧ wf(1)
}

8 < b’ := (t = x); >{
(¬b’ ∧ ¬b ∧ ¬B ∧ (x = X) ∧ arem(incLoop) ∧ wf(1))
∨ (b’ ∧ ¬b ∧ ¬B ∧ (x = X) ∧ (t = T) ∧ arem(incCas;incLoop) ∧ wf(1))

}
9 }{

b’ ∧ (x = X) ∧ (t = T) ∧ arem(incCas;incLoop) ∧ wf(0)
}

10 b := cas(&x, t, t+1);{
(b = B) ∧ I ∧ arem(incLoop) ∧ wf(1)

}{
(b ∧ B ∧ I ∧ arem(skip)) ∨ (¬b ∧ ¬B ∧ I ∧ arem(incLoop) ∧ wf(1))

}
11 }{

I ∧ arem(skip)
}

12 }

Figure 17: Proving incOpt refines inc.

369



incOpt
def
= (B := false; incOptLoop;)

incOptLoop
def
= (while(!B) { incOptInner; incCas; })

incOptInner
def
= (B’:=false; while(!B’) { <T:=X>; <B’:=(T=X)>; })

incCas
def
= (B := cas(&X, T, T+1);)

1 inc() {

2 local t, b;{
I ∧ arem(incOpt)

}
3 b := false;{

(¬b ∧ ¬B ∧ I ∧ arem(incOptLoop)) ∨ (b ∧ B ∧ I ∧ arem(skip))
}

//Applying the while rule and the hide-w rule
4 while (!b) {{

¬b ∧ ¬B ∧ I ∧ arem(incOptLoop) ∧ wf(0)
}

5 < t := x; >{
¬b ∧ ¬B ∧ (x = X) ∧ (t = T) ∧ arem(incCas; incOptLoop) ∧ wf(1)

}
6 b := cas(&x, t, t+1);{

(b = B) ∧ I ∧ arem(incOptLoop) ∧ wf(1)
}

7 }{
I ∧ arem(skip)

}
8 }

Figure 18: Proving inc refines incOpt.

370



4.2 TAS Lock and TTAS Lock

1 lock() {

2 local b, b’;

3 b := true;

4 while (b) {

5 < b’ := l; >

6 while (b’) {

7 < b’ := l; >

8 }

9 b := getAndSet(&l, true);

10 }

11 }

1 unlock() {

2 < l := false; >

3 }

1 LOCK() {

2 local B;

3 B := getAndSet(&L, true);

4 while (B) {

5 B := getAndSet(&L, true);

6 }

7 }

1 UNLOCK() {

2 < L := false; >

3 }

Figure 19: TTASLock (the left) and TASLock (the right).

In Figure 19, we show the implementations of TTAS lock and TAS lock [3]. We can prove the
equivalence between these two implementations. That is, we prove:

R,G, I ` {I} lock � LOCK {I} and R,G, I ` {I} LOCK � lock {I}
R,G, I ` {I} unlock � UNLOCK {I} and R,G, I ` {I} UNLOCK � unlock {I}

As in the example of counters, R and G specify the possible actions on the well-formed shared data
structure fenced by I. Here R, G and I can be defined as follows:

I
def
= (l = L) R = G

def
= (I ∝ I) ∨ [I]

The proofs for the refinements between unlock and UNLOCK are straightforward since their code is the
same. We show the proofs for the refinements between lock and LOCK in Figures 20 and 21.

371



GAS
def
= (B := getAndSet(&L, true))

LoopGAS
def
= (while(B) GAS;)

1 lock() {

2 local b, b’;{
I ∧ arem(LOCK)

}
3 b := true;{

(b ∧ I ∧ arem(GAS; LoopGAS)) ∨ (¬b ∧ I ∧ arem(skip))
}

//Applying the while rule and the hide-w rule
4 while (b) {{

b ∧ I ∧ arem(GAS; LoopGAS) ∧ wf(0)
}

5 < b’ := l; >{
(b ∧ b’ ∧ B ∧ I ∧ arem(LoopGAS) ∧ wf(1)) ∨ (b ∧ ¬b’ ∧ I ∧ arem(GAS; LoopGAS) ∧ wf(0))

}{
b ∧ I ∧ arem(GAS; LoopGAS)

}
//Applying the while rule and the hide-w rule

6 while (b’) {{
b ∧ I ∧ arem(GAS; LoopGAS) ∧ wf(0)

}
7 < b’ := l; >{

(b ∧ b’ ∧ B ∧ I ∧ arem(LoopGAS) ∧ wf(1)) ∨ (b ∧ ¬b’ ∧ I ∧ arem(GAS; LoopGAS) ∧ wf(0))
}{

(b ∧ b’ ∧ I ∧ arem(GAS; LoopGAS) ∧ wf(1)) ∨ (b ∧ ¬b’ ∧ I ∧ arem(GAS; LoopGAS) ∧ wf(0))
}

8 }{
b ∧ I ∧ arem(GAS; LoopGAS) ∧ wf(0)

}
9 b := getAndSet(&l, true);{

(b = B) ∧ I ∧ arem(LoopGAS) ∧ wf(1)
}{

(¬b ∧ I ∧ arem(skip) ∧ wf(1)) ∨ (b ∧ I ∧ arem(GAS; LoopGAS) ∧ wf(1))
}

10 }{
I ∧ arem(skip)

}
11 }

Figure 20: Proving TTASLock refines TASLock.

loopTTAS
def
= (while(b) {...})

1 LOCK() {

2 local B;{
I ∧ arem(lock)

}
3 B := getAndSet(&L, true);{

(b = B) ∧ I ∧ arem(loopTTAS) ∧ wf(1)
}{

(b = B) ∧ I ∧ arem(loopTTAS)
}

//Applying the while rule and the hide-w rule
4 while (B) {{

b ∧ B ∧ I ∧ arem(loopTTAS) ∧ wf(0)
}

5 B := getAndSet(&L, true);{
(b = B) ∧ I ∧ arem(loopTTAS) ∧ wf(1)

}
6 }{
¬b ∧ ¬B ∧ I ∧ arem(loopTTAS)

}{
I ∧ arem(skip)

}
7 }

Figure 21: Proving TASLock refines TTASLock.

372



4.3 Treiber Stack

1 push(v) {

2 local x, t, b;

3 b := false;

4 x := cons(v, null);

5 while (!b) {

6 < t := S; >

7 x.next := t;

8 b := cas(&S, t, x);

9 }

10 }

1 pop() {

2 local v, x, t, b;

3 b := false;

4 while (!b) {

5 < t := S; >

6 if (t = null) {

7 v := EMPTY;

8 b := true;

9 } else {

10 v := t.data;

11 x := t.next;

12 b := cas(&S, t, x);

13 }

14 }

15 return v;

16 }

1 PUSH(V) {

2 < Stk := V :: Stk; >

3 }

1 POP() {

2 local V;

3 < if (Stk = ε) {

4 V := EMPTY;

5 } else {

6 V := head(Stk);

7 Stk := tail(Stk);

8 }

9 >

10 return V;

11 }

Figure 22: Treiber stack.

In Figure 22, we show the implementation of Treiber stack (at the left of the figure), and the ab-
stract atomic operations (at the right). The abstract PUSH and POP operations manipulate an abstract
mathematical list Stk, and when popping from an empty stack, POP returns EMPTY.

Below we use our logic to prove the linearizability and lock-freedom together of Treiber stack. As
explained in the submitted paper, we only need to prove the following in our logic:

R,G, I ` {I ∧ (v = V)} push(v) � PUSH(V) {I} and R,G, I ` {I} pop � POP {I ∧ (v = V)}

By the u2b rule, the above is reduced to proving the following unary judgment:

R,G, I ` {I ∧ arem(PUSH(V)) ∧ (v = V)} push(v) {I ∧ arem(skip)}
and R,G, I ` {I ∧ arem(POP)} pop {I ∧ arem(skip) ∧ (v = V)}

We define the precise invariant I, the rely R and the guarantee G in Figure 23. The invariant I
in Figure 23 maps the value sequence A of the concrete list pointed to by S (denoted by (S = x) ∗
ls(x,A, null)) to the abstract stack Stk. To ensure there is no “ABA” problem [3], we follow Turon and
Wand [11] and introduce a write-only auxiliary variable GN to remember the nodes which used to be on
the stack but no longer are. The precise invariant for shared states should include those garbage nodes
(garb). GN does not affect the behaviors of the implementation and is introduced for verification only.

I
def
= ∃x,A. (Stk = A) ∧ (S = x) ∗ ls(x,A, null) ∗ garb

node(x, v, y)
def
= x 7→ (v, y) node(x)

def
= node(x, , )

ls(x,A, y)
def
= (x = y ∧A = ε ∧ emp) ∨ (x 6= y ∧ ∃z, v, A′. A = v ::A′ ∧ node(x, v, z) ∗ ls(z,A′, y))

ls(x, y)
def
= ∃A. ls(x,A, y)

garb
def
= ∃Sg. (GN = Sg) ∗ (~x∈Sg .node(x))

R = G
def
= (Push ∨ Pop ∨ Id) ∗ Id ∧ (I n I)

Push
def
= ∃x, y, v, A. ((Stk = A) ∧ (S = y)) ∝ ((Stk = v ::A) ∧ (S = x) ∗ node(x, v, y))

Pop
def
= ∃x, y, v, A, Sg. ((Stk = v ::A) ∧ (S = x) ∗ node(x, v, y) ∗ (GN = Sg))

∝ ((Stk = A) ∧ (S = y) ∗ node(x, v, y) ∗ (GN = Sg ∪ {x}))

Figure 23: Precise invariant, rely and guarantee of Treiber stack.

373



The guarantee includes the push and the pop actions. At the concrete side, the steps at line 8 for
push and line 12 for pop in Figure 22 are the linearization points, i.e., they correspond to the abstract
atomic PUSH and POP operations (thus the effect bits of the actions are true!). Note that when popping
a node, we also add the node to GN. The rely of a thread is the same as its guarantee.

We show the proof in Figure 24. For linearizability, we let the abstract operations be executed
simultaneously with the concrete code at linearization points. Note that when popping from an empty
stack, the linearization point is at line 5 (see pop in Figure 22), where the thread reads the stack pointer.

On lock-freedom, we know the failure of the cases at line 8 for push and line 12 for pop must be
caused by the successful progress of other threads. In the proof, we can increase the number of tokens
when the environment updates the S pointer (i.e., the environment does Push or Pop), thus are allowed
to do more loop iterations.

374



1 push(v) {

2 local x, t, b;{
I ∧ arem(PUSH(V)) ∧ v = V

}
3 b := false;

4 x := cons(v, null);{
(¬b ∧ I ∗ node(x, v, ) ∧ arem(PUSH(V)) ∧ (v = V))
∨ (b ∧ I ∧ arem(skip))

}
//Applying the while rule and the hide-w rule

5 while (!b) {{
¬b ∧ I ∗ node(x, v, ) ∧ arem(PUSH(V)) ∧ (v = V) ∧ wf(0)

}
6 < t := S; >

7 x.next := t;{
¬b ∧ I ∗ node(x, v, t) ∧ arem(PUSH(V)) ∧ (v = V)
∧∃a. (S = a) ∗ true ∧ (t = a ∧ wf(0) ∨ t 6= a ∧ wf(1))

}
8 b := cas(&S, t, x);{

(b ∧ I ∧ arem(skip) ∧ wf(1))
∨ (¬b ∧ I ∗ node(x, v, ) ∧ arem(PUSH(V)) ∧ (v = V) ∧ wf(1))

}
9 }{

I ∧ arem(skip)
}

10 }

IntSet GN;

//Auxiliary global variable for verification: popped garbage nodes

1 pop() {

2 local v, x, t, b;{
I ∧ arem(POP)

}
3 b := false;{

(¬b ∧ I ∧ arem(POP)) ∨ (b ∧ I ∧ arem(skip) ∧ (v = V))
}

//Applying the while rule and the hide-w rule
4 while (!b) {{

¬b ∧ I ∧ arem(POP) ∧ wf(0)
}

5 < t := S; >{
(t = null ∧ ¬b ∧ I ∧ arem(skip) ∧ (V = EMPTY) ∧ wf(1))
∨ (¬b ∧ I ∧ arem(POP) ∧ ∃a. (S = a) ∗ node(t) ∗ true ∧ (t = a ∧ wf(0) ∨ t 6= a ∧ wf(1)))

}
6 if (t = null) {{

t = null ∧ ¬b ∧ I ∧ arem(skip) ∧ (V = EMPTY)
}

7 v := EMPTY;

8 b := true;{
b ∧ I ∧ arem(skip) ∧ (v = V = EMPTY)

}
9 } else {{

¬b ∧ I ∧ arem(POP) ∧ ∃a. (S = a) ∗ node(t) ∗ true ∧ (t = a ∧ wf(0) ∨ t 6= a ∧ wf(1))
}

10 v := t.data;

11 x := t.next;{
¬b ∧ I ∧ arem(POP) ∧ ∃a. (S = a) ∗ node(t, v, x) ∗ true ∧ (t = a ∧ wf(0) ∨ t 6= a ∧ wf(1))

}
12 < b := cas(&S, t, x); GN := GN ∪ {t}; >{

(b ∧ I ∧ arem(skip) ∧ (v = V) ∧ wf(1)) ∨ (¬b ∧ I ∧ arem(POP) ∧ wf(1))
}

13 }

14 }{
I ∧ arem(skip) ∧ (v = V)

}
15 return v;

16 }

Figure 24: Proof outline for Treiber stack.

375



4.4 MS Lock-Free Queue

1 enq(v) {

2 local x, t, s, b;

3 b := false;

4 x := cons(v, null);

5 while (!b) {

6 < t := Tail; >

7 s := t.next;

8 if (t = Tail) {

9 if (s = null) {

10 b := cas(&(t.next), s, x);

11 if (b) {

12 cas(&Tail, t, x);

13 }

14 } else {

15 cas(&Tail, t, s);

16 }

17 }

18 }

19 }

1 deq() {

2 local v, s, h, t, b;

3 b := false;

4 while (!b) {

5 < h := Head; >

6 < t := Tail; >

7 s := h.next;

8 if (h = t) {

9 if (s = null) {

10 v := EMPTY;

11 b := true;

12 } else {

13 cas(&Tail, t, s);

14 }

15 } else {

16 v := s.val;

17 b := cas(&Head, h, s);

18 }

19 }

20 return v;

21 }

1 ENQ(V) {

2 < Q := Q :: V; >

3 }

1 DEQ() {

2 local V;

3 < if (Q = ε) {

4 V := EMPTY;

5 } else {

6 V := head(Q);

7 Q := tail(Q);

8 }

9 >

10 return V;

11 }

Figure 25: Variant of MS lock-free queue.

In Figure 25, we show a variant2 of Michael-Scott lock-free queue [8] (at the left of the figure) and the
abstract atomic operations (at the right). We use our logic to prove the linearizability and lock-freedom
together of the MS queue. By similar arguments as for Treiber stack in Section 4.3, here we only need
to prove the following:

R,G, I ` {I ∧ arem(ENQ(V)) ∧ (v = V)} enq(v) {I ∧ arem(skip)}
and R,G, I ` {I ∧ arem(DEQ)} deq {I ∧ arem(skip) ∧ (v = V)}

We define the precise invariant I, the rely R and the guarantee G in Figure 26, and show the proof in
Figures 27 and 28, The invariant I for the well-formed shared data structure is defined in the same way
as in linearizability proofs (e.g., [6]). Here we introduce an auxiliary variable GH to collect those nodes
which were dequeued from the list. Initially it is set to Head, and would not change any more. Then the
list segment from GH to Head includes all the dequeued nodes.

The rely R and the guarantee G contain three actions in addition to identity transitions: Enq, Deq and
Swing . The actions Enq and Deq insert and remove a node from the queue, and correspond to abstract
steps (the effect bits are true). The action Swing moves the Tail pointer, which does not correspond to
any abstract steps.

The proofs in Figures 27 and 28 are based on the linearizability proofs (e.g., [6]) but also take into
account the lock-freedom property.3 We need to specify in the loop invariants (in both Figures 27 and 28)

2We removed in deq the double check on the read of the Head pointer. As explained in our previous work [6], this double
check introduces a non-fixed linearization point in this queue algorithm, but removing it would not affect the correctness
of the algorithm. Currently we use a simplified setting and do not support non-fixed linearization points (since they are
orthogonal to our main focus in this paper on termination preservation). We can further extend the logic in this paper
with the techniques for verifying linearizability with non-fixed linearization points [6], then we would be able to verify the
original MS queue implementation. Due to the same reason, we remove the double check in DGLM queue implementation
as well.

3We actually found that the lock-freedom proofs in Hoffmann et al’s work [5] has bugs on computing the number of
tokens. The authors confirmed our finding in our private communications.

376



I
def
= ∃h, t, A. (Q = A) ∧ (Head = h) ∗ (Tail = t) ∗ lsq(h, t, A) ∗ garb(h)

node(x, v, y)
def
= x 7→ (v, y) node(x, y)

def
= node(x, , y) garb(h)

def
= ∃g. (GH = g) ∗ ls(g, h)

lsq(h, t, A)
def
= ∃v,A′, A′′. (v ::A = A′ ::A′′) ∧ ls(h,A′, t) ∗ tls(t, , A′′)

ls(x,A, y)
def
= (x = y ∧A = ε ∧ emp) ∨ (x 6= y ∧ ∃z, v, A′. A = v ::A′ ∧ node(x, v, z) ∗ ls(z,A′, y))

ls(x, y)
def
= ∃A. ls(x,A, y)

last2(t, v, x, v′)
def
= node(t, v, x) ∗ node(x, v′, null) last2(t, x)

def
= last2(t, , x, ) last2(t)

def
= last2(t, )

tls(t, x, A)
def
= ∃v, v′. (A = v ∧ node(t, v, x) ∧ x = null) ∨ (A = v ::v′ ∧ last2(t, v, x, v′)) tls(t, x)

def
= ∃A. tls(t, x, A)

R = G
def
= (Enq ∨ Deq ∨ Swing ∨ Id) ∗ Id ∧ (I n I)

Enq
def
= ∃v, v′, A, t, x. ((Q = A) ∧ (Tail = t) ∗ node(t, v, null)) ∝ ((Q = A ::v′) ∧ (Tail = t) ∗ last2(t, v, x, v′))

Deq
def
= ∃v,A, h, t, x, y. ((Q = v ::A) ∧ (Head = h) ∗ node(h, x) ∗ node(x, v, y) ∗ (Tail = t) ∧ h 6= t)

∝ ((Q = A) ∧ (Head = x) ∗ node(h, x) ∗ node(x, v, y) ∗ (Tail = t))

Swing
def
= ∃v, v′, t, x. (emp ∧ (Tail = t) ∗ last2(t, v, x, v′)) n (emp ∧ (Tail = x) ∗ last2(t, v, x, v′))

Figure 26: Precise invariant, rely and guarantee of MS lock-free queue. The auxiliary global variable GH

is set to Head in the initialization method.

the least number n of tokens to execute the loops (i.e., the thread can only run the loop for no more
than n rounds before it or its environment fulfills some source steps). For instance, in the proof for enq

(Figure 27), when the Tail pointer lags behind the last node, we need to have at least two tokens to first
advance the Tail pointer in one iteration and then enqueue a node in another iteration. Thus we define
tw (in Figure 27) saying that we have at least two tokens if Tail lags behind and one token otherwise.
It is part of our loop invariants in both the proofs for enq and deq. Moreover, to maintain this loop
invariant, we should get two more tokens whenever the environment enqueues a node (such that the Tail

pointer lags behind the last node) and makes the cas of the current thread fail.

377



tw(t)
def
= (Tail = t) ∗ ((last2(t) ∧ wf(2)) ∨ (node(t, null) ∧ wf(1))) tw

def
= ∃t. tw(t)

tw’(t, n)
def
= (Tail = t) ∗ ((last2(t, n) ∧ wf(1)) ∨ (node(t, n) ∧ n = null ∧ wf(0)))

tw’(t)
def
= tw’(t, ) tw’

def
= ∃t. tw’(t)

newTail(n)
def
= (node(n, null) ∗ (Tail = n) ∧ wf(1)) ∨ (last2(n) ∗ (Tail = n) ∧ wf(2))
∨ (∃x, y. node(n, x) ∗ ls(x, y) ∗ tw(y) ∧ wf(2))

readTailEnvAdv(t, n)
def
= node(t, n) ∗ newTail(n) readTailEnvAdv(t)

def
= readTailEnvAdv(t, )

readTail(t)
def
= tw’(t) ∨ readTailEnvAdv(t)

readTailNextNullEnv(t, n)
def
= (n = null) ∧ ((Tail = t) ∗ last2(t) ∧ wf(2)) ∨ readTailEnvAdv(t))

readTailNext(t, n)
def
= tw’(t, n) ∨ readTailEnvAdv(t, n) ∨ readTailNextNullEnv(t, n)

readTailNextNull(t, n)
def
= ((Tail = t) ∗ node(t, n) ∧ n = null ∧ wf(0)) ∨ readTailNextNullEnv(t, n)

readTailNextNonnull(t, n)
def
= ((Tail = t) ∗ last2(t, n) ∧ wf(1)) ∨ readTailEnvAdv(t, n)

1 enq(v) {

2 local x, t, s, b;{
I ∧ arem(ENQ(V)) ∧ v = V

}
3 b := false;

4 x := cons(v, null);{
(¬b ∧ I ∗ node(x, v, null) ∧ arem(ENQ(V)) ∧ (v = V))
∨ (b ∧ I ∧ arem(skip))

}
//Applying the while rule and the hide-w rule

5 while (!b) {{
¬b ∧ (I ∧ tw’ ∗ true) ∗ node(x, v, null) ∧ arem(ENQ(V)) ∧ (v = V)

}
6 < t := Tail; >{

¬b ∧ (I ∧ readTail(t) ∗ true) ∗ node(x, v, null) ∧ arem(ENQ(V)) ∧ (v = V)
}

7 s := t.next;{
¬b ∧ (I ∧ readTailNext(t, s) ∗ true) ∗ node(x, v, null) ∧ arem(ENQ(V)) ∧ (v = V)

}
8 if (t = Tail) {{

¬b ∧ (I ∧ readTailNext(t, s) ∗ true) ∗ node(x, v, null) ∧ arem(ENQ(V)) ∧ (v = V)
}

9 if (s = null) {{
¬b ∧ (I ∧ readTailNextNull(t, s) ∗ true) ∗ node(x, v, null) ∧ arem(ENQ(V)) ∧ (v = V)

}
10 b := cas(&(t.next), s, x);{

(b ∧ I ∧ readTailNextNonnull(t, x) ∗ true ∧ arem(skip))
∨ (¬b ∧ (I ∧ readTailNextNullEnv(t, s) ∗ true) ∗ node(x, v, null) ∧ arem(ENQ(V)) ∧ (v = V))

}
11 if (b) {{

b ∧ I ∧ readTailNextNonnull(t, x) ∗ true ∧ arem(skip)
}

12 cas(&Tail, t, x);{
b ∧ I ∧ arem(skip)

}
13 }{

(b ∧ I ∧ arem(skip))
∨ (¬b ∧ (I ∧ tw ∗ true) ∗ node(x, v, null) ∧ arem(ENQ(V)) ∧ (v = V))

}
14 } else {{

¬b ∧ (I ∧ readTailNextNonnull(t, s) ∗ true) ∗ node(x, v, null) ∧ arem(ENQ(V)) ∧ (v = V)
}

15 cas(&Tail, t, s);{
¬b ∧ (I ∧ tw ∗ true) ∗ node(x, v, null) ∧ arem(ENQ(V)) ∧ (v = V)

}
16 }

17 }{
(¬b ∧ (I ∧ tw ∗ true) ∗ node(x, v, null) ∧ arem(ENQ(V)) ∧ (v = V))
∨ (b ∧ I ∧ arem(skip))

}
18 }{

I ∧ arem(skip)
}

19 }

Figure 27: Proof outline for enq of MS lock-free queue.

378



readHeadEnv(h, n, x)
def
= (h 6= x) ∧ node(h, n) ∗ ls(n, x) ∗ (Head = x)

readHead(h, x)
def
= ((h = x) ∧ (Head = x)) ∨ (readHeadEnv(h, , x) ∗ wf(1)) readHead(h)

def
= readHead(h, )

readTailAfterHead(h, t)
def
= ∃x. readHead(h, x) ∗ ls(x, t) ∗ readTail(t)

readHeadNextAfterTail(h, n, t)
def
= (((Head = h) ∧ (h = t)) ∗ readTailNext(t, n))
∨ ((Head = h) ∗ node(h, n) ∗ ls(n, t) ∗ readTail(t))
∨ (∃x. readHeadEnv(h, n, x) ∗ wf(1) ∗ ls(x, t) ∗ readTail(t))

readHeadNextVal(h, n, v)
def
= ((Head = h) ∗ node(h, n) ∗ node(n, v, ) ∗ (Tail = n))
∨ (∃x, t. (Head = h) ∗ node(h, n) ∗ node(n, v, x) ∗ ls(x, t) ∗ (Tail = t))
∨ (readHeadEnv(h, n, ) ∗ tw)

1 deq() {

2 local v, s, h, t, b;{
I ∧ arem(DEQ)

}
3 b := false;{

(¬b ∧ I ∧ arem(DEQ)) ∨ (b ∧ I ∧ arem(skip) ∧ (v = V))
}

//Applying the while rule and the hide-w rule
4 while (!b) {{

¬b ∧ I ∧ tw’ ∗ true ∧ arem(DEQ)
}

5 < h := Head; >{
¬b ∧ I ∧ tw’ ∗ readHead(h) ∗ true ∧ arem(DEQ)

}
6 < t := Tail; >{

¬b ∧ I ∧ readTailAfterHead(h, t) ∗ true ∧ arem(DEQ)
}

7 s := h.next;{
¬b ∧ I ∧ readHeadNextAfterTail(h, s, t) ∗ true
∧ ((h = t ∧ s = null ∧ arem(skip) ∧ V = EMPTY) ∨ ((h 6= t ∨ s 6= null) ∧ arem(DEQ)))

}
8 if (h = t) {

9 if (s = null) {{
¬b ∧ I ∧ h = t ∧ s = null ∧ arem(skip) ∧ V = EMPTY

}
10 v := EMPTY;

11 b := true;{
b ∧ I ∧ arem(skip) ∧ (v = V = EMPTY)

}
12 } else {{

¬b ∧ I ∧ readHeadNextAfterTail(h, s, t) ∗ true ∧ h = t ∧ s 6= null ∧ arem(DEQ)
}{

¬b ∧ I ∧ readTailNextNonnull(t, s) ∗ true ∧ arem(DEQ)
}

13 cas(&Tail, t, s);{
¬b ∧ I ∧ tw ∗ true ∧ arem(DEQ)

}
14 }

15 } else {{
¬b ∧ I ∧ readHeadNextAfterTail(h, s, t) ∗ true ∧ h 6= t ∧ arem(DEQ)

}
16 v := s.val;{

¬b ∧ I ∧ readHeadNextAfterTail(h, s, t) ∗ true ∧ node(s, v, ) ∗ true ∧ h 6= t ∧ arem(DEQ)
}{

¬b ∧ I ∧ readHeadNextVal(h, s, v) ∗ true ∧ arem(DEQ)
}

17 < b := cas(&Head, h, s); >{
(¬b ∧ I ∧ tw ∗ true ∧ arem(DEQ)) ∨ (b ∧ I ∧ arem(skip) ∧ (v = V))

}
18 }{

(¬b ∧ I ∧ tw ∗ true ∧ arem(DEQ)) ∨ (b ∧ I ∧ arem(skip) ∧ (v = V))
}

19 }{
I ∧ arem(skip) ∧ (v = V)

}
20 return v;

21 }

Figure 28: Proof outline for a variant of deq in MS lock-free queue.

379



4.5 DGLM Lock-Free Queue

1 enq(v) {

2 local x, t, s, b;

3 b := false;

4 x := cons(v, null);

5 while (!b) {

6 < t := Tail; >

7 s := t.next;

8 if (t = Tail) {

9 if (s = null) {

10 b := cas(&(t.next), s, x);

11 if (b) {

12 cas(&Tail, t, x);

13 }

14 } else {

15 cas(&Tail, t, s);

16 }

17 }

18 }

19 }

1 deq() {

2 local v, s, h, t, b;

3 b := false;

4 while (!b) {

5 < h := Head; >

6 s := h.next;

7 if (s = null) {

8 v := EMPTY;

9 b := true;

10 } else {

11 v := s.val;

12 b := cas(&Head, h, s);

13 if (b) {

14 < t := Tail; >

15 if (h = t) {

16 cas(&Tail, t, s);

17 }

18 }

19 }

20 }

21 return v;

22 }

Figure 29: Variant of DGLM lock-free queue.

Doherty et al. [1] present an optimized version of the deq method in MS lock-free queue, and verify
linearizability of the algorithm by constructing a forward and a backward simulations. Here we prove its
linearizability and lock-freedom together. We show a variant4 of the code in Figure 29. Its enq method
is the same as the MS lock-free queue. For deq, it tests whether Tail points to the sentinel node (line 15

in Figure 29) only after Head has been updated (line 12), while in Michael and Scott’s version, the test
(line 8 in the deq of Figure 25) is performed before knowing the queue is not empty.

The precise invariant I and the rely/guarantee conditions R and G are almost the same as MS lock-
free queue, as shown in Figure 30. The proof for enq is the same as that of MS lock-free queue. In
Figure 31, we show the proof of the deq method for the DGLM queue using our logic. Different from
the deq method of MS queue, here we would not first use one iteration to advance the Tail pointer
before dequeuing nodes (instead, only after we have dequeued nodes, we may advance the Tail pointer,
as shown at line 16 of the deq method in Figure 29). Thus in the loop invariant, we no longer need to
have at least two tokens when Tail lags behind the last node. We can just use wf(1) as the loop invariant
on the number of tokens, for all cases.

I
def
= ∃h, t, A. (&Q Z⇒ A) ∧ (&Head 7→ h) ∗ (&Tail 7→ t) ∗ (lsq(h, t, A) ∨ cross(h, t, A)) ∗ garb(h)

cross(h, t, A)
def
= (A = ε) ∧ node(t, h) ∗ node(h, null)

R = G
def
= (Enq ∨ Deq ∨ Swing ∨ Id) ∗ Id ∧ (I n I)

Deq
def
= ∃v,A, h, x, y. ((&Q Z⇒ v ::A) ∧ (&Head 7→ h) ∗ node(h, x) ∗ node(x, v, y))

∝ ((&Q Z⇒ A) ∧ (&Head 7→ x) ∗ node(h, x) ∗ node(x, v, y))

Figure 30: Precise invariant, rely and guarantee of DGLM lock-free queue. Here lsq, garb, Enq and Swing
are the same as those for MS queue.

4As for MS lock-free queue, we also remove the double check on the read of Head in the deq method of DGLM queue.

380



readHeadNextNullEnv(h, n)
def
= (n = null) ∧ ∃x, y. node(h, x) ∗ ((node(x, y) ∗ (&Head 7→ h)) ∨ (ls(x, y) ∗ (&Head 7→ y)))

readHeadNext(h, n)
def
= (node(h, n) ∗ (&Head 7→ h)) ∨ (readHeadEnv(h, n, x) ∗ wf(1)) ∨ readHeadNextNullEnv(h, n)

readHeadNextVal(h, n, v)
def
= ((&Head 7→ h) ∗ node(h, n) ∗ node(n, v, )) ∨ (readHeadEnv(h, n, x) ∗ wf(1))

readTailEnvAdv(t, n)
def
= ∃x. (x 6= t) ∧ node(t, n) ∗ ls(n, x) ∗ (&Tail 7→ x)

readTail(t)
def
= ((&Tail 7→ t) ∗ tls(t, )) ∨ readTailEnvAdv(t, )

readLagTail(t, n)
def
= ((&Tail 7→ t) ∗ last2(t, n)) ∨ readTailEnvAdv(t, n)

1 deq() {

2 local v, s, h, t, b;{
I ∧ arem(DEQ)

}
3 b := false;{

(¬b ∧ I ∧ arem(DEQ)) ∨ (b ∧ I ∧ arem(skip) ∧ (v = V))
}

//Applying the while rule and the hide-w rule
4 while (!b) {{

¬b ∧ I ∧ arem(DEQ) ∧ wf(0)
}

5 < h := Head; >{
¬b ∧ I ∧ readHead(h) ∗ true ∧ arem(DEQ)

}
6 s := h.next;{

¬b ∧ I ∧ readHeadNext(h, s) ∗ true
∧ ((s = null ∧ arem(skip) ∧ V = EMPTY) ∨ (s 6= null ∧ arem(DEQ)))

}
7 if (s = null) {{

¬b ∧ I ∧ s = null ∧ arem(skip) ∧ V = EMPTY
}

8 v := EMPTY;

9 b := true;{
b ∧ I ∧ arem(skip) ∧ (v = V = EMPTY)

}
10 } else {{

¬b ∧ I ∧ readHeadNext(h, s) ∗ true ∧ (s 6= null) ∧ arem(DEQ))
}

11 v := s.val;{
¬b ∧ I ∧ readHeadNextVal(h, s, v) ∗ true ∧ arem(DEQ))

}
12 b := cas(&Head, h, s);{

(b ∧ I ∧ node(h, s) ∗ node(s, ) ∗ true ∧ arem(skip) ∧ (v = V)) ∨ (¬b ∧ I ∧ arem(DEQ) ∧ wf(1))
}

13 if (b) {{
b ∧ I ∧ node(h, s) ∗ node(s, ) ∗ true ∧ arem(skip) ∧ (v = V)

}
14 < t := Tail; >{

b ∧ I ∧ node(h, s) ∗ node(s, ) ∗ true ∧ readTail(t) ∗ true ∧ arem(skip) ∧ (v = V)
}

15 if (h = t) {{
b ∧ I ∧ readLagTail(t, s) ∗ true ∧ arem(skip) ∧ (v = V)

}
16 cas(&Tail, t, s);

17 }{
b ∧ I ∧ arem(skip) ∧ (v = V)

}
18 }

19 }{
(¬b ∧ I ∧ arem(DEQ) ∧ wf(1)) ∨ (b ∧ I ∧ arem(skip) ∧ (v = V))

}
20 }{

I ∧ arem(skip) ∧ (v = V)
}

21 return v;

22 }

Figure 31: Proof outline for a variant of deq in DGLM lock-free queue. Here readHead and readHeadEnv
are the same as those for MS queue.

381



4.6 Synchronous Queue

1 initialize() {

2 local sentinel;

3 sentinel := new Node(null, DATA, null);

4 GH := Head := Tail := sentinel;

5 }

1 enq(v) {

2 local t, h, n, offer, b, v’;

3 b := false;

4 offer := new Node(v, DATA, null);

5 while (!b) {

6 t := Tail;

7 h := Head;

8 if (h = t || t.type = DATA) {

9 n := t.next;

10 if (t = Tail) {

11 if (n != null) {

12 cas(&Tail, t, n);

13 } else if (cas(&(t.next), n, offer)){

14 cas(&Tail, t, offer);

15 v’ := offer.data;

16 while (v’ = v) { v’ := offer.data; }

17 h := Head;

18 if (offer = h.next)

19 cas(&Head, h, offer);

20 b := true;

21 }

22 }

23 } else {

24 n := h.next;

25 if (t = Tail && h = Head && n != null) {

26 b := cas(&(n.data), null, v);

27 cas(Head, h, n);

28 if (b) free(offer);

29 }

30 }

31 }

32 }

1 deq() {

2 local t, h, n, req, b, v;

3 b := false;

4 req := new Node(null, REQ, null);

5 while (!b) {

6 t := Tail;

7 h := Head;

8 if (h = t || t.type = REQ) {

9 n := t.next;

10 if (t = Tail) {

11 if (n != null) {

12 cas(&Tail, t, n);

13 } else if (cas(&(t.next), n, req)){

14 cas(&Tail, t, req);

15 v := req.data;

16 while (v = null) { v := req.data; }

17 h := Head;

18 if (req = h.next)

19 cas(&Head, h, req);

20 b := true;

21 }

22 }

23 } else {

24 n := h.next;

25 if (t = Tail && h = Head && n != null) {

26 v := n.data;

27 if (v != null) {

28 b := cas(&(n.data), v, null);

29 }

30 cas(Head, h, n);

31 if (b) free(offer);

32 }

33 }

34 }

35 return v;

36 }

Figure 32: Synchronous dual queue. Here GH is an auxiliary variable.

A synchronous queue is a concurrent transfer channel in which each producer presenting an item must
wait for a consumer to take this item, and vice versa. We show the implementation of synchronous queue
(used in Java 6 [9]) in Figure 32. It is based on the Michael-Scott queue. At any time, the queue contains
either enq reservations (nodes whose type fields are DATA), deq reservations (nodes whose type fields
are REQ), or it is empty. In the enq method (also known as put), a thread first checks if the queue is
empty or contains DATA-type reservations (line 8 in enq in Figure 32). If so, it enqueues (puts in) its new
DATA-type reservation (lines 13 and 14 in enq), and waits at the item for a deq thread to take it (lines 15
and 16 in enq). When a deq thread finds this reservation, it will take away the data contained in the
item (line 26 in deq), set the data field to null (line 28 in deq) and remove this item (line 30 in deq).
Also when the waiting enq thread finds that the item has been taken, it can try to remove the item as
well (lines 18 and 19 in enq). Symmetrically, a deq thread first checks if the queue is empty or contains

382



REQ-type reservations (line 8 in deq), and if so, it enqueues (puts in) its new REQ-type reservation (lines 13
and 14 in deq), and waits for a enq thread to fulfill it (lines 15 and 16 in deq).

The synchronous queue does not satisfy the traditional linearizability definition [4]. But we can see
that the steps for a thread to put in its reservation (which are actually like the enq method in MS queue
in Figure 25) are “linearizable” and “lock-free” (in that the multiple steps can be abstracted as an atomic
operation), and the steps for taking away the data or fulfilling the reservation (which are like the deq

method in MS queue) are also “linearizable” and “lock-free”. The waiting steps are certainly not “lock-
free” which require interactions from other threads to progress. We can define non-atomic abstract code
and prove that the synchronous queue implementation refines it.

1 ENQ(V) {

2 local nd, mustWait, va;

3 < nd := dequeue(D);

4 mustWait := (nd = null);

5 if (mustWait) { nd := enqueue(E, V); }

6 >

7 if (mustWait) {

8 va := nd.data;

9 while(va = V) { va := nd.data; }

10 }

11 else {

12 nd.data := V;

13 }

14 }

1 DEQ() {

2 local nd, mustWait, V;

3 < nd := dequeue(E);

4 mustWait := (nd = null);

5 if (mustWait) { nd := enqueue(D, null); }

6 >

7 if (mustWait) {

8 V := nd.data;

9 while(V = null) { V := nd.data; }

10 }

11 else {

12 V := nd.data;

13 nd.data := null;

14 }

15 return V;

16 }

Figure 33: Abstract synchronous queue.

As shown in Figure 33, the abstract code follows Java SE 5.0 SynchronousQueue class [9]. We maintain
two abstract queues: D for waiting dequeuers and E for waiting enqueuers. Each queue is a mathematical
list of node addresses (as an abstraction/simplification of a linked list). The command enqueue(E, v)

allocates a new abstract node with data v and inserts its address at the tail of the queue E, and returns
the address. The command dequeue(E) removes the first item (a node address) from the queue E and
returns it if E is not empty (E 6= ε), and returns null otherwise.

In the ENQ method, a thread first checks if D is empty (line 4 of ENQ in Figure 33), and if so, it
atomically puts in its reservation to E (line 5). Then it waits for a deq thread to take away the data in
the reservation (lines 8 and 9). If D is not empty, then it dequeues a reservation from D and writes its
enqueued value V to the data field of the reservation (line 12). The DEQ method is symmetric.

To simplify the proof, we assume the abstract state always contain a dummy node whose data is
null. The node is never accessed by the code. It is used to correspond to the initial sentinel node of the
concrete list.

To prove the concrete implementation in Figure 32 refines the abstract operations in Figure 33 using
our logic, we first define the invariant I and the rely and guarantee conditions R and G in Figure 34.

The invariant I says, the shared memory contains the queue Q and some garbage nodes Garb which
were removed from the queue by either enq or deq. As usual we introduce an auxiliary variable GH to
collect those nodes which were removed from the list. Initially it is set to Head, and would not change any
more. Then the list segment (Gls) from GH to Head includes all the removed nodes. Also these removed
nodes must have been sentinel nodes (stnl), i.e., those DATA-type nodes whose data has been taken and
those REQ-type nodes whose data has been fulfilled. The queue Q is either a DATA-type queue (and the
abstract D must be empty) or a REQ-type queue (and the abstract E must be empty). And it always
contains one or two sentinel nodes (the two-sentinel case occurs since the Head pointer may lag behind

383



the new sentinel node). Also as in MS queue, the Tail pointer may lag behind the last node. But if Head
lags behind the new sentinel node, Tail would not be equal to Head, as indicated by the implementation
in Figure 32.

The rely and guarantee conditions contain six possible actions in addition to the identity transitions.
AdvHead and AdvTail are to swing the Head and Tail pointers when they lag behind. These two actions
do not correspond to any abstract step. ResvE and ResvD each inserts a new node at the tail of the
queue. Put fulfills the data field of a REQ-type node at the head of the queue, and Take takes away the
data of a DATA-type node. They both make a normal node into a sentinel node. The four actions ResvE ,
ResvD, Put and Take correspond to abstract steps and thus their effect bits must be true.

We show the proofs of enq in Figures 37 and 38, with some auxiliary predicates defined in Figures 35
and 36. Proofs for deq is symmetric and omitted here. Similar to the proofs for MS queue, we need to
specify in the loop invariants the least number n of tokens to execute the loops (i.e., the thread can only
run the loop for no more than n rounds before it or its environment fulfills some source steps). In the
proof for enq (Figure 37), when either the Head or the Tail pointer lags behind, we need to have at least
two tokens (as defined by loopInv in Figure 35). To maintain this loop invariant, we should get two more
tokens whenever the environment inserts a node at the tail (such that the Tail pointer lags behind the
last node), and whenever the environment makes a normal node becomes a sentinel node (such that the
Head pointer lags behind the new sentinel).

384



I
def
= ∃h, t. (Head

.
= h) ∗ (Tail

.
= t) ∗ Q(h, t) ∗ Garb(h)

Q(h, t)
def
= ∃b. Qb(h, t)

Qb(h, t)
def
= ∃L. Qb(h, t, L) ∗ ((b = DATA ∧ (E

.
= L) ∗ (D

.
= ε)) ∨ (b = REQ ∧ (D

.
= L) ∗ (E

.
= ε)))

Qb(h, t, L)
def
= Ssb(h, t, null) ∧ L = ε
∨∃x,X. Ssb(h, t, x) ∗ Qnb(x, null, X) ∧ L = X ::ε
∨∃x, L′, L′′. Ssb(h, , x) ∗ Qlsb(x, t, L

′) ∗ Qtlb(t, , L
′′) ∧ L = L′ ::L′′

Garb(h)
def
= ∃g. (GH

.
= g) ∗ Gls(g, h)

Ss(x, y, z)
def
= ∃b. Ssb(x, y, z) Ssb(x, y, z)

def
= (Stnl(x, z) ∧ (x = y)) ∨ (Stnl(x, y) ∗ Stnlb(y, z))

Gls(x, y)
def
= (x = y) ∨ (x 6= y ∧ ∃z. Stnl(x, z) ∗ Gls(z, y))

Qlsb(x, y, L)
def
= (x = y ∧ L = ε) ∨ (x 6= y ∧ ∃z,X,L′. L = X ::L′ ∧ Qnb(x, z,X) ∗ Qlsb(z, y, L

′))

Qtlb(x, y, L)
def
= (∃X. Qnb(x, y,X) ∧ y = null ∧ L = X ::ε)
∨ (∃X,Y. Qnb(x, y,X) ∗ Qnb(y, null, Y ) ∧ L = X ::Y ::ε)

Stnl(x, y)
def
= ∃b. Stnlb(x, , y, ) Stnlb(x, v, y,X)

def
= stnlb(x, v, y) ∧ NODE(X, v)

Qnb(x, y,X)
def
= Qnb(x, , y,X) Qnb(x, v, y,X)

def
= qnb(x, v, y) ∧ NODE(X, v)

stnlb(x, v, y)
def
= nodeb(x, v, y) ∧ ((b = DATA ∧ v = null) ∨ (b = REQ ∧ v 6= null))

qnb(x, v, y)
def
= nodeb(x, v, y) ∧ ((b = DATA ∧ v 6= null) ∨ (b = REQ ∧ v = null))

nodeb(x, v, y)
def
= x 7→ (v, b, y) NODE(X,V )

def
= X Z⇒ (V )

stnl(x, y)
def
= ∃b. stnlb(x, , y) qn(x, y)

def
= ∃b. qnb(x, , y) node(x, y)

def
= ∃b. nodeb(x, , y)

stnlb(x, y)
def
= stnlb(x, , y) nodeb(x, y)

def
= nodeb(x, , y) node(x, v, y)

def
= ∃b. nodeb(x, v, y)

R = G
def
= (AdvHead ∨ AdvTail ∨ ResvE ∨ ResvD ∨ Put ∨ Take ∨ Id) ∗ Id ∧ (I n I)

AdvHead
def
= ∃x, y, z, s. [stnl(x, y) ∗ stnl(y, z) ∧ emp] ∗ ((Head

.
= x) n (Head

.
= y))

AdvTail
def
= ∃x, y. [node(x, y) ∗ node(y, null) ∧ emp] ∗ ((Tail

.
= x) n (Tail

.
= y))

ResvE
def
= ∃v, v′, b, t, x, L,X. ((Tail = t) ∗ nodeb(t, v, null) ∧ (E = L) ∗ (D = ε))

∝ ((Tail = t) ∗ nodeb(t, v, x) ∗ qnDATA(x, v′, null) ∧ (NODE(X, v′) ∗ (E = L ::X) ∗ (D = ε)))

ResvD
def
= ∃v, v′, b, t, x, L,X. ((Tail = t) ∗ nodeb(t, v, null) ∧ (E = ε) ∗ (D = L))

∝ ((Tail = t) ∗ nodeb(t, v, x) ∗ qnREQ(x, v′, null) ∧ (NODE(X, v′) ∗ (E = ε) ∗ (D = L ::X)))

Put
def
= ∃h, t, x, y,X,L. [(Head

.
= h) ∗ (Tail

.
= t) ∗ Stnl(h, x) ∗ (E

.
= ε) ∧ (h 6= t)]

∗ ((QnREQ(x, y,X) ∗ (D
.
= X ::L)) ∝ (StnlREQ(x, y,X) ∗ (D

.
= L))

Take
def
= ∃h, t, x, y,X,L. [(Head

.
= h) ∗ (Tail

.
= t) ∗ Stnl(h, x) ∗ (D

.
= ε) ∧ (h 6= t)]

∗ ((QnDATA(x, y,X) ∗ (E
.
= X ::L)) ∝ (StnlDATA(x, y,X) ∗ (E

.
= L))

Figure 34: Precise invariant, rely and guarantee of synchronous queue. Here we use E1
.
= E2 and E1

.
= E2

short for (E1 = E2) ∧ emp and (E1 = E2) ∧ emp respectively.

385



node2p(t, n, x)
def
= nodep(t, n) ∗ node(n, x) node2(t, n, x)

def
= ∃p. node2p(t, n, x)

stnl2p(h, n, v)
def
= stnl(h, n) ∗ stnlp(n, v, ) stnl2p(h)

def
= stnl2p(h, , ) stnl2(h)

def
= ∃p. stnl2p(h)

stnl1p(h, n, v)
def
= stnl(h, n) ∗ qnp(n, v, ) stnl1p(h)

def
= stnl1p(h, , ) stnl1(h)

def
= ∃p. stnl1p(h)

gls(x, y)
def
= (x = y) ∨ (x 6= y ∧ ∃z. stnl(x, z) ∗ gls(z, y))

ls(x, y)
def
= (x = y) ∨ (x 6= y ∧ ∃z. node(x, z) ∗ ls(z, y))

lagTail
def
= node2(Tail, , null) nonlagTail

def
= node(Tail, null) tail

def
= lagTail ∨ nonlagTail

lagHead
def
= stnl2(Head) nonlagHead

def
= stnl(Head, null) ∨ stnl1(Head) head

def
= lagHead ∨ nonlagHead

loopInv
def
= ((lagTail ∨ lagHead) ∧ wf(2)) ∨ (nonlagTail ∧ nonlagHead ∧ wf(1))

loopBody
def
= ((lagTail ∨ lagHead) ∧ wf(1)) ∨ (nonlagTail ∧ nonlagHead ∧ wf(0))

newTailp(n, v)
def
= (nodep(n, v, null) ∧ (n = Tail) ∧ wf(1))
∨ (∃x. nodep(n, v, x) ∗ node(x, null) ∧ (n = Tail) ∧ wf(2))
∨ (∃x. nodep(n, v, x) ∗ ls(x, Tail) ∗ tail ∧ wf(2))

newTail(n)
def
= ∃p, v. newTailp(n, v) NewTailp(n, v,N)

def
= newTailp(n, v) ∗ NODE(N, v)

readTailEnvAdvp,q(t, n, v)
def
= nodep(t, n) ∗ newTailq(n, v)

readTailEnvAdvp(t)
def
= ∃q. readTailEnvAdvp,q(t, , ) readTailEnvAdvp(t, n)

def
= ∃q. readTailEnvAdvp,q(t, n, )

readTailp(t)
def
= (t = Tail ∧ (node2p(t, , null) ∨ nodep(t, null))) ∨ readTailEnvAdvp(t)

readTailNextNullEnvp(t, n)
def
= (n = null) ∧ ((t = Tail ∧ node2p(t, , null) ∧ wf(2)) ∨ readTailEnvAdvp(t))

readTailNextp(t, n)
def
= (t = Tail ∧ (node2p(t, n, null) ∨ (nodep(t, n) ∧ n = null)))
∨ readTailEnvAdvp(t, n) ∨ readTailNextNullEnvp(t, n)

readTailNextNonnullp(t, n)
def
= (t = Tail ∧ node2p(t, n, null) ∧ wf(1)) ∨ readTailEnvAdvp(t, n)

readTailNextNullp(t, n)
def
= (t = Tail ∧ nodep(t, n) ∧ n = null ∧ wf(0)) ∨ readTailNextNullEnvp(t, n)

EnvXchgq(n, v,N)
def
= ∃x. Stnlq(n, v, x,N) ∗ ls(x, Tail) ∗ tail ∧ (stnl(Head, n) ∨ gls(n, Head))

EnvXchgReadHeadq(n, v,N, h)
def
= ∃x. Stnlq(n, v, x,N) ∗ ls(x, Tail) ∗ tail ∧ (stnl(h, n) ∨ gls(n, h)) ∧ gls(h, Head)

EnvXchgLagHeadq(n, v,N, h)
def
= ∃x. Stnlq(n, v, x,N) ∗ ls(x, Tail) ∗ tail ∧ stnl(h, n) ∧ gls(h, Head)

EnvXchgNonlagHeadq(n, v,N)
def
= ∃x. Stnlq(n, v, x,N) ∗ ls(x, Tail) ∗ tail ∧ gls(n, Head)

Resvq(t, n, v, v
′, N)

def
= (t = Tail ∧ node(t, n) ∗ Qnq(n, v, null, N))
∨ node(t, n) ∗ NewTailq(n, v,N) ∨ node(t, n) ∗ EnvXchgq(n, v′, N)

ResvAdvq(n, v, v
′, N)

def
= NewTailq(n, v,N) ∨ EnvXchgq(n, v

′, N)

ResvAdvReadDataq(n, v, v
′, vr, N)

def
= NewTailq(n, v,N) ∧ (vr = v) ∨ EnvXchgq(n, v

′, N) ∧ (vr = v′ ∨ vr = v)

ENQWait
def
= (va := nd.data; ENQWhile)

ENQWhile
def
= (while(va=V){ va := nd.data; })

Figure 35: Auxiliary definition - I.

386



newHeadp(n, v)
def
= (stnlp(n, v, null) ∧ (n = Head) ∧ wf(1))
∨ (∃x. stnlp(n, v, x) ∗ qn(x, ) ∧ (n = Head) ∧ wf(1))
∨ (∃x. stnlp(n, v, x) ∗ stnl(x, ) ∧ (n = Head) ∧ wf(2))
∨ (∃x. stnlp(n, v, x) ∗ gls(x, Head) ∗ head ∧ wf(2))

newHead(n)
def
= ∃p, v. newHeadp(n, v)

readHeadEnvAdvp(h, n, v)
def
= stnl(h, n) ∗ newHeadp(n, v)

readHeadEnvAdvp(h)
def
= readHeadEnvAdvp(h, , ) readHeadEnvAdvp(h, n)

def
= readHeadEnvAdvp(h, n, )

readHeadp(h)
def
= (h = Head ∧ (stnlp(h, null) ∨ stnl1p(h) ∨ stnl2p(h))) ∨ readHeadEnvAdvp(h)

readHeadNextNullEnvp(h, n)
def
= (n = null) ∧ ((h = Head ∧ stnlp(h, x) ∗ node(x, ) ∧ wf(2)) ∨ readHeadEnvAdvp(h))

readHeadNextp(h, n)
def
= (h = Head ∧ ((stnlp(h, n) ∧ n = null) ∨ stnl1p(h, n, ) ∨ stnl2p(h, n, )))
∨ readHeadEnvAdvp(h, n) ∨ readHeadNextNullEnvp(h, n)

readHeadNextNonnullp(h, n)
def
= (h = Head ∧ (stnl1p(h, n, ) ∨ stnl2p(h, n, ))) ∨ readHeadEnvAdvp(h, n)

readHeadNextNullp(h, n)
def
= (h = Head ∧ stnlp(h, n) ∧ n = null) ∨ readHeadNextNullEnvp(h, n)

Xchgp(h, n, v)
def
= (h = Head ∧ stnl2p(h, n, v)) ∨ readHeadEnvAdvp(h, n, v)

Xchgp(h, n)
def
= Xchgp(h, n, )

Figure 36: Auxiliary definition - II.

387



1 enq(v) {

2 local t, h, n, offer, b, v’;{
I ∧ loopInv ∗ true ∧ arem(ENQ)

}
3 b := false;

4 offer := new Node(v, DATA, null);{
(¬b ∧ (I ∧ loopInv ∗ true) ∗ nodeDATA(offer, v, null) ∧ arem(ENQ)) ∨ (b ∧ I ∧ arem(skip))

}
5 while (!b) {{

(I ∧ loopBody ∗ true) ∗ nodeDATA(offer, v, null) ∧ arem(ENQ) ∧ ¬b
}

6 t := tail;{
∃p. (Qp ∗ Garb ∧ loopBody ∗ true ∧ readTailp(t) ∗ true) ∗ nodeDATA(offer, v, null) ∧ arem(ENQ) ∧ ¬b

}
7 h := head;{

∃p. (Qp ∗ Garb ∧ loopBody ∗ true ∧ readTailp(t) ∗ true ∧ readHeadp(h) ∗ true)
∗ nodeDATA(offer, v, null) ∧ arem(ENQ) ∧ ¬b

}
8 if (h = t || t.type = DATA) {{

∃p. (I ∧ loopBody ∗ true ∧ readTailp(t) ∗ true ∧ gls(h, Head) ∗ true)
∗ nodeDATA(offer, v, null) ∧ arem(ENQ) ∧ (h = t ∨ p = DATA) ∧ ¬b

}
9 n := t.next;{

∃p. (I ∧ loopBody ∗ true ∧ readTailNextp(t, n) ∗ true ∧ gls(h, Head) ∗ true)
∗ nodeDATA(offer, v, null) ∧ arem(ENQ) ∧ (h = t ∨ p = DATA) ∧ ¬b

}
10 if (t = tail) {{

∃p. (I ∧ loopBody ∗ true ∧ readTailNextp(t, n) ∗ true ∧ gls(h, Head) ∗ true)
∗ nodeDATA(offer, v, null) ∧ arem(ENQ) ∧ (h = t ∨ p = DATA) ∧ ¬b

}
11 if (n != null) {{

∃p. (I ∧ loopBody ∗ true ∧ readTailNextNonnullp(t, n) ∗ true)
∗ nodeDATA(offer, v, null) ∧ arem(ENQ) ∧ ¬b

}
12 cas(&tail, t, n);{

(I ∧ loopInv ∗ true) ∗ nodeDATA(offer, v, null) ∧ arem(ENQ) ∧ ¬b
}

13 } else {{
∃p. (I ∧ loopBody ∗ true ∧ readTailNextNullp(t, n) ∗ true ∧ gls(h, Head) ∗ true)
∗ nodeDATA(offer, v, null) ∧ arem(ENQ) ∧ (h = t ∨ p = DATA) ∧ ¬b

}
14 if (cas(&(t.next), n, offer)){{

(I ∧ ResvDATA(t, offer, v, null, nd) ∗ true) ∧ arem(ENQWait) ∧ ¬b
}

15 cas(&tail, t, offer);{
(I ∧ ResvAdvDATA(offer, v, null, nd) ∗ true) ∧ arem(ENQWait) ∧ ¬b

}
16 v’ := offer.data;{

(I ∧ ResvAdvReadDataDATA(offer, v, null, v’, nd) ∗ true) ∧ (v’ = va) ∧ arem(ENQWhile) ∧ ¬b
}

17 while (v’ = v) { v’ := offer.data; }{
(I ∧ EnvXchgDATA(offer, null, nd) ∗ true) ∧ (v’ = va = null) ∧ arem(skip) ∧ ¬b

}
18 h := head;{

(I ∧ EnvXchgReadHeadDATA(offer, null, nd, h) ∗ true) ∧ arem(skip) ∧ ¬b
}

19 if (offer = h.next){
(I ∧ EnvXchgLagHeadDATA(offer, null, nd, h) ∗ true) ∧ arem(skip) ∧ ¬b

}
20 cas(&head, h, offer);{

(I ∧ EnvXchgNonlagHeadDATA(offer, null, nd) ∗ true) ∧ arem(skip) ∧ ¬b
}

21 b := true;{
b ∧ I ∧ arem(skip)

}
22 }

23 }

24 }

25 }

Figure 37: Proof outline - I.

388



26 else {{
∃p. (I ∧ loopBody ∗ true ∧ readTailp(t) ∗ true ∧ readHeadp(h) ∗ true)
∗ nodeDATA(offer, v, null) ∧ arem(ENQ) ∧ (h 6= t ∧ p = REQ) ∧ ¬b

}
27 n := h.next;{

∃p. (I ∧ loopBody ∗ true ∧ readTailp(t) ∗ true ∧ readHeadNextp(h, n) ∗ true)
∗ nodeDATA(offer, v, null) ∧ arem(ENQ) ∧ (h 6= t ∧ p = REQ) ∧ ¬b

}
28 if (t = tail && h = head && n != null) {{

(I ∧ loopBody ∗ true ∧ readHeadNextNonnullREQ(h, n) ∗ true)
∗ nodeDATA(offer, v, null) ∧ arem(ENQ) ∧ ¬b

}
29 b := cas(&(n.data), null, v);{

b ∧ (I ∧ loopBody ∗ true ∧ XchgREQ(h, n, v) ∗ true) ∗ nodeDATA(offer, v, null) ∧ arem(skip)
∨¬b ∧ (I ∧ loopBody ∗ true ∧ XchgREQ(h, n) ∗ true) ∗ nodeDATA(offer, v, null) ∧ arem(ENQ)

}
30 cas(head, h, n);{

(b ∧ I ∗ nodeDATA(offer, v, null) ∧ arem(skip))
∨ (¬b ∧ (I ∧ loopInv ∗ true) ∗ nodeDATA(offer, v, null) ∧ arem(ENQ))

}
31 if (b) free(offer);{

(¬b ∧ (I ∧ loopInv ∗ true) ∗ nodeDATA(offer, v, null) ∧ arem(ENQ)) ∨ (b ∧ I ∧ arem(skip))
}

32 } else {{
(I ∧ loopBody ∗ true ∧ (readTailEnvAdvREQ(t) ∨ readHeadEnvAdvREQ(h) ∨ readHeadNextNullEnvREQ(h, n)) ∗ true)
∗ nodeDATA(offer, v, null) ∧ (h 6= t) ∧ arem(ENQ) ∧ ¬b

}
{
¬b ∧ (I ∧ loopInv ∗ true) ∗ nodeDATA(offer, v, null) ∧ arem(ENQ)

}
33 }

34 }

35 }{
I ∧ arem(skip)

}
36 }

Figure 38: Proof outline - II.

389



5 Soundness Proofs

Below we first prove the adequacy of RGSim-T w.r.t. the termination-sensitive refinement (Section 5.1).
Then we define the unary judgment semantics (Section 5.2), and we prove the soundness of the binary
inference rules of Figure 7 (Section 5.3), where the binary judgment semantics is just RGSim-T in
Definition 2, and also prove the soundness of the unary rules of Figure 8 (Section 5.4). Finally we show
the derivation of the while-term rule (Section 5.5).

5.1 Adequacy of RGSim-T

RGSim-T in Definition 2 (which is also the binary judgment semantics) implies the termination-sensitive
refinement in Definition 1.

Theorem 4 (Adequacy of RGSim-T). If there exist R, G, I, Q and a metric M such that R,G, I |=
(C, σ,M)�Q (C,Σ), then (C, σ) v (C,Σ).

Proof: We want to prove the following: for any R, G, I, Q,

∀C,Σ, E .
(∃C, σ,M. R,G, I |= (C, σ,M)�Q (C,Σ) ∧ ETr(C, σ, E) ) =⇒ ETr(C,Σ, E)

By co-induction.

Co-induction Principle: ∀x. (∃S. S ⊆ F (S) ∧ x ∈ S) =⇒ x ∈ gfp F

Figure 3 defines F and gfp F (i.e., ETr). Let

S
def
= {(C,Σ, E) | ∃C, σ,M. R,G, I |= (C, σ,M)�Q (C,Σ) ∧ ETr(C, σ, E)}.

So from the co-induction principle, we only need to prove:

S ⊆ F (S), i.e., ∀C,Σ, E . (C,Σ, E) ∈ S =⇒ (C,Σ, E) ∈ F (S) .

After unfolding S, we only need to prove:

∀M,C,Σ, E , C, σ. R,G, I |= (C, σ,M)�Q (C,Σ) ∧ ETr(C, σ, E) =⇒ (C,Σ, E) ∈ F (S) . (5.1)

By transfinite induction over M .

Transfinite Induction Principle: (∀M. (∀M ′. M ′ < M =⇒ P (M ′)) =⇒ P (M) ) =⇒ ∀M.P (M)

We view (5.1) as ∀M.P (M). So we only need to prove:

∀M.
(∀M ′. M ′ < M

=⇒ (∀C′,Σ′, E ′, C ′, σ′. R,G, I |= (C ′, σ′,M ′)�Q (C′,Σ′) ∧ ETr(C ′, σ′, E ′)
=⇒ (C′,Σ′, E ′) ∈ F (S)) )

=⇒
(∀C,Σ, E , C, σ. R,G, I |= (C, σ,M)�Q (C,Σ) ∧ ETr(C, σ, E)
=⇒ (C,Σ, E) ∈ F (S))

By inversion over ETr(C, σ, E),

1. (C, σ) −→∗ (skip, σ′) and E =⇓:

From R,G, I |= (C, σ,M)�Q (C,Σ), we know there exists Σ′ such that (C,Σ) −→∗ (skip,Σ′).

Thus from the definition of F (Figure 3), we know (C,Σ, E) ∈ F (S).

390



2. (C, σ) −→+ abort and E =  :

From R,G, I |= (C, σ,M)�Q (C,Σ), we know (C,Σ) −→+ abort.

Thus from the definition of F (Figure 3), we know (C,Σ, E) ∈ F (S).

3. (C, σ) −→+ (C ′, σ′) and ETr(C ′, σ′, E):

From R,G, I |= (C, σ,M)�Q (C,Σ), we know one of the following two cases holds:

(a) there exist M ′, C′ and Σ′ such that (C,Σ) −→+ (C′,Σ′) and R,G, I |= (C ′, σ′,M ′)�Q (C′,Σ′).
Thus (C′,Σ′, E) ∈ S. Then from the definition of F (Figure 3), we know (C,Σ, E) ∈ F (S).

(b) there exists M ′ such that M ′ < M and R,G, I |= (C ′, σ′,M ′)�Q (C,Σ).

Then from the induction hypothesis, we know ETr(C,Σ, E).

4. (C, σ)
e−→+ (C ′, σ′), ETr(C ′, σ′, E ′) and E = e ::E ′:

From R,G, I |= (C, σ,M)�Q (C,Σ), we know:

there exist C′, Σ′ and M ′ such that (C,Σ)
e−→+ (C′,Σ′) and R,G, I |= (C ′, σ′,M ′)�Q (C′,Σ′).

Thus (C′,Σ′, E ′) ∈ S. Then from the definition of F (Figure 3), we know (C,Σ, E) ∈ F (S).

Then we are done. 2

391



5.2 Unary Judgment Semantics

The unary judgment semantics R,G, I |= {p}C{q} follows RGSim-T (Definition 2). The initial abstract
code in the simulation comes from the precondition p, and the postcondition q specifies the final abstract
code that corresponds to the concrete final code skip. The assertions p and q also specify the while-
specific metric w (the numbers of tokens), which must be related to the metric M used in the simulation
RGSim-T.

Below we first show how we instantiate the abstract metric M in RGSim-T based on w.

5.2.1 Instantiation of the Abstract Metric M

For each single thread, its metric ws (defined below) is a list of (w, n) pairs, where w is the while-specific
metric and n is “code size” which will be explained later. We let the threaded metric ws be a list (a stack
actually) to allow different while-specific metrics for nested loops. That is, when entering a loop, we can
push a (w, n) pair to the ws stack; and when exiting the loop, we pop the pair out of ws.

The threaded metric ws uses the dictionary order. However, the usual dictionary order over lists is
not well-founded (consider B > AB > AAB > AAAB > . . . in a dictionary). To address this issue, we
introduce a bound of the list length (stack height), H, and define the well-founded order <H by requiring
the lists should be not longer than H. Intuitively, the stack height H represents the maximal depth of
nested loops, so it can be determined for any given program.

To get the whole-program metric, we compose threaded metrics by pairing them. Thus the abstract
metric M in RGSim-T is instantiated as follows:

M ::= (ws,H) | (M,M)

and we define the well-founded oder < and the composition operation + (see Lemma 16) as follows:

ws ′ <H ws H′ = H
(ws ′,H′) < (ws,H)

M ′1 < M1 M ′2 = M2

(M ′1,M
′
2) < (M1,M2)

M ′1 = M1 M ′2 < M2

(M ′1,M
′
2) < (M1,M2)

M1 +M2
def
= (M1,M2)

The threaded metric ws and the well-founded order <H are defined below. Note that we allow
“A < AB < B” in a dictionary.

(WfStack) ws ::= (w, n) | (w, n) ::ws

(StkHeight) H ∈ Nat

ws ′ <H ws iff (ws ′ � ws) ∧ (|ws ′| ≤ H) ∧ (|ws| ≤ H)

(w′, n′) < (w, n)

(w′, n′)� (w, n)

(w′, n′) ≤ (w, n)

(w′, n′)� (w, n) ::ws1

(w′, n′) < (w, n)

(w′, n′) ::ws ′1 � (w, n)

(w′, n′) < (w, n)

(w′, n′) ::ws ′1 � (w, n) ::ws1

(w′, n′) = (w, n) ws ′1 � ws1

(w′, n′) ::ws ′1 � (w, n) ::ws1

Here |ws| is the length of ws, which is defined as follows:

|(w, n)| = 1
|(w, n) ::ws| = 1 + |ws|

The well-founded order over the (w, n) pairs is a usual dictionary order:

(w′, n′) < (w, n) iff (w′ < w) ∨ (w′ = w ∧ n′ < n)

(w′, n′) = (w, n) iff (w′ = w) ∧ (n′ = n)

(w′, n′) ≤ (w, n) iff (w′, n′) < (w, n) ∨ (w′, n′) = (w, n)

392



Lemma 5 (Well-foundedness). The relation M ′ < M defined above is a well-founded relation.

Proof: Easy to prove from Lemma 6. 2

Lemma 6. The relation ws ′ <H ws defined above is a well-founded relation.

Proof: Suppose there is an infinite descending chain:

ws0 > ws1 > ws2 > . . . (5.2)

Thus we know
ws0 � ws1 � ws2 � . . . (5.3)

and
∀k. |wsk| ≤ H (5.4)

We prove the following property which generalizes (5.4) over the maximum size H:

∀ws0,ws1,ws2, . . . . (∀k. wsk � wsk+1) =⇒ (∀m ≥ 1. ∃j. |wsj | > m) (5.5)

By induction over m.

• Base Case: m = 1. Suppose ∀k. |wsk| = 1. Thus we have an infinite descending chain:

(w0, n0) > (w1, n1) > (w2, n2) > . . . (5.6)

It violates the definition of (w′, n′) < (w, n) (which is a well-founded relation).

• Inductive Step: m = m′ + 1. Since (w′, n′) < (w, n) is a well-founded relation, we know there
must exists k such that

∀j ≥ k. root(wsj) = root(wsj+1) (5.7)

and there exist ws ′k, ws ′k+1, ws ′k+2, . . . such that ∀j ≥ k. wsj = root(wsj) ::ws ′j and

∀j ≥ k. ws ′j � ws ′j+1 (5.8)

Here root(ws) takes the first element of ws if ws has the first element and undefined otherwise.
From the induction hypothesis, we know there exists j ≥ k such that

|ws ′j | > m′. (5.9)

Thus |wsj | > m′ + 1.

So we are done. 2

5.2.2 Intuitions of H and the Second Dimension of ws

Below we give more informal explanations (and examples) about the stack height H and the second
dimension (“code size” n in each pair) of the threaded metric ws.

As we said, the stack height H represents the maximal depth of nested loops. For any given program
C, we can determine the stack height using a function height defined in Figure 39.

The threaded metric ws as a stack requires us to distinguish the executions of the loop body from the
executions of the code out of the loop. When entering a loop (for the first time), we can push a (w, n)
pair onto the ws stack. But when we repeatedly execute the loop body (not for the first time), we do not
want to push a new pair onto the stack.

Thus we introduce the runtime command while (B){C} to represent the while-loop continuation when
we have unfolded the loop while (B) C. And we revised the low-level operational semantics as follows:

393



height(skip) = 1

height(c) = 1

height(〈C〉) = 1

height(C1;C2) = max{height(C1), height(C2)}
height(if (B) C1 else C2) = max{height(C1), height(C2)}

height(while (B) C) = height(C) + 1

Figure 39: Definition of height.

JBKs = true

(while (B) C, (s, h)) −→ (C;while (B){C}, (s, h))

JBKs = false

(while (B) C, (s, h)) −→ (skip, (s, h))

JBKs = true

(while (B){C}, (s, h)) −→ (C;while (B){C}, (s, h))

JBKs = false

(while (B){C}, (s, h)) −→ (skip, (s, h))

We can see that the new operational semantics for while loops is equivalent to the original one (see
Figure 2). Below we will assume the new semantics and use it to prove the logic soundness. However,
we want the readers to note that without the new operational semantics, we can still define the unary
judgment semantics and prove the soundness of all the inference rules, based on the original operational
semantics. The new operational semantics for while loops just makes the proofs (and the intuition)
clearer, in particular, for the hide-w rule, the rule for “locally” reasoning about nested while loops.

With the runtime while (B){C}, we can calculate the code size n in each (w, n) pair of ws. We first
label the code such that different layers of a nested while loop are assigned different labels.

Labeling the Code The syntax of the labeled code is defined below. Its operational semantics is
straightforward, as shown in Figure 40.

(Label) l ∈ Nat

(LabStmt) Ĉ ::= skipl | cl | 〈C〉l | Ĉ1; Ĉ2 | if l(B) Ĉ1 else Ĉ2

| whilel(B) Ĉ | whilel(B) Ĉ

We label the low-level code in the following way. Note that we do not need to label the runtime
command while (B){C}, whose label is known during the runtime execution.

labeling(skip, l) = skipl

labeling(c, l) = cl

labeling(〈C〉, l) = 〈C〉l

labeling(C1;C2, l) = labeling(C1, l); labeling(C2, l)

labeling(if (B) C1 else C2, l) = if l(B) labeling(C1, l) else labeling(C2, l)

labeling(while (B) C, l) = whilel(B) labeling(C, l + 1)

We define the functions label, toplabel, minlabel and maxlabel in Figure 41. Then the stack height H
of C is actually the maximum label of Ĉ, which is obtained by labeling C with 1. That is, the following
holds:

height(C) = maxlabel(labeling(C, 1))

We can prove the following property.

Lemma 7. For any C, Ĉ, Ĉ ′, σ, σ′ and R, if labeling(C, 1) = Ĉ and (Ĉ, σ)
R7−→ ∗ (Ĉ ′, σ′), then there

exist l, Ĉ1, . . . , Ĉl such that Ĉ ′ = (Ĉl; . . . ; Ĉ1) and ∀i ∈ [1..l]. label(Ĉi) = i.

394



JBKs = true

(whilel(B) Ĉ, (s, h)) −→ (Ĉ;whilel(B) Ĉ, (s, h))

JBKs = false

(whilel(B) Ĉ, (s, h)) −→ (skipl, (s, h))

JBKs = true

(whilel(B) Ĉ, (s, h)) −→ (Ĉ;whilel(B) Ĉ, (s, h))

JBKs = false

(whilel(B) Ĉ, (s, h)) −→ (skipl, (s, h))

(Ĉ, σ) −→ (Ĉ′, σ′)

(Ĉ; Ĉ′′, σ) −→ (Ĉ′; Ĉ′′, σ′) (skipl; Ĉ′, σ) −→ (Ĉ′, σ)

(Ĉ, σ) −→ (Ĉ′, σ′)

(Ĉ, σ)
R7−→ (Ĉ′, σ′)

((σ,Σ), (σ′,Σ′), b) |= R

(Ĉ, σ)
R7−→ (Ĉ, σ′)

Figure 40: Selected operational semantics rules of the labeled language.

label(skipl) = l

label(cl) = l

label(〈C〉l) = l

label(Ĉ1; Ĉ2) =

{
label(Ĉ1) if label(Ĉ1) = label(Ĉ2)
undefined otherwise

label(if l(B) Ĉ1 else Ĉ2) = l

label(whilel(B) Ĉ) = l

label(whilel(B) Ĉ) = l

minlabel(skipl) = l

minlabel(cl) = l

minlabel(〈C〉l) = l

minlabel(Ĉ1; Ĉ2) = minlabel(Ĉ2)

minlabel(if l(B) Ĉ1 else Ĉ2) = l

minlabel(whilel(B) Ĉ) = l

minlabel(whilel(B) Ĉ) = l

maxlabel(skipl) = l

maxlabel(cl) = l

maxlabel(〈C〉l) = l

maxlabel(Ĉ1; Ĉ2) = max{maxlabel(Ĉ1),maxlabel(Ĉ2)}
maxlabel(if l(B) Ĉ1 else Ĉ2) = max{maxlabel(Ĉ1),maxlabel(Ĉ2)}

maxlabel(whilel(B) Ĉ) = maxlabel(Ĉ)

Figure 41: Functions on labeled code.

395



It says, at any time in the execution of Ĉ, the runtime code must be in the form of Ĉl; Ĉl−1 . . . ; Ĉ1, where

each Ĉi has a fixed label i.

Code Sizes for Labeled Code For each pair (w, n) in any ws, n can be statically determined by the
code. We use proj2(ws) to project each pair (w, n) in ws to n. proj1(ws) is defined similarly.

ns ::= n | n ::ns

proj2(w, n) = n
proj2((w, n) ::ws) = n ::proj2(ws)

We use JĈK to compute a list of code sizes for Ĉ. Then

proj2(ws) = JĈK, where Ĉ is some run-time labeled code and ws is the metric for Ĉ.

We define JĈK as follows.

JskiplK = 0

JclK = 1

J〈C〉lK = 1

JĈ1; Ĉ2K =

{
JĈ1K⊕ |Ĉ2| ⊕ 1 if minlabel(Ĉ1) = label(Ĉ2)

|Ĉ2| :: (JĈ1K⊕ 1) if minlabel(Ĉ1) > label(Ĉ2)

Jif l(B) Ĉ1 else Ĉ2K = max{|Ĉ1|, |Ĉ2|}+ 1

Jwhilel(B) ĈK = 1

Jwhilel(B) ĈK = 0::0

Here the static size of commands |Ĉ| is defined as follows.

|skipl| = 0

|cl| = 1

|〈C〉l| = 1

|Ĉ1; Ĉ2| = |Ĉ1|+ |Ĉ2|+ 1

|if l(B) Ĉ1 else Ĉ2| = max{|Ĉ1|, |Ĉ2|}+ 1

|whilel(B) Ĉ| = 1

|whilel(B) Ĉ| = 0

And ns ⊕ n is defined as follows:

ns ⊕ n def
=


n1 + n if ns = n1

(n1 + n) ::ns ′ if ns = n1 ::ns ′

undefined otherwise

Examples of ws Below we use a few simple examples to show how ws changes during an execution.
The second dimension of the ws for the runtime labeled code Ĉ coincides with the above definition JĈK.

C σ ws

1 while1(i > 0) i--2; i = 2 (0, 1)

2 → i--2; while1(i > 0) i--2; i = 2 (0, 0) :: (1, 2)

3 → skip2; while1(i > 0) i--2; i = 1 (0, 0) :: (1, 1)

4 → while1(i > 0) i--2; i = 1 (0, 0) :: (1, 0)

5 → i--2; while1(i > 0) i--2; i = 1 (0, 0) :: (0, 2)

6 → skip2; while1(i > 0) i--2; i = 0 (0, 0) :: (0, 1)

7 → while1(i > 0) i--2; i = 0 (0, 0) :: (0, 0)

8 → skip1; i = 0 (0, 0)

396



C σ ws

1 i:=21; while1(i>0){ j:=12; while2(j>0){j--3; }; i--2; } i = 0, j = 0 (0, 3)

2 → skip1; while1(i>0){ j:=12; while2(j>0){j--3; }; i--2; } i = 2, j = 0 (0, 2)

3 → while1(i>0){ j:=12; while2(j>0){j--3; }; i--2; } i = 2, j = 0 (0, 1)

4 → j:=12; while2(j>0){j--3; }; i--2; while1(i>0){...} i = 2, j = 0 (0, 0) :: (1, 6)

5 → skip2; while2(j>0){j--3; }; i--2; while1(i>0){...} i = 2, j = 1 (0, 0) :: (1, 5)

6 → while2(j>0){j--3; }; i--2; while1(i>0){...} i = 2, j = 1 (0, 0) :: (1, 4)

7 → j--3; while2(j>0){j--3; }; i--2; while1(i>0){...} i = 2, j = 1 (0, 0) :: (1, 3) :: (0, 2)

8 → skip3; while2(j>0){j--3; }; i--2; while1(i>0){...} i = 2, j = 0 (0, 0) :: (1, 3) :: (0, 1)

9 → while2(j>0){j--3; }; i--2; while1(i>0){...} i = 2, j = 0 (0, 0) :: (1, 3) :: (0, 0)

10 → skip2; i--2; while1(i>0){...} i = 2, j = 0 (0, 0) :: (1, 3)

11 → i--2; while1(i>0){...} i = 2, j = 0 (0, 0) :: (1, 2)

12 → skip2; while1(i>0){...} i = 1, j = 0 (0, 0) :: (1, 1)

13 → while1(i>0){ j:=12; while2(j>0){j--3; }; i--2; } i = 1, j = 0 (0, 0) :: (1, 0)

14 → j:=12; while2(j>0){j--3; }; i--2; while1(i>0){...} i = 1, j = 0 (0, 0) :: (0, 6)

15 → skip2; while2(j>0){j--3; }; i--2; while1(i>0){...} i = 1, j = 1 (0, 0) :: (0, 5)

16 → while2(j>0){j--3; }; i--2; while1(i>0){...} i = 1, j = 1 (0, 0) :: (0, 4)

17 → j--3; while2(j>0){j--3; }; i--2; while1(i>0){...} i = 1, j = 1 (0, 0) :: (0, 3) :: (0, 2)

18 → skip3; while2(j>0){j--3; }; i--2; while1(i>0){...} i = 1, j = 0 (0, 0) :: (0, 3) :: (0, 1)

19 → while2(j>0){j--3; }; i--2; while1(i>0){...} i = 1, j = 0 (0, 0) :: (0, 3) :: (0, 0)

20 → skip2; i--2; while1(i>0){...} i = 1, j = 0 (0, 0) :: (0, 3)

21 → i--2; while1(i>0){...} i = 1, j = 0 (0, 0) :: (0, 2)

22 → skip2; while1(i>0){...} i = 0, j = 0 (0, 0) :: (0, 1)

23 → while1(i>0){ j:=12; while2(j>0){j--3; }; i--2; } i = 0, j = 0 (0, 0) :: (0, 0)

24 → skip1 i = 0, j = 0 (0, 0)

397



The next example is a loop that uses the counter. It involves environment steps, denoted by R, and
defined in Section 4.1. When the environment updates x (see line 7), we increase the number of tokens
by 1, i.e., w at the outermost pair of the stack ws is increased from 0 to 1.

C σ ws

1

while1(i > 0){
b:=false2;
while2(!b){ t:=x3; b:=cas(&x,t,t+1)3; if3(b) i--3; };
}

x = 5
i = 1
b = false
t = 0

(0, 1)

2 → b:=false2; while2(!b){...}; while1(i > 0){...} . . . (0, 0) :: (0, 4)

3 → skip2; while2(!b){...}; while1(i > 0){...} . . . (0, 0) :: (0, 3)

4 → while2(!b){...}; while1(i > 0){...} . . . (0, 0) :: (0, 2)

5 → t:=x3; b:=cas(&x,t,t+1)3; if3(b) i--3;
while2(!b){...}; while1(i > 0){...} . . . (0, 0) :: (0, 1) :: (0, 7)

6 → skip3; b:=cas(&x,t,t+1)3; if3(b) i--3;
while2(!b){...}; while1(i > 0){...}

x = 5
. . .
t = 5

(0, 0) :: (0, 1) :: (0, 6)

7 R x = 8, . . . (0, 0) :: (0, 1) :: (1, 6)

8 →∗ while2(!b){...}; while1(i > 0){...}

x = 8
i = 1
b = false
t = 5

(0, 0) :: (0, 1) :: (1, 0)

9 → t:=x3; b:=cas(&x,t,t+1)3; if3(b) i--3;
while2(!b){...}; while1(i > 0){...} . . . (0, 0) :: (0, 1) :: (0, 7)

10 →∗ while2(!b){...}; while1(i > 0){...}

x = 8
i = 0
b = true
t = 8

(0, 0) :: (0, 1) :: (0, 0)

11 → skip2; while1(i > 0){...} . . . (0, 0) :: (0, 1)

12 → while1(i > 0){...} . . . (0, 0) :: (0, 0)

13 → skip1; . . . (0, 0)

Note that in this section we assume that the outer loop and the inner loop each uses a “local” while-
specific metric w. The intuition explained here actually shows how we prove the soundness of the while-l
rule. For the while rule, we use a “global” while-specific metric, and hence the depth of ws could be
just 1 and we do not need to push a new (w, n) pair whenever entering a loop. In this case, the second
dimension of ws, i.e., the size of the code, will count in the runtime while command while (B){C} too.
We show a simple example below, where the stack ws is always of depth 1.

C σ ws

1 while1(i > 0) i--2; i = 2 (2, 1)

2 → i--2; while1(i > 0) i--2; i = 2 (1, 3)

3 → skip2; while1(i > 0) i--2; i = 1 (1, 2)

4 → while1(i > 0) i--2; i = 1 (1, 0)

5 → i--2; while1(i > 0) i--2; i = 1 (0, 3)

6 → skip2; while1(i > 0) i--2; i = 0 (0, 2)

7 → while1(i > 0) i--2; i = 0 (0, 1)

8 → skip1; i = 0 (0, 0)

398



5.2.3 Unary Judgment Semantics

Definition 8. R,G, I |= {p}C{q} iff
for all σ, w, D and Σ, if (σ,w,D,Σ) |= p, then R,G, I |= (C, σ, (0, |C|))�height(C);w;q (D,Σ).

Whenever R,G, I |= (C, σ,ws)�H;w;q (D,Σ), then (σ,Σ) |= I ∗ true and the following are true:

1. for any σF , ΣF , C ′ and σ′′, if (C, σ ] σF ) −→ (C ′, σ′′) and Σ⊥ΣF , then there exists σ′ such that
σ′′ = σ′ ] σF and one of the following holds:

(a) either, there exist ws ′, w′, C′ and Σ′ such that (D,Σ ] ΣF ) −→+ (C′,Σ′ ] ΣF ),
((σ,Σ), (σ′,Σ′), true) |= G+ ∗ True and R,G, I |= (C ′, σ′,ws ′)�H;w′;q (C′,Σ′);

(b) or, there exists ws ′ such that ws ′ <H ws,
((σ,Σ), (σ′,Σ), false) |= G+ ∗ True and R,G, I |= (C ′, σ′,ws ′)�H;w;q (D,Σ);

2. for any σF , ΣF , e, C ′ and σ′′, if (C, σ ] σF )
e−→ (C ′, σ′′) and Σ⊥ΣF , then

there exist σ′, ws ′, w′, C′ and Σ′ such that σ′′ = σ′ ] σF , (D,Σ ] ΣF )
e−→+ (C′,Σ′ ] ΣF ),

((σ,Σ), (σ′,Σ′), true) |= G+ ∗ True and R,G, I |= (C ′, σ′,ws ′)�H;w′;q (C′,Σ′);

3. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), true) |= R+ ∗ Id, then
there exist ws ′ and w′ such that R,G, I |= (C, σ′,ws ′)�H;w′;q (D,Σ′);

4. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), false) |= R+ ∗ Id, then
R,G, I |= (C, σ′,ws)�H;w;q (D,Σ′);

5. if C = skip, then for any ΣF , if Σ⊥ΣF , one of the following holds:

(a) either, there exist w′, C′ and Σ′ such that (D,Σ ] ΣF ) −→+ (C′,Σ′ ] ΣF ),
((σ,Σ), (σ,Σ′), true) |= G+ ∗ True and (σ,w′,C′,Σ′) |= q;

(b) or, there exists w′ such that ws = (w′, 0) and (σ,w + w′,D,Σ) |= q;

6. for any σF and ΣF , if (C, σ ] σF ) −→ abort and Σ⊥ΣF , then (D,Σ ] ΣF ) −→+ abort.

Definition 9 (SL Judgment Semantics).
|=sl [p]C[q] iff, for all σ, w, D and Σ, if (σ,w,D,Σ) |= p, the following are true:

1. for any σ′, if (C, σ) −→∗ (skip, σ′), then (σ′, w,D,Σ) |= q;

2. (C, σ) 6−→∗ abort;

3. (C, σ) 6−→ω ·.

|=sl [P ]C[Q] iff, for any σ and Σ, if (σ,Σ) |= P , the following are true:

1. for any Σ′, if (C,Σ) −→∗ (skip,Σ′), then (σ,Σ′) |= Q;

2. (C,Σ) 6−→∗ abort;

3. (C,Σ) 6−→ω ·.

Definition 10 (Locality).
Locality(C) iff, for any σ1 and σ2, let σ = σ1 ] σ2, then the following hold:

1. (Safety monotonicity) If (C, σ1) 6−→∗ abort, then (C, σ) 6−→∗ abort.

2. (Termination monotonicity) If (C, σ1) 6−→∗ abort and (C, σ1) 6−→ω ·, then (C, σ) 6−→ω ·.

3. (Frame property) For any n and σ′, if (C, σ1) 6−→∗ abort and (C, σ) −→n (C ′, σ′), then there exists
σ′1 such that σ′ = σ′1 ] σ2 and (C, σ1) −→n (C ′, σ′1).

Locality(C) is defined similarly.

399



5.3 Soundness of Binary Rules

Lemma 11. If R,G, I ` {P}C�C{Q}, then I . {R,G}, P ∨Q⇒ I ∗ true and Sta({P,Q}, R ∗ Id).

Proof: By induction over the derivation of R,G, I ` {P}C�C{Q}, and by Lemma 27. For the stability,
we need Lemmas 12, 13 and 14. 2

Lemma 12. If Sta(p ∧B,R ∗ Id), Sta(p ∧ ¬B,R ∗ Id) and p⇒ (B = B), then Sta(p,R ∗ Id).

Lemma 13. If Sta(p,R ∗ Id), p⇒ (B = B) ∗ I and I . R, then Sta(p ∧B,R ∗ Id).

Lemma 14. If Sta(p1, R1 ∗ Id), Sta(p2, R2 ∗ Id), I1 . R1, I2 . R2, p1 ⇒ I1 ∗ true, p2 ⇒ I2 ∗ true, then
Sta(p1 ∗ p2, R1 ∗R2 ∗ Id).

The B-PAR rule. We define M1 + M2 as a pair (M1,M2). The corresponding well-founded order
satisfies the following:

(M1 < M2) =⇒ (M1 +M3 < M2 +M3) (5.10)

(M1 < M2) =⇒ (M3 +M1 < M3 +M2) (5.11)

Lemma 15 (Parallel Compositioinality). If

1. R ∨G2, G1, I |= {P1 ∗ P}C1�C1{Q1 ∗Q′1};

2. R ∨G1, G2, I |= {P2 ∗ P}C2�C2{Q2 ∗Q′2};

3. P ∨Q′1 ∨Q′2 ⇒ I; I . {R,G1, G2}; Sta(Q1 ∗Q′1, (R ∨G2) ∗ Id); Sta(Q2 ∗Q′2, (R ∨G1) ∗ Id);

then R,G1 ∨G2, I |= {P1 ∗ P2 ∗ P}C1‖C2�C19C2{Q1 ∗Q2 ∗ (Q′1 ∧Q′2)}.

Proof: We need to prove: for all σ and Σ, if (σ,Σ) |= P1 ∗ P2 ∗ P , then there exists M such that
R,G1 ∨G2, I |= (C1‖C2, σ,M)�Q1∗Q2∗(Q′

1∧Q′
2)

(C19C2,Σ).
From (σ,Σ) |= P1 ∗ P2 ∗ P , we know there exist σ1, σ2, σr Σ1, Σ2 and Σr such that

(σ1,Σ1) |= P1, (σ2,Σ2) |= P2, (σr,Σr) |= P , σ = σ1 ] σ2 ] σr, Σ = Σ1 ] Σ2 ] Σr

From the premises, we know there exist M1 and M2 such that

R ∨G2, G1, I |= (C1, σ1 ] σr,M1)�Q1∗Q′
1
(C1,Σ1 ] Σr)

R ∨G1, G2, I |= (C2, σ2 ] σr,M2)�Q2∗Q′
2
(C2,Σ2 ] Σr)

By Lemma 16, we are done. 2

Lemma 16. If

1. R ∨G2, G1, I |= (C1, σ1 ] σr,M1)�Q1∗Q′
1
(C1,Σ1 ] Σr);

2. R ∨G1, G2, I |= (C2, σ2 ] σr,M2)�Q2∗Q′
2
(C2,Σ2 ] Σr);

3. (σr,Σr) |= I; Q′1 ∨Q′2 ⇒ I; I . {R,G1, G2}; Sta(Q1 ∗Q′1, (R∨G2) ∗ Id); Sta(Q2 ∗Q′2, (R∨G1) ∗ Id);

then R,G1 ∨G2, I |= (C1‖C2, σ1 ] σ2 ] σr,M1 +M2)�Q1∗Q2∗(Q′
1∧Q′

2)
(C19C2,Σ1 ] Σ2 ] Σr).

Proof: By co-induction. We know (σ1 ] σ2 ] σr,Σ1 ] Σ2 ] Σr) |= I ∗ true.

1. for any σF , ΣF , C ′ and σ′′, if (C1 ‖C2, σ1 ] σ2 ] σr ] σF ) −→ (C ′, σ′′), then one of the following
three cases holds:

400



(a) C ′ = C ′1‖C2 and (C1, σ1 ] σ2 ] σr ] σF ) −→ (C ′1, σ
′′):

from the premise 1, we know: there exists σ′ such that

σ′′ = σ′ ] σ2 ] σF (5.12)

and one of the following holds:

i. there exist M ′1, C′1 and Σ′ such that

(C1,Σ1 ] Σ2 ] Σr ] ΣF ) −→+ (C′1,Σ′ ] Σ2 ] ΣF ) (5.13)

((σ1 ] σr,Σ1 ] Σr), (σ
′,Σ′), true) |= G1

+ ∗ True (5.14)

R ∨G2, G1, I |= (C ′1, σ
′,M ′1)�Q1∗Q′

1
(C′1,Σ′) (5.15)

Below we prove 1(a) of Definition 2 holds.
From I . G1, (σr,Σr) |= I and (5.14), we know: there exist σ′1, Σ′1, σ′r and Σ′r such that

σ′ = σ′1 ] σ′r , Σ′ = Σ′1 ] Σ′r , (σ′r,Σ
′
r) |= I (5.16)

((σr,Σr), (σ
′
r,Σ

′
r), true) |= G1

+ (5.17)

From (5.12) and (5.16), we know

σ′′ = σ′1 ] σ2 ] σ′r ] σF (5.18)

From (5.13) and (5.16), we know

(C19C2,Σ1 ] Σ2 ] Σr ] ΣF ) −→+ (C′19C2,Σ
′
1 ] Σ2 ] Σ′r ] ΣF ) (5.19)

From (5.17), we know:

((σ1]σ2]σr,Σ1]Σ2]Σr), (σ
′
1]σ2]σ′r,Σ′1]Σ2]Σ′r), true) |= (G1 ∨G2)

+ ∗True (5.20)

and ((σ2 ] σr,Σ2 ] Σr), (σ2 ] σ′r,Σ2 ] Σ′r), true) |= (G1 ∨R)
+ ∗ Id.

Then from the premise 2, we know: there exists M ′2 such that

R ∨G1, G2, I |= (C2, σ2 ] σ′r,M ′2)�Q2∗Q′
2
(C2,Σ2 ] Σ′r) (5.21)

From (5.15), (5.16), (5.21) and the co-induction hypothesis, we know:

R,G1 ∨G2, I |= (C ′1‖C2, σ
′
1 ] σ2 ] σ′r,M ′1 +M ′2)�Q1∗Q2∗(Q′

1∧Q′
2)

(C′19C2,Σ
′
1 ] Σ2 ] Σ′r)

(5.22)
From (5.18), (5.19), (5.20) and (5.22), we are done.

ii. there exists M ′1 such that
M ′1 < M1 (5.23)

((σ1 ] σr,Σ1 ] Σr), (σ
′,Σ1 ] Σr), false) |= G1

+ ∗ True (5.24)

R ∨G2, G1, I |= (C ′1, σ
′,M ′1)�Q1∗Q′

1
(C1,Σ1 ] Σr) (5.25)

Below we prove 1(b) of Definition 2 holds.
From I . G1, (σr,Σr) |= I and (5.24), we know: there exist σ′1 and σ′r such that

σ′ = σ′1 ] σ′r , (σ′r,Σr) |= I (5.26)

((σr,Σr), (σ
′
r,Σr), false) |= G1

+ (5.27)

From (5.12) and (5.26), we know

σ′′ = σ′1 ] σ2 ] σ′r ] σF (5.28)

401



From (5.27), we know:

((σ1]σ2]σr,Σ1]Σ2]Σr), (σ
′
1]σ2]σ′r,Σ1]Σ2]Σr), false) |= (G1 ∨G2)

+∗True (5.29)

and ((σ2 ] σr,Σ2 ] Σr), (σ2 ] σ′r,Σ2 ] Σr), false) |= (G1 ∨R)
+ ∗ Id.

Then from the premise 2, we know:

R ∨G1, G2, I |= (C2, σ2 ] σ′r,M2)�Q2∗Q′
2
(C2,Σ2 ] Σr) (5.30)

From (5.25), (5.26), (5.30) and the co-induction hypothesis, we know:

R,G1 ∨G2, I |= (C ′1‖C2, σ
′
1 ] σ2 ] σ′r,M ′1 +M2)�Q1∗Q2∗(Q′

1∧Q′
2)

(C19C2,Σ1 ] Σ2 ] Σr)
(5.31)

From (5.23), we get:
M ′1 +M2 < M1 +M2 (5.32)

From (5.28), (5.29), (5.31) and (5.32), we are done.

(b) C ′ = C1‖C ′2 and (C2, σ1 ] σ2 ] σr ] σF ) −→ (C ′2, σ
′′): similar to the first case.

(c) C ′ = skip, C1 = skip and C2 = skip, thus we know

σ′′ = σ1 ] σ2 ] σr ] σF (5.33)

Below we prove 1(a) of Definition 2 holds.

From the premise 1, we know one of the following holds:

i. there exists Σ′ such that

(C1,Σ1 ] Σ2 ] Σr ] ΣF ) −→+ (skip,Σ′ ] Σ2 ] ΣF ) (5.34)

((σ1 ] σr,Σ1 ] Σr), (σ1 ] σr,Σ′), true) |= G1
+ ∗ True (5.35)

(σ1 ] σr,Σ′) |= Q1 ∗Q′1 (5.36)

From I . G1, (σr,Σr) |= I and (5.35), we know: there exist Σ′1 and Σ′r such that

Σ′ = Σ′1 ] Σ′r , (σr,Σ
′
r) |= I (5.37)

((σr,Σr), (σr,Σ
′
r), true) |= G1

+ (5.38)

Since Q′1 ⇒ I and (5.36), we get:

(σ1,Σ
′
1) |= Q1 , (σr,Σ

′
r) |= Q′1 (5.39)

From (5.34) and (5.37), we know

(C19C2,Σ1 ] Σ2 ] Σr ] ΣF ) −→+ (skip9C2,Σ
′
1 ] Σ2 ] Σ′r ] ΣF ) (5.40)

From (5.38), we know: ((σ2 ] σr,Σ2 ] Σr), (σ2 ] σr,Σ2 ] Σ′r), true) |= (G1 ∨R)
+ ∗ Id.

Then from the premise 2, we know: there exists M ′2 such that

R ∨G1, G2, I |= (C2, σ2 ] σr,M ′2)�Q2∗Q′
2
(C2,Σ2 ] Σ′r) (5.41)

Since C2 = skip, we know one of the following holds:

402



A. there exists Σ′′ such that

(C2,Σ
′
1 ] Σ2 ] Σ′r ] ΣF ) −→+ (skip,Σ′′ ] Σ′1 ] ΣF ) (5.42)

((σ2 ] σr,Σ2 ] Σ′r), (σ2 ] σr,Σ′′), true) |= G2
+ ∗ True (5.43)

(σ2 ] σr,Σ′′) |= Q2 ∗Q′2 (5.44)

From I . G2, (σr,Σ
′
r) |= I and (5.43), we know: there exist Σ′2 and Σ′′r such that

Σ′′ = Σ′2 ] Σ′′r , (σr,Σ
′′
r ) |= I (5.45)

((σr,Σ
′
r), (σr,Σ

′′
r ), true) |= G2

+ (5.46)

Since Q′2 ⇒ I and (5.44), we get:

(σ2,Σ
′
2) |= Q2 , (σr,Σ

′′
r ) |= Q′2 (5.47)

From (5.40) and (5.42), we know

(C19C2,Σ1 ] Σ2 ] Σr ] ΣF ) −→+ (skip,Σ′1 ] Σ′2 ] Σ′′r ] ΣF ) (5.48)

From (5.38) and (5.46), we know:

((σr,Σr), (σr,Σ
′′
r ), true) |= (G1 ∨G2)

+
(5.49)

Thus we get:

((σ1]σ2]σr,Σ1]Σ2]Σr), (σ1]σ2]σr,Σ′1]Σ′2]Σ′′r ), true) |= (G1 ∨G2)
+∗True (5.50)

From (5.46), we get: ((σr,Σ
′
r), (σr,Σ

′′
r ), true) |= (R ∨G2)

+
. Since (σ1,Σ

′
1) |= Q1,

(σr,Σ
′
r) |= Q′1, Sta(Q1 ∗Q′1, (R ∨G2) ∗ Id), I . (R ∨G2) and Q′1 ⇒ I, we know:

(σr,Σ
′′
r ) |= Q′1 (5.51)

From (σ1,Σ
′
1) |= Q1 and (5.47), we get:

(σ1 ] σ2 ] σr,Σ′1 ] Σ′2 ] Σ′′r ) |= Q1 ∗Q2 ∗ (Q′1 ∧Q′2) (5.52)

By the b-skip and b-frame rules, we get: there exists M ′ such that

R,G1 ∨G2, I |= (skip, σ1 ] σ2 ] σr,M ′)�Q1∗Q2∗(Q′
1∧Q′

2)
(skip,Σ′1 ] Σ′2 ] Σ′′r ) (5.53)

From (5.48), (5.50) and (5.53), we are done.

B. C2 = skip and (σ2 ] σr,Σ2 ] Σ′r) |= Q2 ∗Q′2.
From Q′2 ⇒ I and (σr,Σ

′
r) |= I, we know:

(σ2,Σ2) |= Q2 , (σr,Σ
′
r) |= Q′2 (5.54)

From (5.40), we know

(C19C2,Σ1 ] Σ2 ] Σr ] ΣF ) −→+ (skip,Σ′1 ] Σ2 ] Σ′r ] ΣF ) (5.55)

From (5.38), we know:

((σr,Σr), (σr,Σ
′
r), true) |= (G1 ∨G2)

+
(5.56)

Thus we get:

((σ1]σ2]σr,Σ1]Σ2]Σr), (σ1]σ2]σr,Σ′1]Σ2]Σ′r), true) |= (G1 ∨G2)
+∗True (5.57)

403



From (5.39) and (5.54), we get:

(σ1 ] σ2 ] σr,Σ′1 ] Σ2 ] Σ′r) |= Q1 ∗Q2 ∗ (Q′1 ∧Q′2) (5.58)

By the b-skip and b-frame rules, we get: there exists M ′ such that

R,G1 ∨G2, I |= (skip, σ1 ] σ2 ] σr,M ′)�Q1∗Q2∗(Q′
1∧Q′

2)
(skip,Σ′1 ] Σ2 ] Σ′r) (5.59)

From (5.55), (5.57) and (5.59), we are done.

ii. C1 = skip and (σ1 ] σr,Σ1 ] Σr) |= Q1 ∗Q′1.
From Q′1 ⇒ I and (σr,Σr) |= I, we know:

(σ1,Σ1) |= Q1 , (σr,Σr) |= Q′1 (5.60)

From the premise 2, we know one of the following holds:

A. there exists Σ′ such that

(C2,Σ1 ] Σ2 ] Σr ] ΣF ) −→+ (skip,Σ′ ] Σ1 ] ΣF ) (5.61)

((σ2 ] σr,Σ2 ] Σr), (σ2 ] σr,Σ′), true) |= G2
+ ∗ True (5.62)

(σ2 ] σr,Σ′) |= Q2 ∗Q′2 (5.63)

From I . G2, (σr,Σr) |= I and (5.62), we know: there exist Σ′2 and Σ′r such that

Σ′ = Σ′2 ] Σ′r , (σr,Σ
′
r) |= I (5.64)

((σr,Σr), (σr,Σ
′
r), true) |= G2

+ (5.65)

Since Q′2 ⇒ I and (5.63), we get:

(σ2,Σ
′
2) |= Q2 , (σr,Σ

′
r) |= Q′2 (5.66)

From (5.61), we know

(C19C2,Σ1 ] Σ2 ] Σr ] ΣF ) −→+ (skip,Σ1 ] Σ′2 ] Σ′r ] ΣF ) (5.67)

From (5.65), we know:

((σr,Σr), (σr,Σ
′
r), true) |= (G1 ∨G2)

+
(5.68)

Thus we get:

((σ1]σ2]σr,Σ1]Σ2]Σr), (σ1]σ2]σr,Σ1]Σ′2]Σ′r), true) |= (G1 ∨G2)
+∗True (5.69)

From (5.65), we get: ((σr,Σr), (σr,Σ
′
r), true) |= (R ∨G2)

+
. Since (σ1,Σ1) |= Q1,

(σr,Σr) |= Q′1, Sta(Q1 ∗Q′1, (R ∨G2) ∗ Id), I . (R ∨G2) and Q′1 ⇒ I, we know:

(σr,Σ
′
r) |= Q′1 (5.70)

From (σ1,Σ1) |= Q1 and (5.66), we get:

(σ1 ] σ2 ] σr,Σ1 ] Σ′2 ] Σ′r) |= Q1 ∗Q2 ∗ (Q′1 ∧Q′2) (5.71)

By the b-skip and b-frame rules, we get: there exists M ′ such that

R,G1 ∨G2, I |= (skip, σ1 ] σ2 ] σr,M ′)�Q1∗Q2∗(Q′
1∧Q′

2)
(skip,Σ1 ] Σ′2 ] Σ′r) (5.72)

From (5.67), (5.69) and (5.72), we are done.

404



B. C2 = skip and (σ2 ] σr,Σ2 ] Σr) |= Q2 ∗Q′2.
From Q′2 ⇒ I and (σr,Σr) |= I, we know:

(σ2,Σ2) |= Q2 , (σr,Σr) |= Q′2 (5.73)

We know

(C19C2,Σ1 ] Σ2 ] Σr ] ΣF ) −→+ (skip,Σ1 ] Σ2 ] Σr ] ΣF ) (5.74)

Also we have:

((σ1]σ2]σr,Σ1]Σ2]Σr), (σ1]σ2]σr,Σ1]Σ2]Σr), true) |= (G1 ∨G2)
+∗True (5.75)

From (5.60) and (5.73), we get:

(σ1 ] σ2 ] σr,Σ1 ] Σ2 ] Σr) |= Q1 ∗Q2 ∗ (Q′1 ∧Q′2) (5.76)

By the b-skip and b-frame rules, we get: there exists M ′ such that

R,G1 ∨G2, I |= (skip, σ1 ] σ2 ] σr,M ′)�Q1∗Q2∗(Q′
1∧Q′

2)
(skip,Σ1 ] Σ2 ] Σr) (5.77)

From (5.74), (5.75) and (5.77), we are done.

2. for any σF , ΣF , e, C ′ and σ′′, if (C1‖C2, σ1 ]σ2 ]σr ]σF )
e−→ (C ′, σ′′), the proof is similar to the

first case.

3. for any σ′ and Σ′, if ((σ1 ] σ2 ] σr,Σ1 ] Σ2 ] Σr), (σ
′,Σ′), true) |= R+ ∗ Id,

from I . R and (σr,Σr) |= I, we know: there exist σ′r and Σ′r such that

σ′ = σ1 ] σ2 ] σ′r , Σ′ = Σ1 ] Σ2 ] Σ′r , (σ′r,Σ
′
r) |= I (5.78)

((σr,Σr), (σ
′
r,Σ

′
r), true) |= R+ (5.79)

Thus we get:
((σ1 ] σr,Σ1 ] Σr), (σ1 ] σ′r,Σ1 ] Σ′r), true) |= (R ∨G2)

+ ∗ Id (5.80)

((σ2 ] σr,Σ2 ] Σr), (σ2 ] σ′r,Σ2 ] Σ′r), true) |= (R ∨G1)
+ ∗ Id (5.81)

From the premises, we know: there exist M ′1 and M ′2 such that

R ∨G2, G1, I |= (C1, σ1 ] σ′r,M ′1)�Q1∗Q′
1
(C1,Σ1 ] Σ′r) (5.82)

R ∨G1, G2, I |= (C2, σ2 ] σ′r,M ′2)�Q2∗Q′
2
(C2,Σ2 ] Σ′r) (5.83)

By the co-induction hypothesis, we get:

R,G1 ∨G2, I |= (C1‖C2, σ1 ] σ2 ] σ′r,M ′1 +M ′2)�Q1∗Q2∗(Q′
1∧Q′

2)
(C19C2,Σ1 ] Σ2 ] Σ′r) (5.84)

4. for any σ′ and Σ′, if ((σ1 ] σ2 ] σr,Σ1 ] Σ2 ] Σr), (σ
′,Σ′), false) |= R+ ∗ Id,

from I . R and (σr,Σr) |= I, we know: there exist σ′r and Σ′r such that

σ′ = σ1 ] σ2 ] σ′r , Σ′ = Σ1 ] Σ2 ] Σ′r , (σ′r,Σ
′
r) |= I (5.85)

((σr,Σr), (σ
′
r,Σ

′
r), false) |= R+ (5.86)

Thus we get:
((σ1 ] σr,Σ1 ] Σr), (σ1 ] σ′r,Σ1 ] Σ′r), false) |= (R ∨G2)

+ ∗ Id (5.87)

((σ2 ] σr,Σ2 ] Σr), (σ2 ] σ′r,Σ2 ] Σ′r), false) |= (R ∨G1)
+ ∗ Id (5.88)

405



From the premises, we know:

R ∨G2, G1, I |= (C1, σ1 ] σ′r,M1)�Q1∗Q′
1
(C1,Σ1 ] Σ′r) (5.89)

R ∨G1, G2, I |= (C2, σ2 ] σ′r,M2)�Q2∗Q′
2
(C2,Σ2 ] Σ′r) (5.90)

By the co-induction hypothesis, we get:

R,G1 ∨G2, I |= (C1‖C2, σ1 ] σ2 ] σ′r,M1 +M2)�Q1∗Q2∗(Q′
1∧Q′

2)
(C19C2,Σ1 ] Σ2 ] Σ′r) (5.91)

5. for any σF and ΣF , if (C1‖C2, σ1 ] σ2 ] σr ] σF ) −→ abort, by the operational semantics and the
premises, we know (C19C2,Σ1 ] Σ2 ] Σr ] ΣF ) −→+ abort.

Thus we are done. 2

406



The U2B rule.

Lemma 17 (U2B). If R,G, I |= {P ∧ arem(C)}C{Q ∧ arem(skip)}, then R,G, I |= {P}C�C{Q}.

Proof: We need to prove: for all σ and Σ, if (σ,Σ) |= P , then there exists M such that R,G, I |=
(C, σ,M)�Q (C,Σ).

From (σ,Σ) |= P , we know: (σ, 0,C,Σ) |= P ∧ arem(C).
From the premise, we know: R,G, I |= (C, σ, (0, |C|))�height(C);0;Q∧arem(skip) (C,Σ).
By Lemma 18, we are done. 2

Lemma 18. If R,G, I |= (C, σ,ws)�H;w;Q∧arem(skip) (C,Σ), then R,G, I |= (C, σ, (ws,H))�Q (C,Σ).

Proof: By co-induction. From the premise, we know (σ,Σ) |= I ∗ true.

1. for any σF , ΣF , C ′ and σ′′, if (C, σ ] σF ) −→ (C ′, σ′′) and Σ⊥ΣF ,

from the premise, we know: there exists σ′ such that σ′′ = σ′ ] σF and one of the following holds:

(a) there exist ws ′, w′, C′ and Σ′ such that (C,Σ ] ΣF ) −→+ (C′,Σ′ ] ΣF ),
((σ,Σ), (σ′,Σ′), true) |= G+ ∗ True and R,G, I |= (C ′, σ′,ws ′)�H;w′;Q∧arem(skip) (C′,Σ′).
By the co-induction hypothesis, we know: R,G, I |= (C ′, σ′, (ws ′,H))�Q (C′,Σ′).

(b) there exists ws ′ such that ws ′ <H ws,
((σ,Σ), (σ′,Σ), false) |= G+ ∗ True and R,G, I |= (C ′, σ′,ws ′)�H;w;Q∧arem(skip) (C,Σ).

By the co-induction hypothesis, we know: R,G, I |= (C ′, σ′, (ws ′,H))�Q (C,Σ).

By the instantiation of the abstract metric, we know: (ws ′,H) < (ws,H).

2. for any σF , ΣF , e, C ′ and σ′′, if (C, σ ] σF )
e−→ (C ′, σ′′), the proof is similar to the previous case.

3. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), true) |= R+ ∗ Id,

from the premise, we know: there exist ws ′ and w′ such that
R,G, I |= (C, σ′,ws ′)�H;w′;Q∧arem(skip) (C,Σ′).
By the co-induction hypothesis, we know: R,G, I |= (C, σ′, (ws ′,H))�Q (C,Σ′).

4. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), false) |= R+ ∗ Id,

from the premise, we know: R,G, I |= (C, σ′,ws)�H;w;Q∧arem(skip) (C,Σ′).
By the co-induction hypothesis, we know: R,G, I |= (C, σ′, (ws,H))�Q (C,Σ′).

5. if C = skip, then for any ΣF , from the premise, we know one of the following holds:

(a) there exist w′, C′ and Σ′ such that (C,Σ ] ΣF ) −→+ (C′,Σ′ ] ΣF ),
((σ,Σ), (σ,Σ′), true) |= G+ ∗ True and (σ,w′,C′,Σ′) |= Q ∧ arem(skip).

Thus we know C′ = skip and (σ,Σ′) |= Q.

(b) there exists w′ such that ws = (w′, 0) and (σ,w + w′,C,Σ) |= Q ∧ arem(skip).

Thus we know C = skip and (σ,Σ) |= Q.

6. for any σF and ΣF , if (C, σ ] σF ) −→ abort, from the premise, we know (C,Σ]ΣF ) −→+ abort.

Thus we are done. 2

407



The TRANS rule. We define M2 ◦M1 as a pair (M2,M1) and the corresponding well-founded order
as the lexical order. That is, the following hold:

(M2 < M ′2) =⇒ (M2 ◦M1 < M ′2 ◦M ′1) (5.92)

(M1 < M ′1) =⇒ (M2 ◦M1 < M2 ◦M ′1) (5.93)

Lemma 19 (TRANS). If

1. R1, G1, I1 ` {P1}C�CM{Q1};

2. R2, G2, I2 ` {P2}CM�C{Q2};

3. MPrecise(I1, I2); I1 . {R1, G1}; I2 . {R2, G2};

4. ((G1)
I1 #̂ (G2)

I2) ⇒ (G1 #̂G2)
I1#I2 ; (R1 #̌R2)

I1#I2 ⇒ ((R1)
I1 #̌ (R2)

I2);

then (R1 #̌R2), (G1 #̂G2), (I1 # I2) ` {P1 # P2}C�C{Q1 #Q2}.

Proof: For all σ and Σ, if (σ,Σ) |= P1 #P2, we know there exists θ such that (σ, θ) |= P1 and (θ,Σ) |= P2.
From the premise, we know:

1. there exists M1 such that R1, G1, I1 |= (C, σ,M1)�Q1 (CM, θ).

2. there exists M2 such that R2, G2, I2 |= (CM, θ,M2)�Q2
(C,Σ).

By Lemma 20, we know (R1 #̌R2), (G1 #̂G2), (I1 # I2) |= (C, σ, (M2 ◦M1))�Q1#Q2 (C,Σ). Thus we are
done. 2

Lemma 20. If

1. R1, G1, I1 |= (C, σ,M1)�Q1
(CM, θ);

2. R2, G2, I2 |= (CM, θ,M2)�Q2
(C,Σ);

3. MPrecise(I1, I2); I1 . {R1, G1}; I2 . {R2, G2};

4. ((G1)
+ #̂ (G2)

+
) ⇒ (G1 #̂G2)

+
; (R1 #̌R2)

+ ⇒ ((R1)
+ #̌ (R2)

+
);

then (R1 #̌R2), (G1 #̂G2), (I1 # I2) |= (C, σ, (M2 ◦M1))�Q1#Q2
(C,Σ).

Proof: By co-induction. By the premises, we know (σ, θ) |= I1 ∗ true and (θ,Σ) |= I2 ∗ true. Since
MPrecise(I1, I2), we know (σ,Σ) |= (I1 # I2) ∗ true.

1. for any σF , ΣF , C ′ and σ′′, if (C, σ ] σF ) −→ (C ′, σ′′), then by the premise 1, we know:

there exists σ′ such that σ′′ = σ′ ] σF and for any θF , one of the following holds:

(a) either, there exist M ′1, C′M and θ′ such that (CM, θ ] θF ) −→+ (C′M, θ
′ ] θF ),

((σ, θ), (σ′, θ′), true) |= (G1)
+ ∗ True and R1, G1, I1 |= (C ′, σ′,M ′1)�Q1

(C′M, θ
′).

By the premise 2 and Lemma 21, we know: one of the following holds:

i. either, there exist M ′2, C′ and Σ′ such that (C,Σ ] ΣF ) −→+ (C′,Σ′ ] ΣF ),
((θ,Σ), (θ′,Σ′), true) |= (G2)

+ ∗ True and R2, G2, I2 |= (C′M, θ
′,M ′2)�Q2

(C′,Σ′).
Thus we know

((σ,Σ), (σ′,Σ′), true) |= ((G1)
+ ∗ True) #̂ ((G2)

+ ∗ True) (5.94)

Since I1 . G1 and I2 . G2, we know I1 . (G1)
+

and I2 . (G2)
+

. Since MPrecise(I1, I2), by
Lemma 25, we know

((G1)
+ ∗ True) #̂ ((G2)

+ ∗ True) ⇒ ((G1)
+ #̂ (G2)

+
) ∗ True (5.95)

408



Thus we get:

((σ,Σ), (σ′,Σ′), true) |= (G1 #̂G2)
+ ∗ True (5.96)

Besides, by the co-induction hypothesis, we get:

(R1 #̌R2), (G1 #̂G2), (I1 # I2) |= (C ′, σ′, (M ′2 ◦M ′1))�Q1#Q2 (C′,Σ′) (5.97)

ii. or, there exists M ′2 such that M ′2 < M2,
((θ,Σ), (θ′,Σ), false) |= (G2)

+ ∗ True and R2, G2, I2 |= (C′M, θ
′,M ′2)�Q2 (C,Σ).

Thus we know

((σ,Σ), (σ′,Σ), false) |= ((G1)
+ ∗ True) #̂ ((G2)

+ ∗ True) (5.98)

Thus we get:

((σ,Σ), (σ′,Σ), false) |= (G1 #̂G2)
+ ∗ True (5.99)

Besides, by the co-induction hypothesis, we get:

(R1 #̌R2), (G1 #̂G2), (I1 # I2) |= (C ′, σ′, (M ′2 ◦M ′1))�Q1#Q2 (C,Σ) (5.100)

Moreover, we know
(M ′2 ◦M ′1) < (M2 ◦M1) (5.101)

(b) or, there exists M ′1 such that M ′1 < M1,
((σ, θ), (σ′, θ), false) |= (G1)

+ ∗ True and R1, G1, I1 |= (C ′, σ′,M ′1)�Q1 (CM, θ).

Since (θ,Σ) |= I2 ∗ true, we know ((θ,Σ), (θ,Σ), false) |= (G2)
+ ∗ True. Thus

((σ,Σ), (σ′,Σ), false) |= ((G1)
+ ∗ True) #̂ ((G2)

+ ∗ True) (5.102)

Thus we get:

((σ,Σ), (σ′,Σ), false) |= (G1 #̂G2)
+ ∗ True (5.103)

Besides, by the co-induction hypothesis, we get:

(R1 #̌R2), (G1 #̂G2), (I1 # I2) |= (C ′, σ′, (M2 ◦M ′1))�Q1#Q2
(C,Σ) (5.104)

Moreover, we know
(M2 ◦M ′1) < (M2 ◦M1) (5.105)

2. for any σF , ΣF , e, C ′ and σ′′, if (C, σ ] σF )
e−→ (C ′, σ′′), then by the premise 1, we know: for any

θF , there exist σ′, M ′1, C′M and θ′ such that σ′′ = σ′ ] σF , (CM, θ ] θF )
e−→+ (C′M, θ

′ ] θF ),
((σ, θ), (σ′, θ′), true) |= (G1)

+ ∗ True and R1, G1, I1 |= (C ′, σ′,M ′1)�Q1
(C′M, θ

′).

By the premise 2 and Lemma 22, we know:

there exist M ′2, C′ and Σ′ such that (C,Σ ] ΣF )
e−→+ (C′,Σ′ ] ΣF ),

((θ,Σ), (θ′,Σ′), true) |= (G2)
+ ∗ True and R2, G2, I2 |= (C′M, θ

′,M ′2)�Q2 (C′,Σ′).
Thus we know

((σ,Σ), (σ′,Σ′), true) |= ((G1)
+ ∗ True) #̂ ((G2)

+ ∗ True) (5.106)

Thus we get:

((σ,Σ), (σ′,Σ′), true) |= (G1 #̂G2)
+ ∗ True (5.107)

Besides, by the co-induction hypothesis, we get:

(R1 #̌R2), (G1 #̂G2), (I1 # I2) |= (C ′, σ′, (M ′2 ◦M ′1))�Q1#Q2
(C′,Σ′) (5.108)

409



3. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), true) |= (R1 #̌R2)
+ ∗ Id, then we know

((σ,Σ), (σ′,Σ′), true) |= ((R1)
+ #̌ (R2)

+
) ∗ Id (5.109)

By Lemma 26, we know

((R1)
+ #̌ (R2)

+
) ∗ Id ⇒ ((R1)

+ ∗ Id) #̌ ((R2)
+ ∗ Id) (5.110)

Thus we get: there exist θ, θ′, b1 and b2 such that b = b1 ∨ b2,

((σ, θ), (σ′, θ′), b1) |= (R1)
+ ∗ Id and ((θ,Σ), (θ′,Σ′), b2) |= (R2)

+ ∗ Id (5.111)

From the premises, we know: there exist M ′1 and M ′2 such that

(a) R1, G1, I1 |= (C, σ′,M ′1)�Q1
(CM, θ

′);

(b) R2, G2, I2 |= (CM, θ
′,M ′2)�Q2 (C,Σ′).

By the co-induction hypothesis, we get:

(R1 #̌R2), (G1 #̂G2), (I1 # I2) |= (C, σ′, (M ′2 ◦M ′1))�Q1#Q2 (C,Σ′) (5.112)

4. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), false) |= (R1 #̌R2)
+ ∗ Id, then we know

((σ,Σ), (σ′,Σ′), false) |= ((R1)
+ ∗ Id) #̌ ((R2)

+ ∗ Id) (5.113)

Thus we get: there exist θ and θ′ such that

((σ, θ), (σ′, θ′), false) |= (R1)
+ ∗ Id and ((θ,Σ), (θ′,Σ′), false) |= (R2)

+ ∗ Id (5.114)

From the premises, we know:

(a) R1, G1, I1 |= (C, σ′,M1)�Q1 (CM, θ
′);

(b) R2, G2, I2 |= (CM, θ
′,M2)�Q2 (C,Σ′).

By the co-induction hypothesis, we get:

(R1 #̌R2), (G1 #̂G2), (I1 # I2) |= (C, σ′, (M2 ◦M1))�Q1#Q2
(C,Σ′) (5.115)

5. if C = skip, then by the premise 1, we know: for any θF , one of the following holds:

(a) either, there exists θ′ such that (CM, θ ] θF ) −→+ (skip, θ′ ] θF ),
((σ, θ), (σ, θ′), true) |= (G1)

+ ∗ True and (σ, θ′) |= Q1.

By the premise 2 and Lemma 23, we know: for any ΣF , one of the following holds:

i. there exists Σ′ such that (C,Σ ] ΣF ) −→+ (skip,Σ′ ] ΣF ),
((θ,Σ), (θ′,Σ′), true) |= (G2)

+ ∗ True and (θ′,Σ′) |= Q2.
Thus we know

((σ,Σ), (σ,Σ′), true) |= ((G1)
+ ∗ True) #̂ ((G2)

+ ∗ True) (5.116)

Thus we get:

((σ,Σ), (σ,Σ′), true) |= (G1 #̂G2)
+ ∗ True (5.117)

Besides, we get:
(σ,Σ′) |= (Q1 #Q2) (5.118)

410



ii. or, C = skip, ((θ,Σ), (θ′,Σ), false) |= (G2)
+ ∗ True and (θ′,Σ) |= Q2.

We get:
(σ,Σ) |= (Q1 #Q2) (5.119)

(b) or, CM = skip and (σ, θ) |= Q1.

By the premise 2, we know one of the following holds:

i. there exists Σ′ such that (C,Σ ] ΣF ) −→+ (skip,Σ′ ] ΣF ),
((θ,Σ), (θ,Σ′), true) |= (G2)

+ ∗ True and (θ,Σ′) |= Q2.
Since (σ, θ) |= I1 ∗ true, we know: ((σ, θ), (σ, θ), true) |= (G1)

+ ∗ True.
Thus we know

((σ,Σ), (σ,Σ′), true) |= ((G1)
+ ∗ True) #̂ ((G2)

+ ∗ True) (5.120)

Thus we get:

((σ,Σ), (σ,Σ′), true) |= (G1 #̂G2)
+ ∗ True (5.121)

Besides, we get:
(σ,Σ′) |= (Q1 #Q2) (5.122)

ii. or, C = skip and (θ,Σ) |= Q2.
We get:

(σ,Σ) |= (Q1 #Q2) (5.123)

6. for any σF and ΣF , if (C, σ ] σF ) −→ abort, then by the premise 1, we know: for any θF ,
(CM, θ ] θF ) −→+ abort. By the premise 2 and Lemma 24, we know: (C,Σ ] ΣF ) −→+ abort.

Thus we are done. 2

Lemma 21. If I . G, R,G, I |= (C, σ,M)�Q (C,Σ), (C, σ ] σF ) −→n+1 (C ′, σ′′) and Σ⊥ΣF , then there
exists σ′ such that σ′′ = σ′ ] σF and one of the following holds:

(1) either, there exist M ′, C′ and Σ′ such that (C,Σ ] ΣF ) −→+ (C′,Σ′ ] ΣF ),
((σ,Σ), (σ′,Σ′), true) |= G+ ∗ True and R,G, I |= (C ′, σ′,M ′)�Q (C′,Σ′);

(2) or, there exists M ′ such that M ′ < M ,
((σ,Σ), (σ′,Σ), false) |= G+ ∗ True and R,G, I |= (C ′, σ′,M ′)�Q (C,Σ).

Proof: By induction over n.
Base Case: n = 0. By Definition 2.
Inductive Step: n = k + 1. Thus there exist C1 and σ′1 such that

(C, σ ] σF ) −→1 (C1, σ
′
1) and (C1, σ

′
1) −→n (C ′, σ′′)

By Definition 2, we know there exists σ1 such that σ′1 = σ1 ] σF and one of the following holds:

(i) either, there exist M1, C1 and Σ1 such that (C,Σ ] ΣF ) −→+ (C1,Σ1 ] ΣF ),
((σ,Σ), (σ1,Σ1), true) |= G+ ∗ True and R,G, I |= (C1, σ1,M1)�Q (C1,Σ1).

By the induction hypothesis, we know: there exists σ′ such that σ′′ = σ′ ] σF and one of the
following holds:

(a) either, there exist M ′, C′ and Σ′ such that (C1,Σ1 ] ΣF ) −→+ (C′,Σ′ ] ΣF ),
((σ1,Σ1), (σ′,Σ′), true) |= G+ ∗ True and R,G, I |= (C ′, σ′,M ′)�Q (C′,Σ′).
Then

(C,Σ ] ΣF ) −→+ (C′,Σ′ ] ΣF ).

Since I . G, we know

411



((σ,Σ), (σ′,Σ′), true) |= G+ ∗ True.

(b) or, there exists M ′ such that M ′ < M1,
((σ1,Σ1), (σ′,Σ1), false) |= G+ ∗ True and R,G, I |= (C ′, σ′,M ′)�Q (C1,Σ1).

Since I . G, we know

((σ,Σ), (σ′,Σ1), true) |= G+ ∗ True.

(ii) or, there exists M1 such that M1 < M ,
((σ,Σ), (σ1,Σ), false) |= G+ ∗ True and R,G, I |= (C1, σ1,M1)�Q (C,Σ).

The case is similar.

Thus we are done. 2

Lemma 22. If I . G, R,G, I |= (C, σ,M)�Q (C,Σ), (C, σ ] σF )
e−→n+1 (C ′, σ′′) and Σ⊥ΣF , then there

exist σ′, M ′, C′ and Σ′ such that σ′′ = σ′ ] σF , (C,Σ]ΣF )
e−→+ (C′,Σ′ ]ΣF ), ((σ,Σ), (σ′,Σ′), true) |=

G+ ∗ True and R,G, I |= (C ′, σ′,M ′)�Q (C′,Σ′).

Proof: By induction over n. Similar to Lemma 21. 2

Lemma 23. If I . G, R,G, I |= (C, σ,M)�Q (C,Σ), (C, σ ] σF ) −→n (skip, σ′′) and Σ⊥ΣF , then there
exists σ′ such that σ′′ = σ′ ] σF and one of the following holds:

(1) either, there exists Σ′ such that (C,Σ ] ΣF ) −→+ (skip,Σ′ ] ΣF ),
((σ,Σ), (σ′,Σ′), true) |= G+ ∗ True and (σ′,Σ′) |= Q;

(2) or, C = skip, ((σ,Σ), (σ′,Σ), false) |= G+ ∗ True and (σ′,Σ) |= Q.

Proof: By induction over n. Similar to Lemma 21. 2

Lemma 24. If R,G, I |= (C, σ,M)�Q (C,Σ) and (C, σ ] σF ) −→n+1 abort and Σ⊥ΣF ,
then (C,Σ ] ΣF ) −→+ abort.

Proof: By induction over n. Similar to Lemma 21. 2

Lemma 25. If I1 . G1, I2 . G2 and MPrecise(I1, I2), then (G1 ∗ True) #̂ (G2 ∗ True)⇒ (G1 #̂G2) ∗ True.

Proof: For any σ, Σ, σ′, Σ′ and b, if ((σ,Σ), (σ′,Σ′), b) |= (G1 ∗ True) #̂ (G2 ∗ True), we know there exist
θ, θ′, b1 and b2 such that

((σ, θ), (σ′, θ′), b1) |= (G1 ∗ True), ((θ,Σ), (θ′,Σ′), b2) |= (G2 ∗ True), b = b1 ∧ b2.

Then we know there exist σ1, θ1, σ′1, θ′1, θ2, Σ2, θ′2 and Σ′2 such that

((σ1, θ1), (σ′1, θ
′
1), b1) |= G1, ((θ2,Σ2), (θ′2,Σ

′
2), b2) |= G2,

σ1 ⊆ σ, θ1 ⊆ θ, σ′1 ⊆ σ′, θ′1 ⊆ θ′, θ2 ⊆ θ, Σ2 ⊆ Σ, θ′2 ⊆ θ′, Σ′2 ⊆ Σ′

Since I1 . G1 and I2 . G2, we know

(σ1, θ1) |= I1, (σ′1, θ
′
1) |= I1, (θ2,Σ2) |= I2, (θ′2,Σ

′
2) |= I2.

Since MPrecise(I1, I2), we know

θ1 = θ2, θ′1 = θ′2.

Thus we know

((σ1,Σ2), (σ′1,Σ
′
2), b) |= G1 #̂G2

Thus

412



((σ,Σ), (σ′,Σ′), b) |= (G1 #̂G2) ∗ True.

Then we are done. 2

Lemma 26. (R1 #̌R2) ∗ Id ⇒ (R1 ∗ Id) #̌ (R2 ∗ Id).

Proof: For any σ, Σ, σ′, Σ′ and b, if ((σ,Σ), (σ′,Σ′), b) |= (R1 #̌R2) ∗ Id, we know there exist σ1, Σ1, σ′1,
Σ′1, σ2 and Σ2 such that

((σ1,Σ1), (σ′1,Σ
′
1), b) |= R1 #̌R2,

σ = σ1 ] σ2, Σ = Σ1 ] Σ2, σ′ = σ′1 ] σ2, Σ′ = Σ′1 ] Σ2

Then we know there exist θ, θ′, b1 and b2 such that

((σ1, θ), (σ
′
1, θ
′), b1) |= R1, ((θ,Σ1), (θ′,Σ′1), b2) |= R2, b = b1 ∨ b2.

Thus we know

((σ, θ), (σ′, θ′), b1) |= R1 ∗ Id, ((θ,Σ), (θ′,Σ′), b2) |= R2 ∗ Id.

Thus

((σ,Σ), (σ′,Σ′), b) |= (R1 ∗ Id) #̌ (R2 ∗ Id).

Then we are done. 2

413



5.4 Soundness of Unary Rules

Lemma 27. If R,G, I ` {p}C{q}, then I . {R,G}, p ∨ q ⇒ I ∗ true and Sta({p, q}, R ∗ Id).

Proof: By induction over the derivation of R,G, I ` {p}C{q}. For the stability, we need Lemma 28. 2

Lemma 28. If Sta(p,R ∗ Id), then Sta(bpcw, R ∗ Id).

Lemma 29. If R,G, I |= (C, σ,ws)�H;w;q (D,Σ) and H ≤ H′, then R,G, I |= (C, σ,ws)�H′;w;q (D,Σ).

Proof: We know: if ws ′ <H ws and H ≤ H′, then ws ′ <H′ ws. 2

We define:

inchead(ws, (k1, k2))
def
=

{
(w + k1, n+ k2) if ws = (w, n)
(w + k1, n+ k2) ::ws ′ if ws = (w, n) ::ws ′

Lemma 30. If R,G, I |= (C, σ,ws)�H;w;q (D,Σ), w1 ≤ w and ws1 = inchead(ws, (w1, 0)), then
R,G, I |= (C, σ,ws1)�H;w−w1;q (D,Σ).

Proof: By co-induction. From the premise, we know: (σ,Σ) |= I ∗ true.

1. For any σF , ΣF , C ′ and σ′′, if (C, σ ] σF ) −→ (C ′, σ′′) and Σ⊥ΣF , from the premise, we know
there exists σ′ such that σ′′ = σ′ ] σF and one of the following holds:

(a) there exist ws ′, w′, C′ and Σ′ such that (D,Σ ] ΣF ) −→+ (C′,Σ′ ] ΣF ),
((σ,Σ), (σ′,Σ′), true) |= G+ ∗ True and R,G, I |= (C ′, σ′,ws ′)�H;w′;q (C′,Σ′).
By the co-induction hypothesis, let ws ′1 = inchead(ws ′, (w1, 0)), we know
R,G, I |= (C ′, σ′,ws ′1)�H;w′−w1;q (C′,Σ′).

(b) there exists ws ′ such that ws ′ <H ws,
((σ,Σ), (σ′,Σ), false) |= G+ ∗ True and R,G, I |= (C ′, σ′,ws ′)�H;w;q (D,Σ).

By the co-induction hypothesis, let ws ′1 = inchead(ws ′, (w1, 0)), we know
R,G, I |= (C ′, σ′,ws ′1)�H;w−w1;q (D,Σ).

Since ws ′ <H ws, we know ws ′1 <H ws1.

2. For any σF , ΣF , e, C ′ and σ′′, if (C, σ ] σF )
e−→ (C ′, σ′′) and Σ⊥ΣF , the proof is similar to the

previous case.

3. For any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), true) |= R+ ∗ Id, from the premise, we know: there exist ws ′

and w′ such that R,G, I |= (C, σ′,ws ′)�H;w′;q (D,Σ′).
By the co-induction hypothesis, let ws ′1 = inchead(ws ′, (w1, 0)), we know
R,G, I |= (C, σ′,ws ′1)�H;w′−w1;q (D,Σ′).

4. For any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), false) |= R+ ∗ Id, from the premise, we know:
R,G, I |= (C, σ′,ws)�H;w;q (D,Σ′).
By the co-induction hypothesis, we know R,G, I |= (C, σ′,ws1)�H;w−w1;q (D,Σ′).

5. If C = skip, then for any ΣF , if Σ⊥ΣF , from the premise we know one of the following holds:

(a) there exist w′, C′ and Σ′ such that (D,Σ ] ΣF ) −→+ (C′,Σ′ ] ΣF ),
((σ,Σ), (σ,Σ′), true) |= G+ ∗ True and (σ,w′,C′,Σ′) |= q.

(b) there exists w′ such that ws = (w′, 0) and (σ,w + w′,D,Σ) |= q.

Thus ws1 = (w′ + w1, 0) and (σ, (w − w1) + (w′ + w1),D,Σ) |= q.

6. For any σF and ΣF , if (C, σ ] σF ) −→ abort and Σ⊥ΣF , from the premise we know:
(D,Σ ] ΣF ) −→+ abort.

Thus we are done. 2

414



The HIDE-w rule.

Lemma 31 (HIDE-w). If R,G, I |= {p}C{q}, then R,G, I |= {bpcw}C{bqcw}.

Proof: We want to prove: for all σ, w1, D and Σ, if (σ,w1,D,Σ) |= bpcw, then

R,G, I |= (C, σ, (0, |C|))�height(C);w1;bqcw (D,Σ).

We know there exists w such that

(σ,w,D,Σ) |= p

From the premise, we know:

R,G, I |= (C, σ, (0, |C|))�height(C);w;q (D,Σ).

By Lemma 32, we are done. 2

Lemma 32. If R,G, I |= (C, σ,ws)�H;w;q (D,Σ), then R,G, I |= (C, σ,ws)�H;w1;bqcw (D,Σ).

Proof: By co-induction. From the premise, we know: (σ,Σ) |= I ∗ true.

1. For any σF , ΣF , C ′ and σ′′, if (C, σ ] σF ) −→ (C ′, σ′′) and Σ⊥ΣF , from the premise, we know
there exists σ′ such that σ′′ = σ′ ] σF and one of the following holds:

(a) there exist ws ′, w′, C′ and Σ′ such that (D,Σ ] ΣF ) −→+ (C′,Σ′ ] ΣF ),
((σ,Σ), (σ′,Σ′), true) |= G+ ∗ True and R,G, I |= (C ′, σ′,ws ′)�H;w′;q (C′,Σ′).
By the co-induction hypothesis, we know R,G, I |= (C ′, σ′,ws ′)�H;w1;bqcw (C′,Σ′).

(b) there exists ws ′ such that ws ′ <H ws,
((σ,Σ), (σ′,Σ), false) |= G+ ∗ True and R,G, I |= (C ′, σ′,ws ′)�H;w;q (D,Σ).

By the co-induction hypothesis, we know R,G, I |= (C ′, σ′,ws ′)�H;w1;bqcw (D,Σ).

2. For any σF , ΣF , e, C ′ and σ′′, if (C, σ ] σF )
e−→ (C ′, σ′′) and Σ⊥ΣF , the proof is similar to the

previous case.

3. For any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), true) |= R+ ∗ Id, from the premise, we know: there exist ws ′

and w′ such that R,G, I |= (C, σ′,ws ′)�H;w′;q (D,Σ′).
By the co-induction hypothesis, we know R,G, I |= (C, σ′,ws ′)�H;w1;bqcw (D,Σ′).

4. For any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), false) |= R+ ∗ Id, from the premise, we know:
R,G, I |= (C, σ′,ws)�H;w;q (D,Σ′).
By the co-induction hypothesis, we know R,G, I |= (C, σ′,ws)�H;w1;bqcw (D,Σ′).

5. If C = skip, then for any ΣF , if Σ⊥ΣF , from the premise we know one of the following holds:

(a) there exist w′, C′ and Σ′ such that (D,Σ ] ΣF ) −→+ (C′,Σ′ ] ΣF ),
((σ,Σ), (σ,Σ′), true) |= G+ ∗ True and (σ,w′,C′,Σ′) |= q.

Thus (σ,w′,C′,Σ′) |= bqcw.

(b) there exists w′ such that ws = (w′, 0) and (σ,w + w′,D,Σ) |= q.

Thus (σ,w1 + w′,D,Σ) |= bqcw.

6. For any σF and ΣF , if (C, σ ] σF ) −→ abort and Σ⊥ΣF , from the premise we know:
(D,Σ ] ΣF ) −→+ abort.

Thus we are done. 2

415



The WHILE rule.

Lemma 33 (WHILE). If

1. R,G, I |= {p′}C{p};

2. p ∧B ⇒ p′ ∗ (wf(1) ∧ emp);

3. Sta(p,R ∗ Id); I . {R,G}; p⇒ (B = B) ∗ I;

then R,G, I |= {p}while (B) C{p ∧ ¬B}.

Proof: We want to prove: for all σ, w, D and Σ, if (σ,w,D,Σ) |= p, then

R,G, I |= (while (B) C, σ, (0, |while (B) C|))�height(while (B) C);w;p∧¬B (D,Σ).

We know |while (B) C| = 1 and can prove height(while (B) C) = height(C) + 1.
By co-induction. From (σ,w,D,Σ) |= p, since p⇒ I ∗ (B = B), we know:

(σ,Σ) |= I ∗ true (5.124)

1. For any σF and ΣF , if (while (B) C, σ ] σF ) −→ (C; while (B){C}, σ ] σF ) and JBKσ]σF
= true,

below we prove 1(b) of Definition 8 holds.

Since (σ,Σ) |= (B = B), we know JBKσ = true. Then we know

(σ,w,D,Σ) |= p ∧B (5.125)

Since p ∧B ⇒ p′ ∗ (wf(1) ∧ emp), we know there exists w′ such that w′ < w and

(σ,w′,D,Σ) |= p′ (5.126)

From the premise 1, we know R,G, I |= (C, σ, (0, |C|))�height(C);w′;p (D,Σ).

By Lemma 34, we know: let
ws ′ = (0, 0) :: (w′, |C|+ 1) (5.127)

then
R,G, I |= (C; while (B){C}, σ,ws ′)�height(C)+1;w;p∧¬B (D,Σ) (5.128)

We know ws ′ <height(C)+1 (0, 1).

Also, since I . G and (σ,Σ) |= I ∗ true, we know ((σ,Σ), (σ,Σ), false) |= G+ ∗ True.

2. For any σF and ΣF , if (while (B) C, σ ] σF ) −→ (skip, σ ] σF ) and JBKσ]σF
= false, below we

prove 1(b) of Definition 8 holds.

since (σ,Σ) |= (B = B), we know JBKσ = false. Then we know

(σ,w,D,Σ) |= p ∧ ¬B (5.129)

By the skip and frame rules, we know:

R,G, I |= (skip, σ, (0, 0))�height(C)+1;w;p∧¬B (D,Σ) (5.130)

We know (0, 0) <height(C)+1 (0, 1) and ((σ,Σ), (σ,Σ), false) |= G+ ∗ True.

3. For any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), true) |= R+ ∗ Id,

since Sta(p,R ∗ Id), we know Sta(p,R+ ∗ Id), thus there exists w′ such that

(σ′, w′,D,Σ′) |= p (5.131)

By the co-induction hypothesis, we get:

R,G, I |= (while (B) C, σ′, (0, 1))�height(C)+1;w′;p∧¬B (D,Σ′) (5.132)

416



4. For any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), false) |= R+ ∗ Id,

since Sta(p,R ∗ Id), we know Sta(p,R+ ∗ Id), thus

(σ′, w,D,Σ′) |= p (5.133)

By the co-induction hypothesis, we get:

R,G, I |= (while (B) C, σ′, (0, 1))�height(C)+1;w;p∧¬B (D,Σ′) (5.134)

Thus we are done. 2

Lemma 34. If

1. R,G, I |= (C1, σ,ws1)�H;w′
0;p

(D,Σ);

2. for all σ, w, D and Σ, if (σ,w,D,Σ) |= p′, then R,G, I |= (C, σ, (0, |C|))�H;w;p (D,Σ);

3. p ∧B ⇒ p′ ∗ (wf(1) ∧ emp);

4. Sta(p,R ∗ Id); I . {R,G}; p⇒ (B = B) ∗ I;

5. ws = (0, 0) :: inchead(ws1, (w
′
0, 1));

6. root(ws1) = (w1, ); w′0 + w1 ≤ w0;

then R,G, I |= (C1; while (B){C}, σ,ws)�H+1;w0;p∧¬B (D,Σ).

Proof: By co-induction. From the first premise, we know (σ,Σ) |= I ∗ true.

1. For any σF , ΣF , C ′1 and σ′′, if (C1; while (B){C}, σ ] σF ) −→ (C ′1; while (B){C}, σ′′), i.e.,

(C1, σ ]σF ) −→ (C ′1, σ
′′), from the premise 1, we know: there exists σ′ such that σ′′ = σ′ ]σF and

one of the following holds:

(a) there exist ws ′1, w′′0 , C′ and Σ′ such that (D,Σ ] ΣF ) −→+ (C′,Σ′ ] ΣF ),
((σ,Σ), (σ′,Σ′), true) |= G+ ∗ True and R,G, I |= (C ′1, σ

′,ws ′1)�H;w′′
0 ;p (C′,Σ′).

Suppose root(ws ′1) = (w′1, ).

By the co-induction hypothesis, let ws ′ = (0, 0) :: inchead(ws ′1, (w
′′
0 , 1)), we know:

R,G, I |= (C ′1; while (B){C}, σ′,ws ′)�H+1;w′′
0 +w′

1;p∧¬B (C′,Σ′).
(b) there exists ws ′1 such that ws ′1 <H ws1,

((σ,Σ), (σ′,Σ), false) |= G+ ∗ True and R,G, I |= (C ′1, σ
′,ws ′1)�H;w′

0;p
(D,Σ).

Suppose root(ws ′1) = (w′1, ). Since ws ′1 <H ws1, we know w′1 ≤ w1. Thus w′0 + w′1 ≤ w0.

By the co-induction hypothesis, let ws ′ = (0, 0) :: inchead(ws ′1, (w
′
0, 1)), we know:

R,G, I |= (C ′1; while (B){C}, σ′,ws ′)�H+1;w0;p∧¬B (D,Σ).

Since ws ′1 <H ws1, we know: ws ′ <H+1 ws.

2. For any σF , ΣF , e, C ′1 and σ′′, if (C1; while (B){C}, σ ] σF )
e−→ (C ′1; while (B){C}, σ′′), the proof

is similar to the previous case.

3. For any σF and ΣF , if (C1; while (B){C}, σ ] σF ) −→ (while (B){C}, σ ] σF ), i.e., C1 = skip,

from the premise 1, we know one of the following holds:

(a) there exists w1 such that ws1 = (w1, 0) and (σ,w1 + w′0,D,Σ) |= p.

Thus ws = (0, 0) :: (w1 + w′0, 1). We know (0, 0) :: (w1 + w′0, 0) <H+1 ws.

Also we know ((σ,Σ), (σ,Σ), false) |= G+ ∗ True.

Below we prove:

R,G, I |= (while (B){C}, σ, (0, 0) :: (w1 + w′0, 0))�H+1;w0;p∧¬B (C′,Σ′) (5.135)

By co-induction. Since p⇒ I ∗ (B = B), we know (σ,Σ′) |= I ∗ true.

417



i. For any σF and ΣF , if (while (B){C}, σ]σF ) −→ (C; while (B){C}, σ]σF ) and JBKσ]σF
=

true, below we prove 1(b) of Definition 8 holds.
Since (σ,Σ′) |= (B = B), we know JBKσ = true. Then we know

(σ,w1 + w′0,C′,Σ′) |= p ∧B (5.136)

Since p ∧B ⇒ p′ ∗ (wf(1) ∧ emp), we know there exists w′1 such that w′1 < w1 + w′0 and

(σ,w′1,C′,Σ′) |= p′ (5.137)

From the premise 2, we know R,G, I |= (C, σ, (0, |C|))�H;w′
1;p

(C′,Σ′).
By the co-induction hypothesis, we know:

R,G, I |= (C; while (B){C}, σ, (0, 0) :: (w′1, |C|+ 1))�H+1;w0;p∧¬B (C′,Σ′) (5.138)

We know (0, 0) :: (w′1, |C|+ 1) <H+1 (0, 0) :: (w1 + w′0, 0).
Also we know ((σ,Σ′), (σ,Σ′), false) |= G+ ∗ True.

ii. For any σF and ΣF , if (while (B){C}, σ ] σF ) −→ (skip, σ ] σF ) and JBKσ]σF
= false,

below we prove 1(b) of Definition 8 holds.
Since (σ,Σ′) |= (B = B), we know JBKσ = false. Since (σ,w1 +w′0,C′,Σ′) |= p, we know:

(σ,w1 + w′0,C′,Σ′) |= p ∧ ¬B (5.139)

Since w1 + w′0 ≤ w0, we know:

(σ,w0,C′,Σ′) |= p ∧ ¬B (5.140)

By the skip and frame rules, we know:

R,G, I |= (skip, σ, (0, 0))�H+1;w0;p∧¬B (C′,Σ′) (5.141)

We know (0, 0) <H+1 (0, 0) :: (w1 + w′0, 0) and ((σ,Σ′), (σ,Σ′), false) |= G+ ∗ True.

iii. For any σ′ and Σ′′, if ((σ,Σ′), (σ′,Σ′′), true) |= R+ ∗ Id,
since Sta(p,R ∗ Id), we know Sta(p,R+ ∗ Id), thus there exists w′1 such that

(σ′, w′1 + w′0,C′,Σ′′) |= p (5.142)

By the co-induction hypothesis, we get:

R,G, I |= (while (B){C}, σ′, (0, 0) :: (w′1 + w′0, 0))�H+1;w′
1+w

′
0;p∧¬B (C′,Σ′′) (5.143)

iv. For any σ′ and Σ′′, if ((σ,Σ′), (σ′,Σ′′), false) |= R+ ∗ Id,
since Sta(p,R ∗ Id), we know Sta(p,R+ ∗ Id), thus

(σ′, w1 + w′0,C′,Σ′′) |= p (5.144)

By the co-induction hypothesis, we get:

R,G, I |= (while (B){C}, σ′, (0, 0) :: (w1 + w′0, 0))�H+1;w0;p∧¬B (C′,Σ′′) (5.145)

Thus we have proved (5.135).

(b) there exist w′1, C′ and Σ′ such that (D,Σ ] ΣF ) −→+ (C′,Σ′ ] ΣF ),
((σ,Σ), (σ,Σ′), true) |= G+ ∗ True and (σ,w′1,C′,Σ′) |= p.

We can prove:

R,G, I |= (while (B){C}, σ, (0, 0) :: (w′1, 0))�H+1;w′
1;p∧¬B (C′,Σ′) (5.146)

in the similar way as the previous case.

418



4. For any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), true) |= R+ ∗ Id,

from the premise, we know there exist ws ′1 and w′′0 such that R,G, I |= (C1, σ
′,ws ′1)�H;w′′

0 ;p (D,Σ′).
Suppose root(ws ′1) = (w′1, ).

By the co-induction hypothesis, we know: let ws ′ = (0, 0) :: inchead(ws ′1, (w
′′
0 , 1)), then

R,G, I |= (C1; while (B){C}, σ′,ws ′)�H+1;w′′
0 +w′

1;p∧¬B (D,Σ′).

5. For any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), false) |= R+ ∗ Id,

from the premise, we know: R,G, I |= (C1, σ
′,ws1)�H;w′

0;p
(D,Σ′).

By the co-induction hypothesis, we know:
R,G, I |= (C1; while (B){C}, σ′,ws)�H+1;w0;p∧¬B (D,Σ′).

6. For any σF and ΣF , if (C1; while (B){C}, σ ]σF ) −→ abort, we know (C1, σ ]σF ) −→ abort. By
the premise 1, we know: (D,Σ ] ΣF ) −→+ abort.

Thus we are done. 2

The SEQ rule.

Lemma 35 (SEQ). If

1. R,G, I |= {p}C1{p′};

2. R,G, I |= {p′}C2{q};

3. I . G;

then R,G, I |= {p}C1;C2{q}.

Proof: We want to prove: for all σ, w, D and Σ, if (σ,w,D,Σ) |= p, then

R,G, I |= (C1;C2, σ, (0, |C1;C2|))�height(C1;C2);w;q (D,Σ).

We know |C1;C2| = |C1|+ |C2|+ 1 and can prove height(C1;C2) = max{height(C1), height(C2)}.
Since (σ,w,D,Σ) |= p, by the premise 1, we know:

R,G, I |= (C1, σ, (0, |C1|))�height(C1);w;p′ (D,Σ).

By Lemma 29, we know: R,G, I |= (C1, σ, (0, |C1|))�height(C1;C2);w;p′ (D,Σ).
From the premise 2, by Lemma 29, we know: for all σ, w, D and Σ, if (σ,w,D,Σ) |= p′, then

R,G, I |= (C2, σ, (0, |C2|))�height(C1;C2);w;q (D,Σ).
By Lemma 36, we are done. 2

Lemma 36. If

1. R,G, I |= (C1, σ,ws1)�H;w;p′ (D,Σ);

2. for all σ, w, D and Σ, if (σ,w,D,Σ) |= p′, then R,G, I |= (C2, σ, (0, |C2|))�H;w;q (D,Σ);

3. I . G;

4. ws = inchead(ws1, (0, |C2|+ 1));

then R,G, I |= (C1;C2, σ,ws)�H;w;q (D,Σ).

Proof: By co-induction. From the premise 1, we know: (σ,Σ) |= I ∗ true.

1. for any σF , ΣF , C ′1 and σ′′, if (C1;C2, σ ] σF ) −→ (C ′1;C2, σ
′′), i.e., (C1, σ ] σF ) −→ (C ′1, σ

′′),

from the premise 1, we know: there exists σ′ such that σ′′ = σ′ ]σF and one of the following holds:

419



(a) there exist ws ′1, w′, C′ and Σ′ such that (D,Σ ] ΣF ) −→+ (C′,Σ′ ] ΣF ),
((σ,Σ), (σ′,Σ′), true) |= G+ ∗ True and R,G, I |= (C ′1, σ

′,ws ′1)�H;w′;p′ (C′,Σ′).
By the co-induction hypothesis, we know: let ws ′ = inchead(ws ′1, (0, |C2|+ 1)), then R,G, I |=
(C ′1;C2, σ

′,ws ′)�H;w′;q (C′,Σ′).
(b) there exists ws ′1 such that ws ′1 <H ws1,

((σ,Σ), (σ′,Σ), false) |= G+ ∗ True and R,G, I |= (C ′1, σ
′,ws ′1)�H;w;p′ (D,Σ).

By the co-induction hypothesis, we know: let ws ′ = inchead(ws ′1, (0, |C2| + 1)), R,G, I |=
(C ′1;C2, σ

′,ws ′)�H;w;q (D,Σ).

Since ws ′1 <H ws1, we know: ws ′ <H ws.

2. for any σF , ΣF , e, C ′1 and σ′′, if (C1;C2, σ]σF )
e−→ (C ′1;C2, σ

′′), the proof is similar to the previous
case.

3. for any σF and ΣF , if (C1;C2, σ ] σF ) −→ (C2, σ ] σF ) and C1 = skip,

from the premise 1, we know one of the following holds:

(a) there exist w′, C′ and Σ′ such that (D,Σ ] ΣF ) −→+ (C′,Σ′ ] ΣF ),
((σ,Σ), (σ,Σ′), true) |= G+ ∗ True and (σ,w′,C′,Σ′) |= p′.

From the premise 2, we know: R,G, I |= (C2, σ, (0, |C2|))�H;w′;q (C′,Σ′).
(b) there exists w1 such that ws1 = (w1, 0) and (σ,w + w1,D,Σ) |= p′.

Thus we know ws = (w1, |C2|+ 1).

We know (w1, |C2|) <H ws.

Since (σ,Σ) |= I ∗ true and I . G, we know ((σ,Σ), (σ,Σ), false) |= G+ ∗ True.

From the premise 2, we know: R,G, I |= (C2, σ, (0, |C2|))�H;w+w1;q (D,Σ).

By Lemma 30, we get: R,G, I |= (C2, σ, (w1, |C2|))�H;w;q (D,Σ).

4. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), true) |= R+ ∗ Id,

from the premise, we know: there exists ws ′1 and w′ such that
R,G, I |= (C1, σ

′,ws ′1)�H;w′;p′ (D,Σ′).
By the co-induction hypothesis, we know: let ws ′ = inchead(ws ′1, (0, |C2| + 1)), then R,G, I |=
(C1;C2, σ

′,ws ′)�H;w′;q (D,Σ′).

5. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), false) |= R+ ∗ Id,

from the premise, we know: R,G, I |= (C1, σ
′,ws1)�H;w;p′ (D,Σ′).

By the co-induction hypothesis, we know: R,G, I |= (C1;C2, σ
′,ws)�H;w;q (D,Σ′).

6. for any σF and ΣF , if (C1;C2, σ ] σF ) −→ abort, we know: (C1, σ ] σF ) −→ abort. By the
premise 1, we know: (D,Σ ] ΣF ) −→+ abort.

Thus we are done. 2

The ATOM rule.

Lemma 37 (ATOM). If

1. |=sl [p]C[q];

2. (TpUn TqU)⇒ G ∗ True;

3. p ∨ q ⇒ I ∗ true;

4. Locality(C);

420



then [I], G, I |= {p}〈C〉{q}.

Proof: We want to prove: for all σ, w, D and Σ, if (σ,w,D,Σ) |= p, then

[I], G, I |= (〈C〉, σ, (0, |〈C〉|))�height(〈C〉);w;q (D,Σ).

We know |〈C〉| = 1 and can prove height(〈C〉) = 1.
By co-induction. Since p⇒ I ∗ true, we know (σ,Σ) |= I ∗ true. From the premises 1 and 2, we can

prove:
(C, σ) 6−→∗ abort , (C, σ) 6−→ω · (5.147)

By Locality(C), we know: for any σF ,

(C, σ ] σF ) 6−→∗ abort , (C, σ ] σF ) 6−→ω · (5.148)

1. for any σF , ΣF , C ′ and σ′′, if (〈C〉, σ ] σF ) −→ (C ′, σ′′),

by the operational semantics, we know C ′ = skip and

(C, σ ] σF ) −→∗ (skip, σ′′) (5.149)

by Locality(C), we know: there exists σ′ such that σ′′ = σ′ ] σF and (C, σ) −→∗ (skip, σ′).

From |=sl [p]C[q] and (C, σ) −→∗ (skip, σ′), we know:

(σ′, w,D,Σ) |= q (5.150)

Thus we know:
((σ,Σ), (σ′,Σ), false) |= TpUn TqU (5.151)

Since (TpUn TqU)⇒ G ∗ True, we know ((σ,Σ), (σ′,Σ), false) |= G+ ∗ True.

Since q ⇒ I ∗ true and Sta(q, [I] ∗ Id), by the skip and frame rules, we know:

[I], G, I |= (skip, σ′, (0, 0))�1;w;q (D,Σ) (5.152)

Also, we know: (0, 0) <1 (0, 1).

2. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), true) |= ([I])
+ ∗ Id, we know σ′ = σ and Σ′ = Σ.

By the co-induction hypothesis, we know: [I], G, I |= (〈C〉, σ, (0, 1))�1;w;q (D,Σ).

3. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), false) |= ([I])
+ ∗ Id, we know σ′ = σ and Σ′ = Σ.

By the co-induction hypothesis, we know: [I], G, I |= (〈C〉, σ, (0, 1))�1;w;q (D,Σ).

Thus we are done. 2

The ATOM+ rule.

Lemma 38 (ATOM+). If

1. |=sl [p′]C[q′];

2. pVa p′; q′ Vb q; + ∈ {a, b};

3. (TpU ∝ TqU)⇒ G ∗ True;

4. p ∨ q ⇒ I ∗ true;

5. Locality(C);

421



then [I], G, I |= {p}〈C〉{q}.

Proof: We want to prove: for all σ, w, D and Σ, if (σ,w,D,Σ) |= p, then

[I], G, I |= (〈C〉, σ, (0, |〈C〉|))�height(〈C〉);w;q (D,Σ).

We know |〈C〉| = 1 and can prove height(〈C〉) = 1.
By co-induction. Since p⇒ I ∗ true, we know (σ,Σ) |= I ∗ true. From the premises 1 and 2, we can

prove:
(C, σ) 6−→∗ abort , (C, σ) 6−→ω · (5.153)

By Locality(C), we know: for any σF ,

(C, σ ] σF ) 6−→∗ abort , (C, σ ] σF ) 6−→ω · (5.154)

1. for any σF , ΣF , C ′ and σ′′, if (〈C〉, σ ] σF ) −→ (C ′, σ′′),

by the operational semantics, we know C ′ = skip and

(C, σ ] σF ) −→∗ (skip, σ′′) (5.155)

by Locality(C), we know: there exists σ′ such that σ′′ = σ′ ] σF and (C, σ) −→∗ (skip, σ′).

From pVa p′, we know one of the following holds:

(a) either, a is +, and there exist w′, D′ and Σ′ such that (D,Σ ] ΣF ) −→+ (D′,Σ′ ] ΣF )
and (σ,w′,D′,Σ′) |= p′;

(b) or, a is 0, and there exist w′, D′ and Σ′ such that (σ,w′,D′,Σ′) |= p′, w′ = w, D′ = D and
Σ′ = Σ.

For either case, from |=sl [p′]C[q′] and (C, σ) −→∗ (skip, σ′), we know:

(σ′, w′,D′,Σ′) |= q′ (5.156)

From q′ Vb q, we know one of the following holds:

(a) either, b is +, and there exist w′′, D′′ and Σ′′ such that (D′,Σ′ ] ΣF ) −→+ (D′′,Σ′′ ] ΣF )
and (σ′, w′′,D′′,Σ′′) |= q;

(b) or, b is 0, and there exist w′′, D′′ and Σ′′ such that (σ′, w′′,D′′,Σ′′) |= q, w′′ = w′, D′′ = D′
and Σ′′ = Σ′.

Since + ∈ {a, b}, we know the following must hold:

there exist w′′, C′′ and Σ′′ such that (C,Σ ] ΣF ) −→+ (C′′,Σ′′ ] ΣF ) and (σ′, w′′,C′′,Σ′′) |= q.

We know:
((σ,Σ), (σ′,Σ′′), true) |= TpU ∝ TqU (5.157)

Since (TpU ∝ TqU)⇒ G ∗ True, we know ((σ,Σ), (σ′,Σ′′), true) |= G+ ∗ True.

Since q ⇒ I ∗ true and Sta(q, [I] ∗ Id), by the skip and frame rules, we know:

[I], G, I |= (skip, σ′, (0, 0))�1;w′′;q (C′′,Σ′′) (5.158)

2. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), true) |= ([I])
+ ∗ Id, we know σ′ = σ and Σ′ = Σ.

By the co-induction hypothesis, we know: [I], G, I |= (〈C〉, σ, (0, 1))�1;w;q (D,Σ).

3. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), false) |= ([I])
+ ∗ Id, we know σ′ = σ and Σ′ = Σ.

By the co-induction hypothesis, we know: [I], G, I |= (〈C〉, σ, (0, 1))�1;w;q (D,Σ).

422



Thus we are done. 2

Lemma 39. If

1. R,G, I ` {p}〈C〉{q};

2. `sl is sound w.r.t. |=sl;

3. Locality(C);

4. (σ,w,D,Σ) |= p,

then for any σF , (C, σ ] σF ) 6−→∗ abort and (C, σ ] σF ) 6−→ω ·.

Proof: By induction over the derivation of R,G, I ` {p}〈C〉{q}. 2

The ATOM-R rule.

Lemma 40 (ATOM-R). If

1. [I], G, I |= {p}〈C〉{q};

2. Sta({p, q}, R ∗ Id); I . {R,G}; p ∨ q ⇒ I ∗ true;

3. for all σ and σF , if (σ, , , , ) |= p, (C, σ ] σF ) 6−→∗ abort and (C, σ ] σF ) 6−→ω ·;

then R,G, I |= {p}〈C〉{q}.

Proof: We want to prove: for all σ, w, D and Σ, if (σ,w,D,Σ) |= p, then

R,G, I |= (〈C〉, σ, (0, |〈C〉|))�height(〈C〉);w;q (D,Σ).

We know |〈C〉| = 1 and can prove height(〈C〉) = 1.
By co-induction. Since p⇒ I ∗ true, we know (σ,Σ) |= I ∗ true.

1. for any σF , ΣF , C ′ and σ′′, if (〈C〉, σ ] σF ) −→ (C ′, σ′′),

by the operational semantics, we know C ′ = skip and

(C, σ ] σF ) −→∗ (skip, σ′′) (5.159)

From the first premise, we know:

[I], G, I |= (〈C〉, σ, (0, 1))�1;w;q (D,Σ).

Thus there exists σ′ such that σ′′ = σ′ ] σF and one of the following holds:

(a) there exist ws ′, w′, C′ and Σ′ such that (D,Σ]ΣF ) −→+ (C′,Σ′]ΣF ), ((σ,Σ), (σ′,Σ′), true) |=
G+ ∗ True and

[I], G, I |= (skip, σ′,ws ′)�1;w′;q (C′,Σ′) (5.160)

From (5.160), we know one of the following holds:

i. there exist w′′, C′′ and Σ′′ such that (C′,Σ′ ] ΣF ) −→+ (C′′,Σ′′ ] ΣF ),
((σ′,Σ′), (σ′,Σ′′), true) |= G+ ∗ True and (σ′, w′′,C′′,Σ′′) |= q.
Thus we know:

(C,Σ ] ΣF ) −→+ (C′′,Σ′′ ] ΣF ) (5.161)

((σ,Σ), (σ′,Σ′′), true) |= G+ ∗ True (5.162)

Since q ⇒ I ∗ true and Sta(q,R ∗ Id), by the skip and frame rules, we know:

R,G, I |= (skip, σ′, (0, 0))�1;w′′;q (C′′,Σ′′) (5.163)

423



ii. there exists w′′ such that ws ′ = (w′′, 0) and (σ′, w′ + w′′,C′,Σ′) |= q.
Since q ⇒ I ∗ true and Sta(q,R ∗ Id), by the skip and frame rules, we know:

R,G, I |= (skip, σ′, (0, 0))�1;w′+w′′;q (C′,Σ′) (5.164)

(b) there exists ws ′ such that ws ′ <1 (0, 1), ((σ,Σ), (σ′,Σ), false) |= G+ ∗ True and

[I], G, I |= (skip, σ′,ws ′)�1;w;q (D,Σ) (5.165)

From (5.165), we know one of the following holds:

i. there exist w′, C′ and Σ′ such that (D,Σ ] ΣF ) −→+ (C′,Σ′ ] ΣF ),
((σ′,Σ), (σ′,Σ′), true) |= G+ ∗ True and (σ′, w′,C′,Σ′) |= q.
Thus we know:

((σ,Σ), (σ′,Σ′), true) |= G+ ∗ True (5.166)

Since q ⇒ I ∗ true and Sta(q,R ∗ Id), by the skip and frame rules, we know:

R,G, I |= (skip, σ′, (0, 0))�1;w′;q (C′,Σ′) (5.167)

ii. there exists w′ such that ws ′ = (w′, 0) and (σ′, w + w′,D,Σ) |= q.
Since ws ′ <1 (0, 1), we know w′ = 0.
Since q ⇒ I ∗ true and Sta(q,R ∗ Id), by the skip and frame rules, we know:

R,G, I |= (skip, σ′, (0, 0))�1;w;q (D,Σ) (5.168)

2. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), true) |= R+ ∗ Id,

Since (σ,w,D,Σ) |= p and Sta(p,R ∗ Id), we know there exists w′ such that (σ′, w′,D,Σ′) |= p.

By the co-induction hypothesis, we know: R,G, I |= (〈C〉, σ′, (0, 1))�1;w′;q (D,Σ′).

3. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), false) |= R+ ∗ Id,

Since (σ,w,D,Σ) |= p and Sta(p,R ∗ Id), we know (σ′, w,D,Σ′) |= p.

By the co-induction hypothesis, we know: R,G, I |= (〈C〉, σ′, (0, 1))�1;w;q (D,Σ′).

Thus we are done. 2

The A-CONSEQ rule.

Lemma 41 (A-CONSEQ). If

1. p
G
=⇒ p′;

2. R,G, I |= {p′}C{q′};

3. q′
G
=⇒ q;

4. Sta({p, q}, R ∗ Id); I . {R,G}; p ∨ q ∨ p′ ∨ q′ ⇒ I ∗ true;

then R,G, I |= {p}C{q}.

Proof: We want to prove: for all σ, w, D and Σ, if (σ,w,D,Σ) |= p, then

R,G, I |= (C, σ, (0, |C|))�height(C);w;q (D,Σ).

Let H = height(C).
By co-induction. Since p⇒ I ∗ true, we know (σ,Σ) |= I ∗ true.

424



1. for any σF , ΣF , C ′ and σ′′, if (C, σ ] σF ) −→ (C ′, σ′′),

from p
G
=⇒ p′, we know one of the following holds:

(a) either, there exist w′, D′ and Σ′ such that (D,Σ ] ΣF ) −→+ (D′,Σ′ ] ΣF )
((σ,Σ), (σ,Σ′), true) |= G+ ∗ True and (σ,w′,D′,Σ′) |= p′;

(b) or, there exist w′, D′ and Σ′ such that (σ,w′,D′,Σ′) |= p′, w′ = w, D′ = D and Σ′ = Σ.

For either case, from R,G, I |= {p′}C{q′}, we know:

R,G, I |= (C, σ, (0, |C|))�H;w′;q′ (D′,Σ′) (5.169)

Thus there exists σ′ such that σ′′ = σ′ ] σF and one of the following holds:

(a) either, there exist ws ′, w′′, C′′ and Σ′′ such that (D′,Σ′ ] ΣF ) −→+ (C′′,Σ′′ ] ΣF ),
((σ,Σ′), (σ′,Σ′′), true) |= G+ ∗ True and R,G, I |= (C ′, σ′,ws ′)�H;w′′;q′ (C′′,Σ′′);

(b) or, there exists ws ′ such that ws ′ <H (0, |C|),
((σ,Σ′), (σ′,Σ′), false) |= G+ ∗ True and R,G, I |= (C ′, σ′,ws ′)�H;w′;q′ (D′,Σ′).

Then, we know one of the following holds:

(a) there exist ws ′, w′′, C′′ and Σ′′ such that (D,Σ ] ΣF ) −→+ (C′′,Σ′′ ] ΣF ),
((σ,Σ), (σ′,Σ′′), true) |= G+ ∗ True and R,G, I |= (C ′, σ′,ws ′)�H;w′′;q′ (C′′,Σ′′).
By Lemma 42, we know:

R,G, I |= (C ′, σ′,ws ′)�H;w′′;q (C′′,Σ′′) (5.170)

(b) there exists ws ′ such that ws ′ <H (0, |C|),
((σ,Σ), (σ′,Σ), false) |= G+ ∗ True and R,G, I |= (C ′, σ′,ws ′)�H;w;q′ (D,Σ).

By Lemma 42, we know:

R,G, I |= (C ′, σ′,ws ′)�H;w;q (D,Σ) (5.171)

2. for any σF , ΣF , e, C ′ and σ′′, if (C, σ ] σF )
e−→ (C ′, σ′′), the proof is similar to the previous case.

3. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), true) |= R+ ∗ Id,

Since (σ,w,D,Σ) |= p and Sta(p,R ∗ Id), we know there exists w′ such that (σ′, w′,D,Σ′) |= p.

By the co-induction hypothesis, we know: R,G, I |= (C, σ′, (0, |C|))�H;w′;q (D,Σ′).

4. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), false) |= R+ ∗ Id,

Since (σ,w,D,Σ) |= p and Sta(p,R ∗ Id), we know (σ′, w,D,Σ′) |= p.

By the co-induction hypothesis, we know: R,G, I |= (C, σ′, (0, |C|))�H;w;q (D,Σ′).

5. if C = skip, then for any ΣF ,

from p
G
=⇒ p′, we know one of the following holds:

(a) either, there exist w′, D′ and Σ′ such that (D,Σ ] ΣF ) −→+ (D′,Σ′ ] ΣF )
((σ,Σ), (σ,Σ′), true) |= G+ ∗ True and (σ,w′,D′,Σ′) |= p′;

(b) or, there exist w′, D′ and Σ′ such that (σ,w′,D′,Σ′) |= p′, w′ = w, D′ = D and Σ′ = Σ.

For either case, from R,G, I |= {p′}C{q′}, we know:

R,G, I |= (skip, σ, (0, 0))�H;w′;q′ (D′,Σ′) (5.172)

Then one of the following holds:

425



(a) either, there exist w′′, D′′ and Σ′′ such that (D′,Σ′ ] ΣF ) −→+ (D′′,Σ′′ ] ΣF ),
((σ,Σ′), (σ,Σ′′), true) |= G+ ∗ True and (σ,w′′,D′′,Σ′′) |= q′;

(b) or, there exist w′′, D′′ and Σ′′ such that w′′ = w′, D′′ = D′, Σ′′ = Σ′ and (σ,w′′,D′′,Σ′′) |= q′.

From q′
G
=⇒ q, we know one of the following holds:

(a) either, there exist w′′′, D′′′ and Σ′′′ such that (D′′,Σ′′ ] ΣF ) −→+ (D′′′,Σ′′′ ] ΣF )
((σ,Σ′′), (σ,Σ′′′), true) |= G+ ∗ True and (σ,w′′′,D′′′,Σ′′′) |= q;

(b) or, there exist w′′′, D′′′ and Σ′′′ such that (σ,w′′′,D′′′,Σ′′′) |= q, w′′′ = w′′, D′′′ = D′′ and
Σ′′′ = Σ′′.

Thus we get one of the following holds:

(a) either, there exist w′′′, C′′′ and Σ′′′ such that (D,Σ ] ΣF ) −→+ (C′′′,Σ′′′ ] ΣF )
((σ,Σ), (σ,Σ′′′), true) |= G+ ∗ True and (σ,w′′′,C′′′,Σ′′′) |= q;

(b) or, (σ,w,D,Σ) |= q.

6. for any σF and ΣF , if (C, σ ] σF ) −→ abort,

from p
G
=⇒ p′, we know one of the following holds:

(a) either, there exist w′, D′ and Σ′ such that (D,Σ ] ΣF ) −→+ (D′,Σ′ ] ΣF )
((σ,Σ), (σ,Σ′), true) |= G+ ∗ True and (σ,w′,D′,Σ′) |= p′;

(b) or, there exist w′, D′ and Σ′ such that (σ,w′,D′,Σ′) |= p′, w′ = w, D′ = D and Σ′ = Σ.

For either case, from R,G, I |= {p′}C{q′}, we know:

R,G, I |= (C, σ, (0, |C|))�H;w′;q′ (D′,Σ′) (5.173)

Then we know: (D′,Σ′ ] ΣF ) −→+ abort. Thus (D,Σ ] ΣF ) −→+ abort.

Thus we are done. 2

Lemma 42. If

1. R,G, I |= (C, σ,ws)�H;w;q′ (D,Σ);

2. q′
G
=⇒ q;

3. Sta(q,R ∗ Id); I . {R,G}; q ⇒ I ∗ true;

then R,G, I |= (C, σ,ws)�H;w;q (D,Σ).

Proof: By co-induction. 2

The ENV rule.

Lemma 43 (ENV). If |=sl [p]c[q], c is silent and Locality(c), then Emp,Emp, emp |= {p}c{q}.

Proof: We want to prove: for all σ, w, D and Σ, if (σ,w,D,Σ) |= p, then

Emp,Emp, emp |= (c, σ, (0, |c|))�height(c);w;q (D,Σ).

426



We know |c| = 1 and can prove height(c) = 1.
By co-induction. We know (σ,Σ) |= emp ∗ true. From |=sl [p]c[q], we know:

(c, σ) 6−→∗ abort , (c, σ) 6−→ω · (5.174)

By Locality(c), we know: for any σF ,

(c, σ ] σF ) 6−→∗ abort , (c, σ ] σF ) 6−→ω · (5.175)

1. for any σF , ΣF , C ′ and σ′′, if (c, σ ] σF ) −→ (C ′, σ′′),

by the operational semantics, we know C ′ = skip.

By Locality(c), we know: there exists σ′ such that σ′′ = σ′ ] σF and (c, σ) −→ (skip, σ′).

From |=sl [p]c[q], we know:
(σ′, w,D,Σ) |= q (5.176)

By the skip rule, we know:

Emp,Emp, emp |= (skip, σ′, (0, 0))�1;w;q (D,Σ) (5.177)

We know ((σ,Σ), (σ′,Σ), false) |= Emp+ ∗ True.

Also, we know: (0, 0) <1 (0, 1).

2. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), true) |= Emp+ ∗ Id, we know σ′ = σ and Σ′ = Σ.

By the co-induction hypothesis, we know: Emp,Emp, emp |= (c, σ′, (0, 1))�1;w;q (D,Σ′).

3. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), false) |= Emp+ ∗ Id, we know σ′ = σ and Σ′ = Σ.

By the co-induction hypothesis, we know: Emp,Emp, emp |= (c, σ′, (0, 1))�1;w;q (D,Σ′).

Thus we are done. 2

The FRAME rule.

Lemma 44 (FRAME). If

1. R,G, I |= {p}C{q};

2. Sta({p, q}, R ∗ Id); Sta(p′, (R′)
+ ∗ Id); I . {R,G}; I ′ . {R′, G′}; p ∨ q ⇒ I ∗ true; p′ ⇒ I ′ ∗ true;

G+ ⇒ G;

then R ∗R′, G ∗G′, I ∗ I ′ |= {p ∗ p′}C{q ∗ p′}.

Proof: We want to prove: for all σ, w, D and Σ, if (σ,w,D,Σ) |= p ∗ p′, then

R ∗R′, G ∗G′, I ∗ I ′ |= (C, σ, (0, |C|))�height(C);w;q∗p′ (D,Σ).

Since (σ,w,D,Σ) |= p ∗ p′, we know: there exist σ1, σ2, w1, w2, D1, D2, Σ1 and Σ2 such that

(σ1, w1,D1,Σ1) |= p, (σ2, w2,D2,Σ2) |= p′, σ = σ1 ] σ2, w = w1 + w2, D = D1 ] D2, Σ = Σ1 ] Σ2

From the premise, we know: R,G, I |= (C, σ1, (0, |C|))�height(C);w1;q (D1,Σ1).
By Lemma 45, we are done. 2

Lemma 45. If

1. R,G, I |= (C, σ1,ws)�H;w1;q (D1,Σ1);

427



2. Sta(q,R ∗ Id); Sta(p′, (R′)
+ ∗ Id); I . {R,G}; I ′ . {R′, G′}; q ⇒ I ∗ true; p′ ⇒ I ′ ∗ true; G+ ⇒ G;

3. (σ2, w2,D2,Σ2) |= p′; σ = σ1 ] σ2; D = D1 ] D2; Σ = Σ1 ] Σ2;

then R ∗R′, G ∗G′, I ∗ I ′ |= (C, σ,ws)�H;w1+w2;q∗p′ (D,Σ).

Proof: By co-induction. From the premises, we know: (σ1,Σ1) |= I ∗ true and (σ2,Σ2) |= I ′ ∗ true.
Thus we know: (σ,Σ) |= I ∗ I ′ ∗ true.

1. for any σF , ΣF , C ′ and σ′′, if (C, σ ] σF ) −→ (C ′, σ′′),

from the first premise, we know: there exists σ′1 such that σ′′ = σ′1 ] σ2 ] σF , and one of the
following holds:

(a) there exist ws ′, w′1, C′1 and Σ′1 such that (D1,Σ1 ] Σ2 ] ΣF ) −→+ (C′1,Σ′1 ] Σ2 ] ΣF ),
((σ1,Σ1), (σ′1,Σ

′
1), true) |= G+ ∗ True and R,G, I |= (C ′, σ′1,ws

′)�H;w′
1;q

(C′1,Σ′1).

Since (σ2,Σ2) |= I ′ ∗ true and I ′ . G′, we know:

((σ2,Σ2), (σ2,Σ2), true) |= G′ ∗ True.

Since G+ ⇒ G, we know:

((σ1 ] σ2,Σ1 ] Σ2), (σ′1 ] σ2,Σ′1 ] Σ2), true) |= (G ∗G′)+ ∗ True.

Since D = D1 ] D2, we know D2 = • and D = D1. Let D′ = C′1 ] D2 = C′1.

By the co-induction hypothesis, we know

R ∗R′, G ∗G′, I ∗ I ′ |= (C ′, σ′1 ] σ2,ws ′)�H;w′
1+w2;q∗p′ (D′,Σ′1 ] Σ2).

(b) there exists ws ′ such that ws ′ <H ws,
((σ1,Σ1), (σ′1,Σ1), false) |= G+ ∗ True and R,G, I |= (C ′, σ′1,ws

′)�H;w1;q (D1,Σ1).

Since (σ2,Σ2) |= I ′ ∗ true and I ′ . G′, we know:

((σ2,Σ2), (σ2,Σ2), false) |= G′ ∗ True.

Since G+ ⇒ G, we know:

((σ1 ] σ2,Σ1 ] Σ2), (σ′1 ] σ2,Σ1 ] Σ2), false) |= (G ∗G′)+ ∗ True.

By the co-induction hypothesis, we know

R ∗R′, G ∗G′, I ∗ I ′ |= (C ′, σ′1 ] σ2,ws ′)�H;w1+w2;q∗p′ (D,Σ1 ] Σ2).

2. for any σF , ΣF , e, C ′ and σ′′, if (C, σ ] σF )
e−→ (C ′, σ′′), the proof is similar to the previous case.

3. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), true) |= (R ∗R′)+ ∗ Id,

since I . R, I ′ . R′, (σ1,Σ1) |= I ∗ true and (σ2,Σ2) |= I ′ ∗ true, we know: there exist σ′1, σ′2, Σ′1
and Σ′2 such that σ′ = σ′1 ] σ′2, Σ′ = Σ′1 ] Σ′2,

((σ1,Σ1), (σ′1,Σ
′
1), true) |= R+ ∗ Id, ((σ2,Σ2), (σ′2,Σ

′
2), true) |= (R′)

+ ∗ Id

From the first premise, we know there exist ws ′ and w′1 such that

R,G, I |= (C, σ′1,ws
′)�H;w′

1;q
(D1,Σ

′
1).

Since (σ2, w2,D2,Σ2) |= p′ and Sta(p′, (R′)
+ ∗ Id), we know: there exists w′2 such that

(σ′2, w
′
2,D2,Σ

′
2) |= p′.

By the co-induction hypothesis, we know:

428



R ∗R′, G ∗G′, I ∗ I ′ |= (C, σ′,ws ′)�H;w′
1+w

′
2;q∗p′ (D,Σ′).

4. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), false) |= (R ∗R′)+ ∗ Id,

since I . R, I ′ . R′, (σ1,Σ1) |= I ∗ true and (σ2,Σ2) |= I ′ ∗ true, we know: there exist σ′1, σ′2, Σ′1
and Σ′2 such that σ′ = σ′1 ] σ′2, Σ′ = Σ′1 ] Σ′2,

((σ1,Σ1), (σ′1,Σ
′
1), false) |= R+ ∗ Id, ((σ2,Σ2), (σ′2,Σ

′
2), false) |= (R′)

+ ∗ Id

From the first premise, we know

R,G, I |= (C, σ′1,ws)�H;w1;q (D1,Σ
′
1).

Since (σ2, w2,D2,Σ2) |= p′ and Sta(p′, (R′)
+ ∗ Id), we know:

(σ′2, w2,D2,Σ
′
2) |= p′.

By the co-induction hypothesis, we know:

R ∗R′, G ∗G′, I ∗ I ′ |= (C, σ′,ws)�H;w1+w2;q∗p′ (D,Σ′).

5. if C = skip, then for any ΣF , from the first premise we know one of the following holds:

(a) there exist w′1, C′1 and Σ′1 such that (D1,Σ1 ] Σ2 ] ΣF ) −→+ (C′1,Σ′1 ] Σ2 ] ΣF ),
((σ1,Σ1), (σ1,Σ

′
1), true) |= G+ ∗ True and (σ1, w

′
1,C′1,Σ′1) |= q.

Since (σ2,Σ2) |= I ′ ∗ true and I ′ . G′, we know:

((σ2,Σ2), (σ2,Σ2), true) |= G′ ∗ True.

Since G+ ⇒ G, we know:

((σ1 ] σ2,Σ1 ] Σ2), (σ1 ] σ2,Σ′1 ] Σ2), true) |= (G ∗G′)+ ∗ True.

Since D = D1 ] D2, we know D2 = • and D = D1. Thus C′1 ] D2 = C′1.

Since (σ1, w
′
1,C′1,Σ′1) |= q, we get:

(σ,w′1 + w2,C′1 ] D2,Σ
′
1 ] Σ2) |= q ∗ p′.

(b) there exists w′1 such that ws = (w′1, 0) and (σ1, w1 + w′1,D1,Σ1) |= q.

Since (σ2, w2,D2,Σ2) |= p′, we have

(σ,w1 + w2 + w′1,D,Σ) |= q ∗ p′.

6. for any σF and ΣF , if (C, σ ] σF ) −→ abort,

from the first premise, we know: (D1,Σ1 ]Σ2 ]ΣF ) −→+ abort. Thus D2 = • and D = D1. Thus
(D,Σ ] ΣF ) −→+ abort.

Thus we are done. 2

429



The FR-CONJ rule.

Lemma 46 (FR-CONJ). If

1. R,G, I |= {p}C{q};

2. Sta({p, q}, R ∗ Id); Sta(p′, R+ ∗ Id); Sta(p′, G ∗ True); I . {R,G}; p ∨ q ⇒ I ∗ true;

then R,G, I |= {p7 p′}C{q 7 p′}.

Proof: We want to prove: for all σ, w, D and Σ, if (σ,w,D,Σ) |= p7 p′, then

R,G, I |= (C, σ, (0, |C|))�height(C);w;q7p′ (D,Σ).

Since (σ,w,D,Σ) |= p7 p′, we know: there exist w1, w2, D1 and D2 such that

(σ,w1,D1,Σ) |= p, (σ,w2,D2,Σ) |= p′, w = w1 + w2, D = D1 ] D2

From the premise, we know: R,G, I |= (C, σ, (0, |C|))�height(C);w1;q (D1,Σ).
By Lemma 47, we are done. 2

Lemma 47. If

1. R,G, I |= (C, σ,ws1)�H;w1;q (D1,Σ);

2. Sta(q,R ∗ Id); Sta(p′, R+ ∗ Id); Sta(p′, G ∗ True); I . {R,G}; q ⇒ I ∗ true;

3. (σ,w2,D2,Σ) |= p′; w = w1 + w2; D = D1 ] D2;

then R,G, I |= (C, σ,ws1)�H;w;q7p′ (D,Σ).

Proof: By co-induction. From the premises, we know: (σ,Σ) |= I ∗ true.

1. for any σF , ΣF , C ′ and σ′′, if (C, σ ] σF ) −→ (C ′, σ′′),

from the first premise, we know: there exists σ′ such that σ′′ = σ′ ] σF , and one of the following
holds:

(a) there exist ws ′1, C′1 and Σ′ such that (D1,Σ ] ΣF ) −→+ (C′1,Σ′ ] ΣF ),
((σ,Σ), (σ′,Σ′), true) |= G+ ∗ True and R,G, I |= (C ′, σ′,ws ′1)�H;w1;q (C′1,Σ′).
Since Sta(p′, G ∗ True), we know

Sta(p′, G+ ∗ True)

Since (σ,w2,D2,Σ) |= p′, we know there exists w′2 such that

(σ′, w′2,D2,Σ
′) |= p′

Since D = D1 ] D2, we know D2 = • and D = D1. Let D′ = C′1 ] D2 = C′1 and w′ = w1 + w′2.

By the co-induction hypothesis, we know

R,G, I |= (C ′, σ′,ws ′1)�H;w′;q7p′ (D′,Σ′).

(b) there exists ws ′1 such that ws ′1 <H ws1,
((σ,Σ), (σ′,Σ), false) |= G+ ∗ True and R,G, I |= (C ′, σ′,ws ′1)�H;w1;q (D1,Σ).

Since (σ,w2,D2,Σ) |= p′ and Sta(p′, G ∗ True), we know

(σ′, w2,D2,Σ) |= p′

By the co-induction hypothesis, we know

R,G, I |= (C ′, σ′,ws ′1)�H;w;q7p′ (D,Σ).

430



2. for any σF , ΣF , e, C ′ and σ′′, if (C, σ ] σF )
e−→ (C ′, σ′′), the proof is similar to the previous case.

3. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), true) |= R+ ∗ Id,

from the first premise, we know there exists ws ′1 such that

R,G, I |= (C, σ′,ws ′1)�H;w1;q (D1,Σ
′).

Since (σ,w2,D2,Σ) |= p′ and Sta(p′, R+ ∗ Id), we know: there exists w′2 such that

(σ′, w′2,D2,Σ
′) |= p′.

By the co-induction hypothesis, we know: let w′ = w1 + w′2,

R,G, I |= (C, σ′,ws ′1)�H;w′;q7p′ (D,Σ′).

4. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), false) |= R+ ∗ Id,

from the first premise, we know

R,G, I |= (C, σ′,ws1)�H;w1;q (D1,Σ
′).

Since (σ,w2,D2,Σ) |= p′ and Sta(p′, R+ ∗ Id), we know:

(σ′, w2,D2,Σ
′) |= p′.

By the co-induction hypothesis, we know:

R,G, I |= (C, σ′,ws1)�H;w;q7p′ (D,Σ′).

5. if C = skip, then for any ΣF , from the first premise we know one of the following holds:

(a) there exist w′1, C′1 and Σ′ such that (D1,Σ ] ΣF ) −→+ (C′1,Σ′ ] ΣF ),
((σ,Σ), (σ,Σ′), true) |= G+ ∗ True and (σ,w′1,C′1,Σ′) |= q.

Since (σ,w2,D2,Σ) |= p′ and Sta(p′, G ∗ True), we know there exists w′2 such that

(σ,w′2,D2,Σ
′) |= p′

Since D = D1 ] D2, we know D2 = • and D = D1. Thus C′1 ] D2 = C′1. Thus we get:

(σ,w′1 + w′2,C′1 ] D2,Σ
′) |= q 7 p′.

(b) there exists w′1 such that ws1 = (w′1, 0) and (σ,w1 + w′1,D1,Σ) |= q.

Since (σ,w2,D2,Σ) |= p′, we have

(σ,w1 + w2 + w′1,D,Σ) |= q 7 p′.

6. for any σF and ΣF , if (C, σ ] σF ) −→ abort,

from the first premise, we know: (D1,Σ ] ΣF ) −→ + abort. Thus D2 = • and D = D1. Thus
(D,Σ ] ΣF ) −→+ abort.

Thus we are done. 2

431



5.5 Derivation of WHILE-TERM Rule

Lemma 48 (WHILE-TERM Derivable). If

1. R,G, I ` {p ∧B ∧ (E = α)}C{p ∧ (E < α)};

2. p ∧B ⇒ E > 0;

3. p⇒ ((B = B) ∧ (E = E)) ∗ I;

4. G+ ⇒ G;

5. α is a fresh logical variable;

then R,G, I ` {bpcw}while (B) C{bpcw ∧ ¬B}.

Proof: Take a fresh logical variable β and by applying the conseq rule to the premise 1, we get:

R,G, I ` {∃β. p ∧ (E = β) ∧B ∧ (E = α)}C{∃β. p ∧ (E = β) ∧ (E < α)} (5.178)

From p ∧B ⇒ E > 0, we know
p ∧B ∧ (E = α) ⇒ α > 0 (5.179)

Since G+ ⇒ G, Sta(wf(α) ∧ emp,Emp ∗ Id), emp . Emp and (wf(α) ∧ emp) ⇒ emp ∗ true, we can apply
the frame rule to (5.178) and get

R,G, I ` {(∃β. p∧(E = β)∧B∧(E = α))∗(wf(α)∧emp)}C{(∃β. p∧(E = β)∧(E < α))∗(wf(α)∧emp)}
(5.180)

We reduce (5.180) as follows:

R,G, I ` {∃β. (p∧(E = β))∗(wf(α)∧emp)∧B∧(E = α)}C{∃β. (p∧(E = β))∗(wf(α)∧emp)∧(E < α)}
(5.181)

R,G, I ` {∃β. (p∧(E = β))∗(wf(β)∧emp))∧B∧(E = α)}C{∃β. (p∧(E = β))∗(wf(β+1)∧emp))∧(E < α)}
(5.182)

Since (wf(β + 1) ∧ emp)⇒ (wf(β) ∧ emp) ∗ (wf(1) ∧ emp), we let

p0
def
= (∃β. (p ∧ (E = β)) ∗ (wf(β) ∧ emp)) (5.183)

then (5.182) can be written as:

R,G, I ` {p0 ∧B ∧ (E = α)}C{(p0 ∗ (wf(1) ∧ emp)) ∧ (E < α)} (5.184)

By the exists rule and α is not free in R, G and I, we get:

R,G, I ` {∃α. p0 ∧B ∧ (E = α)}C{∃α. (p0 ∗ (wf(1) ∧ emp)) ∧ (E < α)} (5.185)

Since α is not free in p, B and E, we know

(p0 ∧B) ⇒ (∃α. p0 ∧B ∧ (E = α)) (5.186)

and
(∃α. (p0 ∗ (wf(1) ∧ emp)) ∧ (E < α)) ⇒ (p0 ∗ (wf(1) ∧ emp)) (5.187)

Thus by applying conseq rule to (5.185), we get:

R,G, I ` {p0 ∧B}C{p0 ∗ (wf(1) ∧ emp)} (5.188)

From p ⇒ (B = B) ∗ I and p0 ∗ (wf(1) ∧ emp) ∧ B ⇒ (p0 ∧ B) ∗ (wf(1) ∧ emp), by applying the while
rule and the hide-w rule, we get:

R,G, I ` {bp0 ∗ (wf(1) ∧ emp)cw}while (B) C{bp0 ∗ (wf(1) ∧ emp)cw ∧ ¬B} (5.189)

432



It can be reduced to:

R,G, I ` {∃β. bpcw ∧ (E = β)}while (B) C{∃β. bpcw ∧ (E = β) ∧ ¬B} (5.190)

Since p⇒ (E = E) ∗ I, we know

R,G, I ` {bpcw}while (B) C{bpcw ∧ ¬B} (5.191)

Thus we are done. 2

433



References

[1] Simon Doherty, Lindsay Groves, Victor Luchangco, and Mark Moir. Formal verification of a practical
lock-free queue algorithm. In FORTE’04.

[2] Xinyu Feng. Local rely-guarantee reasoning. In POPL’09.

[3] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming.

[4] Maurice Herlihy and Jeannette Wing. Linearizability: a correctness condition for concurrent objects.
ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.

[5] Jan Hoffmann, Michael Marmar, and Zhong Shao. Quantitative reasoning for proving lock-freedom.
In LICS, pages 124–133, 2013.

[6] Hongjin Liang and Xinyu Feng. Modular verification of linearizability with non-fixed linearization
points. In PLDI, pages 459–470, 2013.

[7] Hongjin Liang, Xinyu Feng, and Ming Fu. A rely-guarantee-based simulation for verifying concurrent
program transformations. In POPL, 2012.

[8] Maged M. Michael and Michael L. Scott. Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In PODC’96.

[9] William N. Scherer III, Doug Lea, and Michael L. Scott. Scalable synchronous queues. In PPoPP,
pages 147–156, 2006.

[10] Ketil Stølen. A method for the development of totally correct shared-state parallel programs. In
CONCUR, pages 510–525, 1991.

[11] Aaron Turon and Mitchell Wand. A separation logic for refining concurrent objects. In POPL’11.

[12] Viktor Vafeiadis. Modular fine-grained concurrency verification. Thesis.

[13] Viktor Vafeiadis. Concurrent separation logic and operational semantics. In MFPS, 2011.

434



A Compositional Semantics for Verified
Separate Compilation and Linking

Tahina Ramananandro Zhong Shao Shu-Chun Weng Jérémie Koenig Yuchen Fu1

Yale University 1Massachusetts Institute of Technology

Abstract
Recent ground-breaking efforts such as CompCert have made a
convincing case that mechanized verification of the compiler cor-
rectness for realistic C programs is both viable and practical.
Unfortunately, existing verified compilers can only handle whole
programs—this severely limits their applicability and prevents the
linking of verified C programs with verified external libraries. In
this paper, we present a novel compositional semantics for reason-
ing about open modules and for supporting verified separate compi-
lation and linking. More specifically, we replace external function
calls with explicit events in the behavioral semantics. We then de-
velop a verified linking operator that makes lazy substitutions on
(potentially reacting) behaviors by replacing each external func-
tion call event with a behavior simulating the requested function.
Finally, we show how our new semantics can be applied to build
a refinement infrastructure that supports both vertical composition
and horizontal composition.

Categories and Subject Descriptors F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams; D.3.4 [Programming Languages]: Processors—Compilers;
D.2.4 [Software Engineering]: Software/Program Verification—
Correctness proofs, formal methods

Keywords Compositional Semantics; Vertical Composition; Hor-
izontal Composition; Verified Compilation and Linking.

1. Introduction
Compiler verification has long been considered as a theoretically
deep and practically important research subject. It addresses the
very question of program equivalence (or simulation), a primary
reason that we need to define formal semantics for programming
languages. It is important for practical software developers since
compiler bugs can lead to the silent generation of incorrect pro-
grams, which could lead to unexpected crashes and security holes.

Recent work on CompCert [12, 11] has shown that mechanized
verification of the compiler correctness for C is both viable and
practical, and the resulting compiler is indeed empirically much
more reliable than traditional (unverified) ones [22]. The success of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CPP ’15, January 13–14, 2015, Mumbai, India.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3296-5/15/01. . . $15.00.
http://dx.doi.org/10.1145/2676724.2693167

CompCert can be partly attributed to its uses of simple (small-step
and/or big-step) operational semantics [14], a shared behavioral
specification language (capable of describing terminating, stuck,
silently diverging, and reacting behaviors), and a unified C mem-
ory model [13] for all of its compiler intermediate languages. The
simplicity of the CompCert semantics made it possible and prac-
tical to mechanically verify the correctness of many compilation
phases under a reasonable amount of effort.

One important weakness of CompCert is that it can only handle
whole programs. This severely limits its applicability. A computer
program is often not just a single piece of code written and com-
piled at once, but is instead obtained by compiling and linking dif-
ferent modules, or compilation units, that can be originally written
in different programming languages, independently of each other.
From the compilation point of view, the final program is obtained
by linking different object files, each of which is either written di-
rectly or obtained by compiling a source compilation unit. Different
compilers can be used for different modules.

From the program-verification point of view, a computer pro-
gram is almost never verified as a whole, but for each compilation
unit, its source code (or object file, if written directly) is verified in-
dependently from the implementation of the other modules. With-
out support for separate compilation and linking, verified C pro-
grams, even if correctly compiled by CompCert, cannot be linked
with verified external libraries.

An open problem for supporting verified separate compilation
and linking is to find a simple compositional semantics for open
modules and to specify and reason about such semantic behaviors
in a language-independent way. Following Hur et al [9, 10], we
want to achieve compositionality in the two dimensions:

• vertical composition corresponds to successive compilation
passes on a given compilation unit. Each compilation pass can
be an optimization to make a program more efficient while
staying at the same representation level, or a compilation phase
from one intermediate representation to another: how to de-
fine compositional semantics of intermediate programs in a
language-independent format so that we can show that each
compilation pass does not introduce unwanted behaviors?
• horizontal composition corresponds to the linking of different

modules at the same level (i.e. at the level of object files, or
at the same intermediate level). It corresponds to the notion of
program composition: local reasoning shall allow studying the
behavior of program components when placed in an abstractly
specified context. But conversely, when linking them together,
compilation units will play the role of contexts for other mod-
ules. More generally, this notion becomes symmetric when they
can mutually call functions in each other.

In this paper, we present a novel compositional semantics (for
open modules) that supports both vertical composition and hori-

435



zontal composition for C-like languages. Traditionally, operational
semantics focuses on reasoning about the behaviors of a whole pro-
gram. This partly explains why CompCert does not handle open
modules. A significant attempt toward developing compositional
semantics has been denotational semantics, and the underlying do-
main theory has led to a wide body of research; however, denota-
tional models become difficult to extend as we add more language
features and they are harder to mechanize in a proof assistant.

Our paper makes the following contributions:

• We develop a compositional semantics (denoted as J·Kcomp, see
Sec. 4) to help reason about open modules. Our key idea is to
model external function calls in a similar way as how composi-
tional semantics for concurrent languages [4] models environ-
mental transitions. The behavior of a call to an external func-
tion f is modeled as an event Extcall( f ,m,m′), with m and
m′ denoting memory states before and after the call. A function
body that makes n consecutive external calls can be modeled as
a sequence of event traces of the form Extcall( f1,m1,m′1) ::
Extcall( f2,m2,m′2) :: . . . :: Extcall( fn,mn,m′n), with the
assumption that segments between two external call events, e.g.,
(m′1,m2) and (m′n−1,mn), are transitions made by the function
body itself. We show how to extend the CompCert-style behav-
ioral semantics with these new external call events and how to
use a shared behavioral specification language (as in CompCert)
to support vertical compositionality.
• We develop a linking operator directly at the semantic level (de-

noted as ./, see Sec. 5), based on a resolution operator which
makes a lazy substitution on behaviors by replacing each exter-
nal function call event with a behavior simulating the requested
function. We show that applying the linking operator to the
compositional semantic objects (ψ1 and ψ2 for open modules
u1 and u2) will yield the same compositional semantic object
(ψ1 ./ ψ2) for the linked module (u1 ] u2). Since linking is
directly done on semantic objects, our approach can also be ap-
plied to components compiled from different source languages;
for example, a module uα (in language A) can be compiled by
compiler Cα and linked with another module uβ compiled by
compiler Cβ, yielding a resulting binary with the semantic ob-
ject JCα(uα)Kcomp ./ JCβ(uβ)Kcomp.
• Thanks to this new compositional semantics and semantic link-

ing, we develop a refinement infrastructure (denoted as v, see
Sec. 6) that unifies program verification and verified separate
compilation: each verification step, as well as each compilation
step, is actually a refinement step. The transitivity property of
our refinement relation implies vertical composition; and the
congruence property (a.k.a. monotonicity, see Theorem 2) im-
plies horizontal composition.
• Unlike the CompCert whole program semantics, which does not

expose memory states in its event traces, compositional seman-
tics for open modules may make part of the memory state ob-
servable (e.g., as in an external call event Extcall( f ,m,m′)).
This creates challenges for verifying compilation phases that
alter memory states. We introduce α-refinement (denoted as
vα, see Sec. 7), a generalization of v with a bijection α be-
tween the source and the target memory states. We show how α-
refinement can be used to verify the correctness of the memory-
changing phases in CompCert, and we have successfully reim-
plemented (and verified in Coq) the Clight-to-Cminor phase—
the CompCert pass that uses the most sophisticated memory
injection relation—using α-like memory bijection.

All our proofs have been carried out in Coq [20] and can be
found at the companion web site [18]. The implementation includes
the generic compositional semantics and linking framework, an in-

stantiation of the framework for the common subexpression elim-
ination pass, and a new implementation of the CompCert memory
model with block tags and the Clight-to-Cminor compilation phase
using memory bijection.

2. Preliminary: small-step and big-step semantics
In this section, we define the general notion of small-step seman-
tics, or transition systems, and explain how to automatically con-
struct big-step semantics based on them. Throughout the paper,
when we define a small-step semantics, we always construct the
corresponding big-step semantics based on this section.

Small-step semantics illustrates how to execute programs with
minimal steps. Big-step semantics gives us the meaning of pro-
grams as a whole. When studying the meaning of a program, we
focus not only on whether it terminates or diverges, but also on its
interaction with the outside environment through events like input
and output, network communications, etc. We borrow all these def-
initions from the CompCert verified compiler [11].

Before diving into semantics, we first go through some notations
on sets, (finite) lists, and (infinite) streams. We use X? to denote the
set of all subsets of X with 0 or 1 element. For any subset Y ⊆ X?,
we liberally write x ∈ Y instead of {x} ∈ Y . The standard notation
for power set P(X) is also used.

For any set X, X∗ denotes the set of finite lists of elements of
X. Such lists can be either empty (ε) or nonempty (x :: l). For two
lists l1, l2 ∈ X∗, l1 q− l2 is their concatenation. X∞ denotes the set
of infinite streams of X, which are defined coinductively such that
all elements are of the form x :::: l where x ∈ X and l ∈ X∞.
The coinductive definition allows (actually, requires) streams to be
infinite, in contrast to lists, which are defined inductively and must
be finite. Prepending a list l of X in front of a stream l of X is
written l qq− l. We write l1 ∼ l2 meaning two streams are bisimilar
(coinductively, ∃x,∀i = 1, 2,∃l′i , li = x :::: l′i and l′1 ∼ l

′
2).

Definition 1 (Small-step semantics). A small-step semantics (or a
transition system) is a tuple S = (E,S,→,R,F ) where:

• E is the set of events.
• S is the set of configurations (or states).
• (→) ⊆ S × E? × S is the transition relation, usually written in

infix forms s
e
→s′ and s→s′. We say that s makes one step (or

transition) to s′, producing an event e (if any). A step producing
no event is silent.
• R is the set of results.
• F ⊆ (S × R) is a relation associating final states with results.

A configuration s is said to be final with result r if, and only if,
(s, r) ∈ F .

The transition relation may be nondeterministic: for a given
configuration s, there can be several possible configurations s′ such
that s→s′ (or s

e
→s′ for some event e).

Then, a configuration s can make several transitions to s′ pro-
ducing a finite listσ of events in E, which we write s

σ
−→∗s′ (or s

σ
−→+s′

if there is at least one step) and define as the reflexive-transitive
(resp. transitive) closure of the transition step relation:

s→s′

s
ε
−→+s′

s
e
→s′

s
e::ε
−−→+s′

s
σ1
−−→+s1 s1

σ2
−−→+s2

s
σ1 q−σ2
−−−−−→+s2 s

ε
−→∗s

s
σ
−→+s′

s
σ
−→∗s′

We can then define the behavior of a transition system from an
initial state s0 ∈ S.

• It can perform finitely many transition steps to some final con-
figuration s′ such that (s′, r′) ∈ F for some r′. In this case, we
say that it is a terminating behavior. For such a behavior, we

436



record the result r′ and its trace of events, a finite list, produced
to go from s0 to s′.
• It can perform finitely many transition steps to some non-final

configuration s′ but from which no step is possible. In this
case, we say that it is a going-wrong (or stuck) behavior, for
which we record the trace produced from s0 to s′. In practice, s′
corresponds to a configuration requesting an invalid operation
such as out-of-bounds array access or division by zero.
• It can perform infinitely many transition steps. For such cases,

we need to distinguish whether a finite or infinite list of events
is produced during these transition steps. (1) In the finite event
case, finitely many steps are performed to some state s′ from
which infinitely many silent transitions are performed. (2) In
the infinite event case, starting from any state, a non-silent
transition can always be reached within finitely many steps; we
record the trace as an infinite stream of events.

The bullets above are formally defined as follows.

Definition 2 (Behaviors). Given a set of events E and a set of
results R, we define the set of behaviors B as follows:

b ∈ B Behavior
::= σ ↓ (r) (σ ∈ E∗, r ∈ R) Terminating behavior
| σ (σ ∈ E∗) Going-wrong behavior
| σ↗ (σ ∈ E∗) Diverging behavior

(finitely many events, then silently diverges)
| ςt (ς ∈ E∞) Reacting behavior

(diverging with infinitely many events)

The concatenation of an event e (resp. of an event list σ) and a
behavior b is written e · b (resp. σ • b) and defined in a straightfor-
ward way:

e · (σ ↓ (r)) = (e :: σ) ↓ (r) ε • b = b
e · (σ ) = (e :: σ) (e :: σ) • b = e · (σ • b)

e · (σ↗) = (e :: σ)↗
e · (ςt) = (e :::: ς)t

Definition 3 (Stuck, silently diverging, reacting states). Given a
small-step semantics S = (E,S,→,R,F ), a configuration s is:

• stuck (written s ) if, and only if, there is no s′ (resp. and there
is no e ∈ E) such that s→s′ (resp. s

e
→s′)

• silently diverging (written s ↗) if, and only if, coinductively,
there is a configuration s′ such that s→s′ and s′↗.
• reacting with the infinite event stream ς (written st ς) if, and

only if, coinductively, there is a nonempty finite event list σ and
a configuration s′ such that s

σ
−→+s′, and an infinite event stream

ς′ such that s′ t ς′ and ς ∼ σ qq− ς′.

If the transition relation is nondeterministic, the transition sys-
tem may have several behaviors from a single initial state. We want
to describe the set of all the possible behaviors of the transition
system from a given configuration.

Definition 4 (Big-step semantics). Given a small-step semantics
S = (E,S,→,R,F ), the big-step semantics LSM of S is a function
from S to P(B) such that, for each configuration s0, LSM(s0) is the
set of all possible behaviors from s0, defined as follows:

LSM(s0) = {σ ↓ (r) : s0
σ
−→∗s ∧ (s, r) ∈ F }

∪ {σ : s0
σ
−→∗s ∧ s }

∪ {σ↗: s0
σ
−→∗s ∧ s↗}

∪ {ςt: s0 t ς}

Below are some C examples showing the use of behaviors. The
command printf(’a’);, printing the character “a” on screen,
produces an observable event OUT(a). The results are int values.

int main () { printf(’a’); return 2; }
has the behavior OUT(a) :: ε ↓ (2).

int main () { printf(’a’); 3/0; return 4;}
has the behavior OUT(a) :: ε .

int main () { printf(’a’); while (1) {} }
has the behavior OUT(a) :: ε↗.

int main () { while (1) printf(’b’); }
has the behavior OUT(b) :::: . . . :::: OUT(b) :::: . . .t

Lemma 1. For any configuration s0 ∈ S, the transition system has
at least one behavior from s0: LSM(s0) , ∅.

Proof. Done in CompCert [11]. Requires the excluded middle to
distinguish whether the program has finite or infinite sequence
of steps, and an axiom of constructive indefinite description to
construct the infinite event sequence in the reacting case. �

3. Starting point: a language with function calls
Our work studies a semantic notion of linking two compilation
units at the level of their behaviors, independently of the languages
in which they are defined. We first show how to derive a set of
behaviors for an open module from a language with function calls.

In this section, we first describe our starting point, the semantics
of a language with function calls. For now, we consider only whole
programs. Then we will show in Sec. 4 how to make its semantics
compositional and suitable for open modules.

Our starting point language makes a memory state evolve
throughout the whole program execution across function calls, and
a local state (e.g. local variables) evolve within each function call.
When a function returns, we consider that its result is the new mem-
ory state obtained at the end of the execution of the function, just
before it hands over to its caller. Our Coq development also features
argument passing and return value, but for the sake of presentation,
we do not mention them here. See Sec. 6.5 for more details about
our Coq implementation.

The key point of the semantics of our language is that the local
state of a function call cannot be changed by other function calls:
when a function is called, the local state of the caller is “frozen”
until the callee returns.

In this section, we consider the semantics of a whole program,
which does not contain external function calls. A program consists
of several functions. We are interested in the behaviors of each
function in the program for all memory states under which the
function is called.

A program is modeled as a partial function from function names
to code. Let p be a program and f be a function name, p( f ) is
then the body of f . When f is called under a memory state m, an
initial local state Init(p( f ),m) is first created from the code p( f ).
The local state and the memory state evolve together by performing
local transition steps which can produce some events. Eventually,
the local state may correspond to a return state, meaning that the
execution of the function has reached termination. The memory
state is the result of the function call.

But a local state l can also correspond to calling some other
function f ′: in that case, l is first saved into a continuation frame
k = Backup(m, l) that is put on top of a continuation stack, then the
function f ′ is called and run. If the execution of this callee reaches
a return state, with a new memory state m′, then the execution goes
back to the caller by retrieving, from the stack, the frame k and
constructing a new local state Restore(m′, k).

So, to obtain the behaviors of a function f under a memory state
m, we just have to big-step such a small-step semantics. Note that
when an execution reaches a configuration where the local state is
a return state and the stack is empty, it means that the function is
done executing and there is no caller function to return to, hence it

437



is the final configuration for a function execution. The result of the
execution is the memory state of such a configuration.

Definition 5 (Language with function calls). A language with
function calls is a tuple:

L = (F,C,MS,LS, Init,Kind,E,→,K,Backup,Restore)

• F is the set of function names.
• C is the set of pieces of code corresponding to the bodies of

functions (i.e., the syntax of the language).
• MS is the set of memory states.
• LS is the set of local states.
• Init : (C ×MS) −→ LS is a total function that gives the initial

local state when starting to execute a function body.
• Kind is a total function such that, for any local state l ∈ LS,

Kind(l) may be either:
Call( f ) to say that l corresponds to calling a function f ∈
F. Then we define LSCall = {l : ∃ f ,Kind(l) = Call( f )}.
Return to say that l is a return state.
Normal: none of the above. Then, we define LSNormal =
{l : Kind(l) = Normal}.

• E is the set of events.
• (→) ⊆ ((MS × LSNormal) × E? × (MS × LS)) is the internal

step relation, usually written in infix forms (m, l)
e
→(m′, l′) and

(m, l)→(m′, l′).
• K is the set of continuation stack frames.
• Backup : (MS × LSCall) −→ K is a total function that saves

the current local state into a stack frame upon function call.
• Restore : (MS × K) −→ LS is a total function that restores a

new local state from a stack frame upon callee return.

Definition 6. Let L be a language with function calls. A program
is a partial function from function names to code.

Definition 7 (Procedural semantics). Let L be a language with
function calls and p be a program in L, the procedural small-step
semantics Proc

[
L, p

]
is defined as follows:

• The set of events is E.
• The set of configurations is MS × LS ×K∗.
• The transition relation (L, p) ` · → · is defined as follows:

Kind(l) = Normal (m, l)→(m′, l′)
(L, p) ` (m, l, κ)→(m′, l′, κ)

Kind(l) = Normal (m, l)
e
→(m′, l′) e ∈ E

(L, p) ` (m, l, κ)
e
→(m′, l′, κ)

Kind(l) = Call( f ) p( f ) = c
l′ = Init(c,m) k = Backup(m, l)

(L, p) ` (m, l, κ)→(m, l′, k :: κ)

Kind(l) = Return l′ = Restore(m, k)
(L, p) ` (m, l, k :: κ)→(m, l′, κ)

• The set of results is MS.
• The final configurations with result m are the configurations

(m, l, ε) where Kind(l) = Return.

Let B be the set of behaviors on events E. The procedural big-
step semantics of p is the function JpK : dom(p) −→MS −→ P(B)
obtained from big-stepping the procedural small-step semantics:

JpK( f )(m) = LProc
[
L, p

]
M(m, Init(p( f ),m), ε)

Note that a function call is only triggered and the function name
resolved when Kind returns Call( f ), which depends solely on
local states. It does not matter how the calling request gets put

into the local state. Whether it originates from the code, that is,
a direct call, or prepared by the caller in the memory state only
to be moved to the local state now, which indicates an indirect
call, the procedural semantics handles them the same. This means
that our setting transparently handles C-style higher-order function
pointers, without having to provide a special case for them.

4. Compositional semantics
The procedural semantics given so far can only describe the behav-
iors of a closed program p. What if p calls a function outside of its
domain? By definition, the execution goes wrong. As such, the pro-
cedural semantics alone is not compositional, and it is not enough
to describe the behaviors of open modules (or compilation units).

In this section, we are going to make our procedural semantics
compositional by extending it with a rule to handle external func-
tion calls, i.e. calls to functions that are not defined in the module.

This compositional semantics represents external function calls
as events. We will later link two compilation units at the behavior
level by replacing each external function call event with the behav-
iors of the callee (see Sec. 5).

The key idea of our compositional semantics is not to get stuck
whenever a module calls an external function; instead, it produces
a new form of event to record the external function call. This is
consistent with the idea that events represent the interaction of a
compilation unit with the outside environment: for an open module,
external functions remain part of the outside environment until their
implementation is provided by linking. These external call events
are the minimal amount of syntax necessary to model external
function calls at the level of behaviors.

For each external function call event, we record (1) the function
name; (2) the memory state before the call, because the external
call shall depend on the memory state under which it will be called;
and (3) the memory state after function call. The external function
may change the memory state arbitrarily, which the caller cannot
control; but the behavior of the caller depends on how the callee
changed the memory state.

For regular input, CompCert produces an ordinary event con-
taining the value read from the environment. CompCert cannot
predict the value, so it provides a behavior for every possible in-
put. Which behavior appears at runtime will depend on the actual
value read. More precisely, when a configuration requests an input,
it must resort to nondeterminism and provide transition steps pro-
ducing events for all possible values. Letting the event carry the
value makes it possible to have different follow-up events or even
termination status depending on the actual value read. For instance,
in C, the command scanf("%d", &i) reads a value j from the
keyboard and stores it into the variable i. CompCert models it as
follows: for every integer j, there is a transition producing the event
IN( j) asserting that j is the value read. The following C code:

int main () {
int i=0;
scanf("%d", &i);
printf("%d", (i%2));
return 0;

}

will produce the set of behaviors 1:

{IN( j) :: OUT( j mod 2) :: ε ↓ (0) : j ∈ [INT MIN, INT MAX]}

We apply the same technique on external function calls. As the
caller cannot predict how the callee will modify the memory state,
the new memory state upon return of the function call is considered

1 INT MIN and INT MAX are the least and the greatest values of type int.

438



as an external input from the environment. This is why an external
function call event stores both the new and old memory states.

Then, when an external function f is called under some mem-
ory state m1, for any possible memory state m2 representing the
memory state after returning from the external function, the com-
positional semantics will allow a transition (see rule EXTCALL
in Def. 10 below) to produce the external function call event
Extcall( f ,m1,m2). Consequently, the caller will be able to pro-
vide a behavior for each possible memory state m2.

This leads us to extending the events and transition rules.

Definition 8 (Extended events). Let L be a language with function
calls. We write E for the set of extended events, defined as follows:

e ∈ E Extended event
::= e (e ∈ E) Regular event
| Extcall( f ,m1,m2) ( f ∈ F, External

m1,m2 ∈MS) function call

In Extcall( f ,m1,m2), m1 and m2 are the memory states before
and after the call, respectively. We write B for the set of behaviors
on events E, which we call extended behaviors.

If F ⊆ F is a set of function names, then we write EF for
the set of extended events where all external function call events
Extcall( f ,m1,m2) have f ∈ F, and BF the set of behaviors on
such events.

Definition 9 (Module or compilation unit). Let L be a language
with function calls. A module, or compilation unit, is a partial
function from function names to code2.

Definition 10 (Compositional semantics). The compositional
small-step semantics Comp [L, u] of a compilation unit u is the
small-step semantics defined as follows:

• The set of events is E.
• The set of configurations is MS×LS×K∗ (as in the procedural

small-step semantics).
• The transition relation (L, u) `comp · → · is defined as follows:

(L, u) ` (m, l, κ)
e
→(m′, l′, κ′) e ∈ E

(L, u) `comp (m, l, κ)
e
→(m′, l′, κ′)

(L, u) ` (m, l, κ)→(m′, l′, κ′)
(L, u) `comp (m, l, κ)→(m′, l′, κ′)

Kind(l) = Call( f ) f < dom(u)
e = Extcall( f ,m,m′)

l′ = Restore(m′,Backup(m, l))
(L, u) `comp (m, l, κ)

e

→(m′, l′, κ)

(EXTCALL)

• As in the procedural semantics, the set of results is MS and the
final configurations with result m are the configurations (m, l, ε)
where Kind(l) = Return.

The compositional big-step semantics of u is the function
JuKcomp : dom(u) −→ MS −→ P(BF\dom(u)) obtained from big-
stepping the compositional small-step semantics.

JuKcomp( f )(m) = LComp [L, u]M(m, Init(u( f ),m), ε)

5. Linking
In this section, we are going to define a linking operator ./ between
two partial functions from F to (MS −→ P(B)). This linking opera-

2 Mathematically, modules and programs in L are the same. But conceptu-
ally, a program is intended to be stand-alone, and is not expected to call
functions that are not defined within itself, contrary to a compilation unit,
which we view as an open module.

(a) 44444
↓
e ����� → 44444 e

↓
�����

(b) 44444
↓
Extcall( f ,m1,m2) �����

→ 44444 Extcall( f ,m1,m2)
↓
�����

(c) 44444
↓
Extcall( f ,m1,m2) �����

→ 44444
↓
◦ ◦ ◦ ◦ ◦ �����

Figure 1. Three cases in behavior simulation: (a) regular event; (b)
f < dom(ψ); (c) ◦ ◦ ◦ ◦ ◦ ∈ ψ( f ).

tor will be defined directly at the level of the behaviors, independent
of the underlying languages that the modules are written in.

Intuitively, each event corresponding to an external function call
will be replaced with the behavior of the callee. However, plain
straightforward substitution is not enough, as the behaviors of a
compilation unit u1 can involve external calls to functions defined
in the other compilation unit u2 that can again involve external
calls to functions back in u1. So, we have to resolve those formerly
external calls that are now internal, namely the cross-calls between
the two compilation units u1 and u2.

Let F ⊆ F be a set of function names. We are going to consider
the functions in Ψ(F) = F −→ (MS −→ P(B)) that describe
the behaviors of functions of F. These functions may call some
“external” functions which might still be in F. We call the elements
of Ψ(F) open observations, which we usually get by taking disjoint
unions of multiple compilation unit semantics.

Let ψ be such an open observation. We resolve the external
calls (in ψ) to functions of F by recursively supplying ψ to do
the substitution, yielding an observation R(ψ) in the set Φ(F) =
F −→ (MS −→ P(BF\F)) of closed observations, where there are
no remaining external function call events to functions in F. We
shall formally define R in definition 12.

Finally, if ψ1 and ψ2 are observations with disjoint domains,
then we define the linking operator as ψ1 ./ ψ2 = R(ψ1 ] ψ2).

5.1 Internal call resolution by behavior simulation
Let ψ ∈ Ψ(F) be an open observation. To resolve its internal
function calls, we are going to define a semantics that will actually
simulate the behaviors of ψ.

This resolution cancels out matching external call events by
inlining each’s behavior. We define this resolution by simulating
the local behaviors of each module through a small-step semantics,
treating each “external call” event through one “computation” step.

The simulation process is shown Fig. 1. In each case, ↓ can be
seen as a cursor behind which lies the next event to be simulated.
Each step (· → ·) of the behavior simulation progresses based on
the next event. All regular events are echoed as in (a), as well as
all external function call events that correspond to functions not in
ψ (b). By contrast, each external function call event corresponding
to a function defined in ψ is replaced with the callee’s events (c)
where the cursor remains in the same spot ready to simulate the
newly inserted events. Each step only performs one replacement at
a time; the external function calls of the inlined behavior are not
replaced yet until the cursor actually reaches them.

Then, we obtain the resulting linked semantics by big-stepping
this small-step semantics (see examples in Fig. 2).

Consider a function f0 and a behavior σ • Extcall( f ,m1,m2) ·b
being simulated. Assume that the prefix event sequence σ has
already been simulated so the Extcall is the first encounter of an

439



f

g g : ε ↓
f : Extcall(g) :: ε ↓
( f ] g)( f ) : ε ↓

f

g g : ε↗
f : Extcall(g) · b
( f ] g)( f ) : ε↗

f

g
e e e g : e :: ε ↓

f : Extcall(g) :::: Extcall(g) :::: . . .t
( f ] g)( f ) : e :::: e :::: . . .t

f

g g : ε ↓
f : Extcall(g) :::: Extcall(g) :::: . . .t
( f ] g)( f ) : ε↗

f

g

f

g g : Extcall( f ) · b′
f : Extcall(g) · b
( f ] g)( f ) : ε↗

Figure 2. Examples of behaviors with external function calls be-
tween two compilation units, one defining f , another defining g, ob-
tained by big-stepping the behavior simulation semantics. To sim-
plify, we assume that f and g do not use any memory state.

external function call event where f ∈ F. Then m1 is the memory
state under which f is to be called, and m2 is the expected memory
state upon return of f . Now, a behavior b2 is chosen in ψ( f )(m1),
and is to be simulated, whereas the expected return memory state
m2 as well as the remaining behavior of the caller b to be simulated
are pushed on top of a continuation stack. There are three cases:

• The simulation of this chosen behavior b2 terminates with the
expected return memory state m2. In this case, the remaining
behavior b of the caller f0 after the external call, popped from
the continuation stack along with m2, can be simulated.
• The simulation of this chosen behavior b2 goes wrong, diverges

or reacts. In such cases, the simulation result of b2 takes over
and never returns; the remaining behavior b of the caller after
the external call event is discarded.
• The simulation of this chosen behavior b2 terminates, but with

a return memory state that is not m2. In this case, the remain-
ing behavior of the caller is discarded, too, because it was rele-
vant only in the case of termination with m2. Actually, it means
that the simulation of the caller behavior is spurious. This is
because the set of behaviors of the caller f0 has a behavior
σ • Extcall( f ,m1,m′2) · b′ for every m′2, but most of the
guesses are wrong. However, even though the simulation of the
particular behavior does not make sense, the rule (EXTCALL)
guarantees to have all possibilities covered, hence there will al-
ways be at least one behavior that is not spurious, it is OK to
tag this irrelevant behavior as spurious. Formally, the simula-
tion will not go wrong, but abruptly terminate with a special re-
sult Spurious. In the end, when big-stepping the small-step
semantics, those spurious behaviors can be easily removed.

Definition 11 (Behavior simulation). We define the behavior sim-
ulation small-step semantics B[ψ] as follows:

• The set of events is E.
• The set of configurations is defined as follows:

s ∈ S
::= Spurious Spurious state
| (b, χ) (b ∈ B, Regular

χ ∈ (MS × B)∗) configuration

That is, either a special state for spurious executions, or a nor-
mal configuration with the current behavior b being simulated,
paired with χ, the stack of the remaining expected outcomes (if
the current behavior simulations terminate) and the remaining
behaviors to simulate.
• The transition relation ψ ` ·→· is defined as follows:

e = e ∈ E
ψ ` (e · b, χ)

e

→(b, χ)

f < dom(ψ) e = Extcall( f ,m1,m2)
ψ ` (e · b, χ)

e

→(b, χ)

b′ ∈ ψ( f )(m1)
ψ ` (Extcall( f ,m1,m2) · b, χ)→(b′, ((m2,b) :: χ))

ψ ` (ε ↓ (m), ((m,b) :: χ))→(b, χ) (RETURN)

ψ ` (ε↗, χ)→(ε↗, χ)

m′ , m
ψ ` (ε ↓ (m′), ((m,b) :: χ))→Spurious

(RETURN-SPURIOUS)
• The set of results is defined as follows:

r ∈ R
::= Spurious Spurious behavior
| m (m ∈MS) Regular termination

• The behavior sequence ((ε ↓ (m)), ε) is the only final state with
result m ∈ MS. Spurious is the only final state with result
Spurious.

Definition 12 (Resolution). Let BSpurious = {σ ↓ Spurious :
σ ∈ E∗} be the set of all spurious behaviors.

Then, the resolution of an open observation ψ ∈ Ψ(F) is the
closed observation R(ψ) ∈ Φ(F) defined using the big-step seman-
tics of the behavior simulation small-step semantics, excluding spu-
rious behaviors:

R(ψ)( f )(m) =
⋃

b∈ψ( f )(m)

LB[ψ]M(b, ε)\BSpurious

5.2 Semantic linking
Thanks to the resolution operator, we can simply define the linking
of two observations:

Definition 13 (Linking). Let ψ1, ψ2 be two observations with dis-
joint domains. Then, their linking ψ1 ./ ψ2 is defined as:

ψ1 ./ ψ2 = R(ψ1 ] ψ2)

With the definition of linking at the level of behaviors, we can
show that the compositional semantics of a compilation unit is
indeed compositional. In other words, in the special case where the
two modules are in the same language, linking their compositional
semantics at the level of their behaviors exactly corresponds to the
compositional semantics of the syntactic concatenation of the two
compilation units, which conforms to the intuition of linking:

Theorem 1. If u0, u1 are two compilation units with disjoint do-
mains in the same language with function calls, then:

Ju0 ] u1Kcomp = Ju0Kcomp ./ Ju1Kcomp

Proof (in Coq). • ⊇: We introduce a simulation diagram: an ex-
ecution step in Ju0Kcomp ./ Ju1Kcomp matches at least one ex-
ecution step in Ju0 ] u1Kcomp. In this simulation diagram, we
maintain an invariant between the configuration state (b, χ)
in Ju0Kcomp ./ Ju1Kcomp and the configuration state (m, l, κ) in

440



(a)
u1

u0

(b)
u1

u0
No Extcall from here on

(c)
u1

u0

Figure 3. Illustrations of the three cases in the ⊆ branch of the
proof of theorem 1: (a) one of the call to u0 never returns; (b) all
external calls return with finitely many of them; (c) all external
calls return with infinitely many of them. Dotted arrows denote co-
induction hypothesis.

Ju0 ] u1Kcomp such that κ can be decomposed in κ′ q− κ′′ with b
being a valid behavior in JuiKcomp from (m, l, κ′) and κ′′ match-
ing the stack χ.
• ⊆: the result for terminating and stuck behaviors is proven by

induction on the length of the execution. On the other hand,
diverging and reacting behaviors are dealt with in the following
way. Starting from such a behavior b in Ju0 ] u1Kcomp, we
first isolate an infinite step sequence corresponding to b by
definition. Given i ∈ {0, 1}, we build a behavior b′ in JuiKcomp by
replacing the calls to functions in u1−i with external calls, and
we prove that simulating b′ in B[Ju0Kcomp ] Ju1Kcomp] yields b,
i.e. b ∈ LB[Ju0Kcomp ] Ju1Kcomp]M(b′, ε). There are three cases
(each of which is illustrated in Fig. 3):
(a) There is a call to a function in u1−i that never terminates.

So, before the first such external call, we can build the finite
prefix of a behavior in JuiKcomp, and deal with this external
function call by coinduction replacing i with 1 − i.

(b) All calls to functions in u1−i terminate and there are finitely
many of them. So, until the last such external function call,
we can build the finite prefix of a behavior in JuiKcomp. Then,
we prove that the remaining behavior of Ju0 ] u1Kcomp that
calls no functions of u1−i is actually a behavior in JuiKcomp.

(c) All calls to functions in u1−i terminate but there are infinitely
many of them. So, we have to build a reacting behavior in
JuiKcomp with infinitely many external function calls to u1−i,
each one replacing each call to a function in u1−i.

�

We could have used behavior trees to model external function
calls. Behavior trees are well-known to be used in denotational se-
mantics to model input. They would have turned events for exter-
nal function calls Extcall( f ,m1,m2) into branching nodes, with
each branch labeled with the memory state m2. Using behavior trees
instead of plain behaviors would have helped remove spurious be-
haviors, as the two rules (RETURN) and (RETURN-SPURIOUS)
would have been replaced by a single rule actually choosing the
right branch in the behavior tree. However, this would require
adopting behavior trees as the semantic object for the composi-
tional semantics. Then, the process of making the procedural se-
mantics into a compositional semantics would bring deep changes
to the procedural small-step semantics, and the current compiler
correctness proofs of CompCert based on simulation diagrams over
those small-step semantics would require deep changes as well.

We believe that our current per-behavior setting, where behav-
iors are represented as first-order objects, shall require less intru-
sive changes in the current CompCert proofs. From the compiler’s
point of view, the external function call events introduced by our
semantics need not be treated differently from ordinary events.

The relationship between the compositional semantics and the
procedural semantics of a module viewed as a whole program

is rather obvious: it suffices to link the compilation unit with an
observation that makes every external function call stuck.

Lemma 2 (Compositional and procedural semantics). Let u be a
compilation unit in some language with function calls. Define ψ 
the constant stuck observation:

∀ f < dom(u),∀m : ψ ( f )(m) = {ε }

Then, ∀ f ∈ dom(u) : JuK( f ) = (JuKcomp ./ ψ )( f ).

6. Refinement and compiler correctness
The term “refinement” in program development dates back to the
early 70s proposed by Dijkstra [5] and Wirth [21]. It quickly grows
in various fields [15]. Refinement also plays a heavy role in com-
piler verification as shown in CompCert [12] and Müller-Olm [16].

In this work, we use refinement to define and prove correctness
of separate compilation. We first state the necessary conditions
for a relation to be a refinement relation. Then we show how our
refinement framework applies to compiler correctness. Finally, we
show that the behavior refinement relation defined in CompCert
extends well to the setting of our compositional semantics.

6.1 Refinement relations
Instead of defining on pairs of programs or specifications, we define
our refinement relations on sets of extended behaviors. One reason
for this choice is to support refinement between multiple languages
and program logics. Another reason is to better handle interactions
between refinement relations and the linking operator — or, more
generally, between refinement relations and the resolution operator,
which we will discuss at the end of this subsection.

To generalize refinement to the compositional semantics instead
of sticking to the procedural semantics of a whole program, we
define refinement relations on sets of extended behaviors instead of
plain behaviors.

Let v be a binary relation on P(B). Then, we lift it to observa-
tions in a straightforward way: we define ψ1 v ψ2 if, and only if,
dom(ψ1) = dom(ψ2) and:

∀ f ∈ dom(ψ1),∀m : ψ1( f )(m) v ψ2( f )(m)

Definition 14 (Refinement relations). A binary relation v on P(B)
is a refinement on observable behaviors if all these hold:

• reflexivity: ∀B0 ∈ P(B),B0 v B0
• transitivity: ∀B1,B2,B3 ∈ P(B) :

B1 v B2 ∧ B2 v B3 =⇒ B1 v B3

• congruence: for any observations ψ1, ψ2 such that ψ1 is never
empty (∀ f ∈ dom(ψ1),∀m, ψ1( f )(m) , ∅):

ψ1 v ψ2 =⇒ R(ψ1) v R(ψ2)

On top of a preorder, we add the congruence property, thanks to
which we can easily show that refinement is compositional:

Theorem 2 (Compositionality of refinement). Let ψ1, ψ2 two ob-
servations such that ψ1 v ψ2 and ψ1 is never empty. Then, for any
never-empty observation ψ with a domain disjoint from ψ1, we have
ψ ./ ψ1 v ψ ./ ψ2.

We will see in Sec. 6.4 that the CompCert improvement relation
is actually a refinement relation meeting all those requirements.

6.2 Compositional program verification
Refinement is expressed at the level of extended behaviors. So, we
can consider that a specification is an open observation, so that
a compilation unit u1 in some language with function calls can
be said to make a specification ψ1 hold if Ju1Kcomp v ψ1. (The

441



specification ψ1 can still contain external function call events to
functions outside of dom(u1).)

Thanks to refinement compositionality, and to the fact that the
linking operator is defined at the semantic level of extended behav-
iors, this program verification scheme is compositional and suitable
for open modules. Indeed, a compilation unit u2 with a domain dis-
joint from ψ1 can be proven to make some specification ψ hold un-
der assumptions that it is linked with an unknown library verifying
ψ1 independently of the actual implementation of the library: we
can directly link the compilation unit u2 with the specification ψ1
and prove that ψ1 ./ Ju2Kcompvψ. Then, if Ju1Kcompvψ1, refinement
compositionality gives us the refinement proof on the linked pro-
gram: Ju1Kcomp ./ Ju2Kcomp v ψ; finally, in the special case where u1
and u2 are written in the same language, we have Ju1 ] u2Kcompvψ.

6.3 Verified separate compilation
In this work, we follow the common notion of compiler correct-
ness that a compiler is correct if all possible behaviors of the target
program are valid behaviors of the source program. Since language
specifications often leave some decisions to compilers for flexibil-
ity, a compiler is allowed to remove behaviors. In other words, com-
pilation is a refinement step.

Our compiler correctness definition is fairly standard except for
the abstract refinement relation instead of a plain subset relation.
As it uses a refinement relation on extended behaviors, compiler
correctness generalizes to compiling open modules by considering
their compositional semantics.

Definition 15 (Compiler (optimizer) correctness). Let L,L′ be two
languages with function calls.

Under a refinement relation v, a compiler C from L to L′
is said to be correct if and only if, for any compilation unit u,
JC(u)Kcomp v JuKcomp.

Theorem 3. Under a refinement relation, multiple correct com-
pilers are compatible with separate compilation. If u1, . . . , un are
compilation units with disjoint domains and C1, . . . ,Cn are all cor-
rect compilers, then: JC1(u1) ] · · · ]Cn(un)K v Ju1 ] · · · ] unK

Proof. By definition of compiler correctness, ∀i, JCi(ui)Kcomp v

JuiKcomp. By transitivity and multiple applications of refinement
compositionality (Theorem 2), we obtain

JC1(u1)Kcomp ./ . . . ./ JCn(un)Kcomp v Ju1Kcomp ./ . . . ./ JunKcomp

which leads to JC1(u1) ] · · · ]Cn(un)KcompvJu1 ] · · · ] unKcomp be-
cause of Theorem 1 (linking in the same language). Finally, to
go from the compositional to the procedural semantics, refinement
compositionality with ψ and Lemma 2 give the result. �

The theorem tells us that we can link several object files which
are compiled independently with potentially different compilers.
As long as all the compilers are correct, the linked executable will
behave as an instance of the program linked at the source level.

With a single correct compiler C, Theorem 3 ensures the cor-
rectness of separate compilation even though we may not have
C(u1) ] · · · ] C(un) = C(u1 ] · · · ] un) (e.g. if C performs some
function inlining).

6.4 Example: the CompCert refinement relation
When developing a compiler, it is usually hard or even impossible
to retain one kind of behavior – the stuck behaviors. Imagine a C
program that takes the address of a local variable, adds a constant to
it, and then uses the result as the address to write to. If the arithmetic
operation brings the address out of bound, the C semantics will get
stuck. While in the target assembly code, the program is likely to
continue running and crash at a much later point, or even keep

going normally as the place the program writes to might be an
unused stack space.

In CompCert [11], all behaviors with the event sequence before
crashing as a prefix are considered “improvements” of the crash-
ing behavior. The refinement relation it uses, initially proposed by
Dockins [6] and integrated into CompCert, incorporates improve-
ments and is an extension of a subset relation. In this section, we
extend it to extended behaviors with external function call events.

Definition 16 (Behavior improvement). Let b1,b2 be two extended
behaviors. b1 improves b2 (b1 v b2) if and only if:

• either b1 = b2, or
• b2 is a “stuck prefix” of b1: there exists an event sequence σ

and a behavior b such that b2 = σ and b1 = σ • b.

Definition 17 (CompCert improvement relation). Let B1,B2 be two
sets of extended behaviors. B1 improves B2 (B1 vB2) if, and only if
∀b1 ∈ B1,∃b2 ∈ B2 : b1 v b2.

Theorem 4. The CompCert improvement relation is a refinement
relation.

Proof (in Coq). Congruence is proven by a lock-step backwards
simulation, where the invariant between two configurations of the
semantics uses behavior improvement for the behavior being simu-
lated as well as every frame of the continuation stack. �

This theorem shows that the CompCert improvement relation
defined on behaviors extends well to extended behaviors and ver-
ified separate compilation. Consequently, a correct compiler can
compile an open module as if it were a whole program, by con-
sidering an external call event in no different way than a regular
event. By the way, it also shows that a correct compiler necessarily
preserves external function calls: in no way can it optimize them
away before linking with an actual implementation for them. This
is understandable because a compiler processing an open module
has no hypotheses about external functions.

6.5 Coq implementation
Our Coq implementation provides the following enhancements,
which we did not mention for the sake of presentation.

Functions can be passed arguments, and they can return a value.
Then, the arguments are additional parameters to the semantics of a
module, and they appear in the external function call events as well
as the return values. Similar to the resulting memory state upon re-
turn of an external function call, the caller has to provide a behavior
for each possible return value as well: given an external function
f called with arguments arg and the memory state m1, the exter-
nal function call rule (EXTCALL in Def. 10) of the compositional
semantics produces an event Extcall( f , arg,m1, ret,m2) for any
result ret and any memory state m2.

Throughout the execution of a language with function calls, we
added the ability of maintaining some invariant on the memory
state. We equip the set of memory states with some preorder �, such
that, whenever an internal step is performed from a memory state m,
the new memory state m′ is such that m � m′. Consequently, the se-
mantics of a compilation unit provides no behavior for those exter-
nal function calls that do not respect �: in the compositional seman-
tics, the rule for external function calls (EXTCALL in Def. 10) pro-
ducing an external call event Extcall( f , arg,m1, ret,m2) requires
the additional premise m1 � m2. This enhancement is important
for CompCert, where the memory model requires that the memory
evolve monotonically to prevent a deallocated memory block from
being reused. The proofs of compilation passes in CompCert make
critical use of this assumption.

442



In a language with function calls, the functions Backup and
Restore which respectively save the local state into a continua-
tion stack frame and retrieve a new one from such a frame, can
change the memory state: instead of only returning a frame or lo-
cal state, they return a new memory state as well. We make those
functions compatible with the preorder � over memory states. This
enhancement allows us to model the allocation and deallocation of
a concrete stack frame in the memory upon function call and return.

We also provide a Coq implementation to instantiate our frame-
work with the CompCert common subexpression elimination pass
to turn it from whole-program compilation to separate compilation.

This pass is carried over CompCert RTL (“register transfer
language”) as both source and target languages. It is a 3-address
language with infinitely many per-function-call pseudo-registers.
The body of a function is a control-flow graph.

The common subexpression elimination actually replaces nodes
of the control-flow graph with no-ops, if those nodes are taking
part to expressions that were already computed before. This pass
actually does not alter function calls and does not modify the
memory between source and target programs.

We took a subset of RTL eliminating floating-point operations
(due to typing constraints). Then, we added our external function
call event to the CompCert so-called “external functions” (namely
primitives such as volatile load and store, memory copy, or I/O,
some of which generate events) to enable their support by RTL.
Then, we rewrote RTL into the setting of our framework and proved
that the corresponding compositional semantics and the CompCert
RTL language with those new events produce the same big-step
semantics. Thus, there were no changes to the proof of the compi-
lation pass (except the removal of floating-point operations) and the
correctness of separate compilation were stated directly in terms of
the original RTL semantics and proved using our framework.

7. Languages with different memory state models
Our new approach is close to the way how CompCert [12] handles
I/O events. Actually, we generalize it to arbitrary external function
calls, and we give the formal argument why this approach is cor-
rect by enabling those external functions to be implemented and
their behaviors inlined. This means that the compiler correctness
techniques used for CompCert and restricted to whole programs
can be easily applied to open modules.

The main difference introduced by considering the behaviors
of open modules is that now part of the memory state becomes
observable. There still remains a problem: a compilation pass can
alter the observable memory state.

But alterations can deeply involve the structure of the memory
state so that the relation between the memory states of the source
programs and the compiled ones can itself change during execution.
Such relations are called Kripke worlds [2, 10] in the setting of
Kripke logical relations. But it becomes necessary to define the
refinement relation as a “binary” simulation diagram deprecating
the notion of the “unary” semantics.

In this section, we show that such Kripke logical relations are
not necessary to deal with critical memory-changing passes of
CompCert. To this purpose, we introduce a lightweight infrastruc-
ture to deal with memory-changing relations, α-refinement, that
can directly cope with our unary semantics for open modules with
traces of external function call events.

7.1 α-refinement
In practice, a separate compiler does make some assumptions on
the behaviors of external functions. If these assumptions are also
preserved as an invariant by the execution of functions defined in
u, the compilation of u can take advantage of this invariant.

Consider a module u written in a procedural language L. Let
MS be the set of memory states of L. Let I ⊆ MS be an invariant
in L, i.e. such that for any local transition (m, l)→(m′, l′), if m ∈ I
then m′ ∈ I. Then we can restrict the set of memory states of L to
I, yielding a procedural language L|I such that the corresponding
compositional semantics mandates all external function calls to
return with memory states also satisfying the invariant. In other
words, for any external function call event Extcall( f ,m1,m2)
produced by the compositional semantics of L|I , we always have
m1,m2 ∈ I.

Now consider a target procedural language L′ having an invari-
ant I′. Let C be a compiler from L to L′. Then, we say that C(u)
α-refines u (C(u) vα u) if, and only if there exists a bijection α be-
tween I and I′ such that JC(u)Kcomp|I′ v α(JuKcomp|I).

In practice, it means that the separate compiler C is correct
when the modules are linked with other modules also satisfying
the same invariants (I in the source, I′ in the target). Indeed, in
the case when such a bijection α exists, then we can define the
procedural language α(L|I) isomorphic to L|I where the set of
memory states is α(I) = I′, and then we can use the usual non-
memory-changing refinement relation between α(L|I) and L′|I′ .
Then, separate compilation is correct provided that, when building
the whole program by linking with a module containing a main
entry point, the initial memory state passed to main also satisfies
the invariant (I in the source, I′ in the target).

Then, Theorem 3 can be rephrased as follows: if u1, . . . , un are
compilation units in languages L1, . . . ,Ln with disjoint domains
and C1, . . . ,Cn are all compilers to the same target language L′ such
that, for each i, Ci is correct with respect to an αi-refinement, then:

JC1(u1) ] · · · ]Cn(un)K v α1(Ju1K) ./ . . . ./ αn(JunK)

In the rest of this section, we show how to systematically turn
CompCert-style memory injection into α-bijection by using a crit-
ical memory-changing pass of CompCert as an example. The same
technique can also be used to support translation of calling con-
ventions (e.g., mapping local variables or temporaries in the source
into stack entries in the target).

7.2 Case study: memory injection for local variable layout
One of the most critical memory-changing compilation phases in
CompCert is the phase that lays out local variables into a stack
frame. Indeed, CompCert does not represent memory as a unique
byte array, but as a collection of byte arrays called memory blocks.
The purpose of this memory model is to allow pointer arithmetic
only within the same block. In this setting, CompCert defines the
semantics of a subset of C by allocating one block for each local
variable, so that the following code example indeed gets stuck
(has no valid semantics, which corresponds to undefined behavior
according to the C standard):

void f (void)
{ int a[2] = {18, 42}, b[2] = {1729, 6};
register int *pa = &a[2], *pb = &b[0];
*pa = 3; /* undefined behavior,

NOT equivalent to *pb = 3 */ }

In this example, upon function entry, CompCert allocates two
different memory blocks, one (say with identifier 2) of size 8 for a
and one (say with identifier 3) of size 4 for b. Then, the pointer pa
contains an address which is, in CompCert, not a plain integer, but
a pair Vptr(b, o) of the block identifier b and the byte offset o within
this block. So, the value of pa is actually Vptr(2, 8) whereas pb is
Vptr(3, 0). So, the two pointers are not equal, and in fact, pa is not
a valid pointer to store to, because the size of the block identifier
corresponding to a is 8. In other words, the boundary of one block
is in no way related to other blocks. This instrumented semantics

443



18 42
a

1729 6
b

18 42 1729 6
stack

A
A
A

A
A
A
�
�
�

�
�
�

Figure 4. Injecting two arrays into the stack

can help in tracking out-of-bounds array accesses in a C program
(for instance using the reference interpreter included in CompCert
to “animate” the formal semantics of CompCert C).

But in practice, this C code is actually compiled by CompCert
to an intermediate language called Cminor, which performs pointer
arithmetic and memory operations for stack-allocated variables of
a given function call in one single memory block, called the stack
frame. The compiled Cminor code looks like the following C code:

void f (void)
{ char* stk[16];

*(int*)(&stk[0]) = 18; *(int*)(&stk[4]) = 42;
*(int*)(&stk[8]) = 1729; *(int*)(&stk[12]) = 6;
{ register int* pa = (int*)(&stk[8]);

register int* pb = (int*)(&stk[8]);
*pa = 3; }}

The proof of the Cminor code generation, from the Csharpminor
intermediate language still having one memory block for each
local variable, is based on a memory transformation called memory
injection [13]. An injection is a partial function ι : BlockID →
(BlockID × Z) mapping a source memory block to an offset within
a target memory block. In our example, the target memory block
allocates a stack frame (say with block-id 2) of size 16 bytes; the
source memory block for a is mapped to offset 0 within this stack
block, and b is mapped to offset 8: ι(2) = (2, 0) and ι(3) = (2, 8).

7.3 Issues
Although the CompCert memory injection is the most critical mem-
ory transformation used in CompCert and makes formal proofs of
whole-program compilation fairly understandable (but by no means
straightforward), it has several issues that make it difficult to turn
those proofs into separate compilation (in the sense that it is diffi-
cult to turn the memory injection into a bijective memory transfor-
mation amenable to α-refinement).

Granularity of preservation by memory operations In the current
correctness proof of the Csharpminor-to-Cminor pass, the memory
injection is kept as an invariant, but the preservation properties
make the memory injection hold even during the allocation of
memory blocks corresponding to the source local variables. More
precisely, assume that main is called from source memory m0
related to target memory m′0 by a memory injection ι0. Then:

1. First, the stack frame block b′ is created in the target memory
which becomes m′1. Memory injection ι0 still holds between m0
and m′1.

2. Then, the memory block for the local variable a, say b2, is
created in the source memory which becomes m2. Memory
injection between m2 and m′1 becomes ι2 = ι0 ] (b2 7→ (b′, 0)).

3. Then, the memory block for the local variable b, say b3 is
created in the source memory which becomes m3, injected into
m′1 through ι3 = ι2 ] (b3 7→ (b′, 8))

The current memory injection invariant is too fine-grained because
it also holds in the middle of allocating the memory blocks for the
source local variables. It actually means that the target memory m′1

is related to any source memory that can be obtained in the middle
of the allocation of such source blocks, which prevents the injectiv-
ity of the memory transformation. Conversely, the allocation of the
target stack frame block is performed without changing the source
memory, so that the memory injection is not even functional.

To remedy this problem, we make the preservation lemma for
memory injection more coarse-grained: instead of specifying a per-
allocation preservation property, we specify an all-in-one preserva-
tion property to reestablish injection only after all the blocks corre-
sponding to source local variables are allocated.

Dynamic memory changes The proofs of compilation passes in-
volving memory injections build the block mapping on the fly dur-
ing the execution of the program: whenever a block is allocated, the
mapping is modified accordingly. But the mapping is not yet known
for those source memory blocks that are not allocated yet, e.g. in
future function calls, or heap allocations (malloc and free library
functions). It means that the mapping dynamically changes during
the execution of a program. This is why Kripke logical relations are
used to handle memory-changing compilation passes.

To solve those issues, we propose to define a stronger notion
of memory injection in two steps. First, the block mapping is
computed from the source memory using additional information
contained in block tags. Then, the target memory is computed from
both the source memory and the computed block mapping.

7.4 Our approach
In fact, the memory transformation for the Csharpminor-to-Cminor
is actually systematic and can be defined directly depending on the
shape of the memory itself rather than specified by an invariant
preserved by memory operations such as allocating a new block.
To this purpose, we need to add more information into the mem-
ory under the form of tags attached to each memory block. Such
information is provided by the language semantics when allocating
a new memory block, and no longer changes during the execution
of the program. It plays little active role in the execution of the
program, as it is only used during the compilation proof.

Block identifiers To make proofs simpler, we modify the seman-
tics of Csharpminor and Cminor to keep the block identifiers syn-
chronized so that as many blocks are “allocated” in the source as in
the target. In the source, an empty block (within which no operation
or pointer arithmetic is valid) is first allocated, then the blocks for
local variables are allocated; whereas in the target, the stack frame
block is first allocated with its size, then many empty blocks are
allocated, one for each variable.

This has no incidence on performance: such empty blocks can
be considered as logical information, which correspond to no mem-
ory in practice. They are not even reachable in the program.

Tags A block has a tag of one of the following forms:

t ∈ T ::= Heap
global variable or free store

| Stack(Main( f , sz))
Stack frame for function f of size sz bytes

| Stack(Var( f , id, b, sz, of ))
Local variable id in f of size sz injected into b at offset of

Information defined in the tags is provided either by the seman-
tics of Csharpminor (e.g. the identifier b′ of the corresponding Main
block in the tags of Var blocks) or by a previous compilation phase
(e.g. offsets) within Csharpminor without changing the actual con-
tents of memory blocks.

Specification of injection We can now replace CompCert mem-
ory injection with a stronger injection INJ(ι,m,m′) between a
source memory m and a target memory m′ axiomatized as follows:

444



• The empty memory injects into itself with ι = ∅.
• If INJ(ι,m,m′), then INJ(ι ] (b 7→ (b, 0),m ] {b},m′ ] {b})) for

any allocation of a new block b with tag Heap
• If INJ(ι,m,m′), then, if the source allocates one empty block

b with tag Stack(Main( f , sz)) and several blocks corresponding
to the local variables of f with tags Stack(Var( f , idi, szi, of i))
so that

[
of i, of i + szi

)
are a partition of [0, sz), then the target

memory allocating one block b of size sz and as many empty
blocks is related to the resulting source memory by INJ with
(ι ] {(b + i 7→ (b, of i)) : 1 ≤ i ≤ n}).
• Load, store and free operations are preserved with respect to ι
• If INJ(ι,m,m1) and INJ(ι,m,m2), then m1 = m2

• If INJ(ι1,m1,m) and INJ(ι2,m2,m), then (ι1,m1) = (ι2,m2)
• The block tags of the source and target memories are the same

Then, the memory transformation is defined as the partial injec-
tive function α(m) = {m′ : ∃ι, INJ(ι,m,m′)}. Then, we change the
forward simulation proof of the CompCert Csharpminor-to-Cminor
pass by replacing the injection with INJ, which incidentally proves
that, actually, Csharpminor makes the invariant dom(α) hold.

Implementation To realize those axioms, we use information
contained in tags to first compute the block mapping ι from the
source memory m. For any block identifier b, if the tag of b in
m is Stack(Main(. . . )), then ι(b) is undefined; if the tag of b in
m is Stack(Var( f , id, b′, sz, of )), then ι(b) = (b′, of ); otherwise,
ι(b) = (b, 0).

Then, we must assume that the memory m is well-formed: for
any block b of m of tag Stack(Main(. . . )), this block is empty, there
are no pointer to it anywhere in the memory, and it is followed by
exactly the right number of blocks of tag Stack(Var( f , id, b, sz, of ))
corresponding to the local variables of f and whose valid offsets are
located at offsets between 0 and sz. This well-formedness condition
is actually an invariant satisfied by the source language, and it will
be the domain of α.

From such a memory, we can now construct the target memory
m′ from the memory m as follows, by scanning it from the first
block. Assuming we treated all blocks between 1 and b − 1, we
treat block b and following as follows:

• if b is the identifier of the next block available for allocation3,
then we are done.
• Otherwise, the block b is well-defined. If b is a heap block, then

copy its contents (transforming pointers by ι) to the target block
with the same identifier b, and move to next block b + 1
• Otherwise, the block b is necessarily of tag Stack(Main( f , sz)),

and is empty, and its next blocks correspond to the local vari-
ables of f (say that there are n of those). Then, in the target
memory m′, b will have size sz and receive the contents (ac-
cordingly transforming pointers by ι) of the following blocks of
m at the offsets specified by their tags; but in m′, those blocks
will be left empty. Then move to the next block b + n + 1.

Contrary to CompCert memory injections, there are no additional
memory locations in the target that do not correspond to any source
memory locations. This is enabled by the fact that we also add
alignment constraints along with block tags to prevent alignment
padding. For the sake of brevity, we do not explain this issue here.

3 A memory always has finitely many blocks, and the number of blocks
always increases because freed locations are never reused, so that a freed
block is never actually deleted (only its locations are turned into unusable
ones) and any newly allocated block is always fresh.

8. Related work and conclusions
Our compositional semantics is designed primarily for C-like lan-
guages, so it is not directly applicable to ML-like functional lan-
guages which have more sophisticated semantic models. C-like lan-
guages support first-class function pointers, but they do not allow
function terms (e.g., λx.e) as first-class values. C-like languages
also support intensional operations such as equality test on func-
tion pointers, so it is unsound to replace one function pointer with
another even if they point to functions with same observable be-
haviors. This allows us to use much simpler semantic objects (e.g.,
memory blocks with code pointers as in CompCert [13]) than so-
phisticated models developed for functional languages [2, 10, 1].

Compositional trace/game semantics Our idea of modeling the
behavior of each external function call as an Extcall( f ,m,m′)
event (see Sec. 4) resembles similar treatments in compositional
trace or game semantics [4, 8]. Brookes’s transition-trace seman-
tics [4] models environment transitions for shared memory con-
current languages. Under Brookes’s semantics, a thread’s behavior
is described as a set of transition traces, with each consisting of
a sequence of state transition steps (m1,m′1) :: (m2,m′2) :: . . . ::
(mn,m′n). The gaps between consecutive steps (e.g., m′1 and m2, or
m′n−1 and mn) signal those state transitions made by other threads
in the environment. Composing two threads involves calculating all
the interleavings of pairs of transition traces (one from each thread)
and their stuttering and mumbling closures.

Our Extcall( f ,m,m′) event also uses a pair of memory states
(m,m′) to signal state transitions made by the environment (i.e., ex-
ternal calls). Our semantic linking operation (see Sec. 5) also does
the “merging” of multiple event traces, but it requires more sophis-
ticated substitutions (on behaviors) since we must also support di-
vergence, I/O events, and reacting behaviors. It does not require
stuttering and mumbling closure since we are only dealing with se-
quential languages. The proximity between these two approaches
shows great promise toward combining these two techniques to
build compositional models for concurrent C-like languages.

Ghica and Tzevelekos [8] developed a system-level semantics
for composing C-like program modules. They also used external
call and return events and used them to model open C-like modules
and their environments. Our work can be viewed as an adaptation
of their idea to the setting of compositional compiler correctness,
with the goal of addressing language-independent behavior speci-
fications that include divergence, I/O and reactive events.

Compositional CompCert Concurrently with our work, Stewart
et al [19, 3] have recently completed the development of a for-
mally verified separate compiler for CompCert C. This is a very
impressive achievement since their Coq implementation includes
all 8 translation phases from CompCert Clight to CompCert x86
plus many of the optimization phases. They developed interaction
semantics which is a protocol-oriented operational semantics of in-
termodule (or thread) interaction: an open module would take nor-
mal unobservable steps or make internal function calls (defined in
the same module), but would “block” when calling external func-
tions; each such “block” point is considered as an interaction point;
the program will resume execution when the external function call
returns. To support both vertical and horizontal composition, they
have also developed a new form of “structured simulations” which
extends CompCert-style memory injections with fine-grained sub-
jective invariants and a leakage protocol.

While our Extcall-event-based semantics (EES) shares many
similarities to Stewart et al’s interaction semantics (IS), they also
have some significant differences. EES does not rely on any new
“protocol-oriented” operational semantics, instead, it just treats ex-
ternal function calls as regular events, thus it can use the same
trace-based behavior specifications as semantic objects. When link-

445



ing two modules u0 and u1, our semantic linking operator ./ (under
EES) would automatically calculate the resulting semantic objects
for the linked module (u0]u1), replacing all cross-module calls be-
tween u0 and u1 with their corresponding behavior specifications.
This leads to a very nice linking theorem (see Theorem 1 in Sec. 5):
if u0 and u1 are two modules in the same language, linking their
compositional semantics at the level of their behaviors exactly cor-
responds to the compositional semantics of their syntactic concate-
nation of the two modules. The interaction semantics (IS), on the
other hand, does not attempt to “big-step” the cross-module calls
between u0 and u1 during linking, thus it has not been able to prove
the same linking theorem as we have done.

Kripke logical relations Kripke Logical Relations (KLRs) [17]
are designed to support horizontal composition for functional lan-
guages. They define equivalence between terms (and values) in
such a way that two functions f1 and f2 (of same type) are equiva-
lent if, and only if, for any two equivalent values v1, v2 of the same
type, ( f1 v1) and ( f2 v2) are equivalent. Ahmed et al [1, 7] showed
how to generalize KLRs to reason about higher-order states. Hur
and Dreyer [9] rely on step-indexed logical relations to show how
to support horizontal composition; they prove correctness of a one-
pass compiler but they do not support vertical composition since
step-indexed logical relations are known to be not transitive.

C-like languages support both first-class function pointers and
states but they do not support first-class function terms as in most
functional languages. Because C function pointers can be tested for
equality, a function pointer can not be replaced by another, even if
they point to functions that have same observable behaviors. This is
why we can build much simpler semantic models and how our new
compositional semantics can still establish the monotonicity (con-
gruence) result of our refinement relation (Section 6, Theorem 2).

Parametric bisimulations Hur et al. [10] recently proposed a
promising approach that combines KLRs with bisimulations. The
main idea is to abandon step-indexing but rely, instead, on coinduc-
tive simulation-based techniques (which are closer to CompCert-
style simulation relations). More specifically, they propose to pa-
rameterize the local knowledge of functions with the global knowl-
edge of external functions, and to define equivalence for open mod-
ules based on a simulation diagram over the small-step semantics
of the two underlying languages of the programs. A simulation di-
agram can make two equivalent programs perform several steps
from two equivalent states to two states corresponding to an ex-
ternal function call, then resume simulation upon return of such a
call. This “disruption” in the flow of the simulation is analogous to
our way of making the external function call explicit as a specific
event in the behavior. Thus, our work can be seen as a unary ver-
sion of their parametric bisimulations by defining a unary seman-
tics for open modules but at the level of behaviors (independently
of the small-step semantics of the underlying languages). Our way
of defining the linking operator at the semantic level of behaviors
avoids the need of strong typing, which makes our approach more
amenable to support weakly typed C-like languages.

Conclusions In this paper, we have presented a novel composi-
tional semantics for reasoning about open modules and for sup-
porting verified separate compilation and linking. To build compo-
sitional semantics for open concurrent programs, we plan to split
our single Extcall event into separate call and return events. Se-
mantics for open concurrent programs can then have interleaving
external call and return events. Semantic substitutions in our link-
ing will be replaced by some form of “zipping” operations.

Acknowledgments We thank anonymous referees for their help-
ful comments and suggestions that improved this paper and the
implemented tools. This research is based on work supported in

part by DARPA grants FA8750-10-2-0254 and FA8750-12-2-0293,
NSF grant 1065451, and ONR Grant N00014-12-1-0478. Any
opinions, findings, and conclusions contained in this document are
those of the authors and do not reflect the views of these agencies.

References
[1] A. Ahmed, D. Dreyer, and A. Rossberg. State-dependent representa-

tion independence. In Proc. 36th ACM Symposium on Principles of
Programming Languages, pages 340–353, 2009.

[2] N. Benton and C.-K. Hur. Biorthogonality, step-indexing and compiler
correctness. In Proc. 2009 ACM SIGPLAN International Conference
on Functional Programming, pages 97–108, 2009.

[3] L. Beringer, G. Stewart, R. Dockins, and A. W. Appel. Verified com-
pilation for shared-memory C. In Proc. 2014 European Symposium
on Programming (ESOP’14), volume 8410 of LNCS, pages 107–127.
Springer-Verlag, Apr. 2014.

[4] S. D. Brookes. Full abstraction for a shared-variable parallel language.
Inf. Comput., 127(2):145–163, 1996.

[5] E. W. Dijkstra. A constructive approach to the problem of program
correctness. BIT Numerical Mathematics, 8:174–186, 1968.

[6] R. Dockins. Operational Refinement for Compiler Correctness. PhD
thesis, Princeton University, 2012.

[7] D. Dreyer, A. Ahmed, and L. Birkedal. Logical step-indexed logical
relations. In Proc. 24th IEEE Symposium on Logic in Computer
Science, pages 71–80, 2009.

[8] D. Ghica and N. Tzevelekos. A system-level game semantics. In
Proc. 28th Conf. on the Mathematical Foundations of Programming
Semantics (MFPS), 2012.

[9] C.-K. Hur and D. Dreyer. A Kripke logical relation between ML and
assembly. In Proc. 38th ACM Symposium on Principles of Program-
ming Languages, pages 133–146, 2011.

[10] C.-K. Hur, D. Dreyer, G. Neis, and V. Vafeiadis. The marriage of
bisimulations and Kripke logical relations. In Proc. 39th ACM Sym-
posium on Principles of Programming Languages, pages 59–72, 2012.

[11] X. Leroy. The CompCert verified compiler. http://compcert.
inria.fr/, 2005–2013.

[12] X. Leroy. Formal verification of a realistic compiler. Communications
of the ACM, 52(7):107–115, 2009.

[13] X. Leroy and S. Blazy. Formal verification of a C-like memory
model and its uses for verifying program transformation. Journal of
Automated Reasoning, 2008.

[14] X. Leroy and H. Grall. Coinductive big-step operational semantics.
Information and Computation, 207(2):284–304, 2009.

[15] C. C. Morgan. Programming from specifications, 2nd Edition. Prentice
Hall International series in computer science. Prentice-Hall, 1994.

[16] M. Müller-Olm. Modular Compiler Verification – A Refinement-
Algebraic Approach Advocating Stepwise Abstraction, volume 1283
of Lecture Notes in Computer Science. Springer, 1997.

[17] A. Pitts and I. Stark. Operational reasoning for functions with local
state. In HOOTS’98, pages 227–274, 1998.

[18] T. Ramananandro, Z. Shao, S.-C. Weng, J. Koenig, and Y. Fu. A
compositional semantics for verified separate compilation and link-
ing. Technical Report YALEU/DCS/TR-1494, Dept. of Computer
Science, Yale University, New Haven, CT, December 2014. URL:
flint.cs.yale.edu/publications/vscl.html.

[19] G. Stewart, L. Beringer, S. Cuellar, and A. W. Appel. Compositional
CompCert. In Proc. 42nd ACM Symposium on Principles of Program-
ming Languages, page (to appear), 2015.

[20] The Coq development team. The Coq proof assistant. http://coq.
inria.fr, 1999 – 2015.

[21] N. Wirth. Program development by stepwise refinement. Communi-
cations of the ACM, 14(4):221–227, Apr. 1971.

[22] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and understanding
bugs in C compilers. In Proc. 2011 ACM Conference on Programming
Language Design and Implementation, pages 283–294, 2011.

446



C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
C

Deep Specifications and Certified Abstraction Layers

Ronghui Gu Jérémie Koenig Tahina Ramananandro Zhong Shao
Xiongnan (Newman) Wu Shu-Chun Weng Haozhong Zhang: Yu Guo:

Yale University :University of Science and Technology of China

Abstract
Modern computer systems consist of a multitude of abstraction lay-
ers (e.g., OS kernels, hypervisors, device drivers, network protocols),
each of which defines an interface that hides the implementation
details of a particular set of functionality. Client programs built on
top of each layer can be understood solely based on the interface,
independent of the layer implementation. Despite their obvious im-
portance, abstraction layers have mostly been treated as a system
concept; they have almost never been formally specified or verified.
This makes it difficult to establish strong correctness properties, and
to scale program verification across multiple layers.

In this paper, we present a novel language-based account of
abstraction layers and show that they correspond to a strong form
of abstraction over a particularly rich class of specifications which
we call deep specifications. Just as data abstraction in typed func-
tional languages leads to the important representation independence
property, abstraction over deep specification is characterized by an
important implementation independence property: any two imple-
mentations of the same deep specification must have contextually
equivalent behaviors. We present a new layer calculus showing
how to formally specify, program, verify, and compose abstraction
layers. We show how to instantiate the layer calculus in realistic
programming languages such as C and assembly, and how to adapt
the CompCert verified compiler to compile certified C layers such
that they can be linked with assembly layers. Using these new lan-
guages and tools, we have successfully developed multiple certified
OS kernels in the Coq proof assistant, the most realistic of which
consists of 37 abstraction layers, took less than one person year to
develop, and can boot a version of Linux as a guest.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—Correctness proofs, formal
methods; D.3.3 [Programming Languages]: Languages Constructs
and Features; D.3.4 [Programming Languages]: Processors—
Compilers; D.4.5 [Operating Systems]: Reliability—Verification;
D.4.7 [Operating Systems]: Organization and Design—Hierarchical
design; F.3.1 [Logics and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs

Keywords Abstraction Layer; Modularity; Deep Specification;
Program Verification; Certified OS Kernels; Certified Compilers.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
POPL ’15, January 15–17, 2015, Mumbai, India.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3330-9/15/01. . . $15.00.
http://dx.doi.org/10.1145/2676726.2676975

1. Introduction
Modern hardware and software systems are constructed using a
series of abstraction layers (e.g., circuits, microarchitecture, ISA
architecture, device drivers, OS kernels, hypervisors, network proto-
cols, web servers, and application APIs), each defining an interface
that hides the implementation details of a particular set of function-
ality. Client programs built on top of each layer can be understood
solely based on the interface, independent of the layer implementa-
tion. Two layer implementations of the same interface should behave
in the same way in the context of any client code.

The power of abstraction layers lies in their use of a very rich
class of specifications, which we will call deep specifications in this
paper. A deep specification, in theory, is supposed to capture the
precise functionality of the underlying implementation as well as the
assumptions which the implementation might have about its client
contexts. In practice, abstraction layers are almost never formally
specified or verified; their interfaces are often only documented
in natural languages, and thus cannot be rigorously checked or
enforced. Nevertheless, even such informal instances of abstraction
over deep specifications have already brought us huge benefits.
Baldwin and Clark [1] attributed such use of abstraction, modularity,
and layering as the key factor that drove the computer industry
toward today’s explosive levels of innovation and growth because
complex products can be built from smaller subsystems that can be
designed independently yet function together as a whole.

Abstraction and modularity have also been heavily studied in
the programming language community [31, 30]. The focus there is
on abstraction over “shallow” specifications. A module interface
in existing languages cannot describe the full functionality of its
underlying implementation, instead, it only describes type specifi-
cations, augmented sometimes with simple invariants. Abstraction
over shallow specifications is highly desirable [24], but client pro-
grams cannot be understood from the interface alone—this makes
modular verification of correctness properties impossible: verifica-
tion of client programs must look beyond the interface and examine
its underlying implementation, thus breaking the modularity.

Given the obvious importance, formalizing and verifying abstrac-
tion layers are highly desirable, but they pose many challenges:
• Lack of a language-based model. It is unclear how to model

abstraction layers in a language-based setting and how they
differ from regular software modules or components. Each layer
seems to be defining a new “abstract machine;” it may take
an existing set of mechanisms (e.g., states and functions) at the
layer below and expose a different view of the same mechanisms.
For example, a virtual memory management layer—built on top
of a physical memory layer— would expose to clients a different
view of the memory, now accessed through virtual addresses.

• Lack of good language support. Programming an abstraction
layer formally, by its very nature, would require two languages:
one for writing the layer implementation (which, given the low-

447



level nature of many layers, often means a language like C or
assembly); another for writing the formal layer specification
(which, given the need to precisely specify full functionality,
often means a rich formal logic). It is unclear how to fit these
two different languages into a single setting. Indeed, many
existing formal specification languages [34, 18, 16] are capable
of building accurate models with rich specifications, but they are
not concerned with connecting to the actual running code.

• Lack of compiler and linking support. Abstraction layers are
often deployed in binary or assembly. Even if we can verify a
layer implementation written in C, it is unclear how to compile
it into assembly and link it with other assembly layers. The
CompCert verified compiler [19] can only prove the correctness
of compilation for whole programs, not individual modules or
layers. Linking C with assembly adds a new challenge since they
may have different memory layouts and calling conventions.

In this paper, we present a formal study of abstraction layers that
tackles all these challenges. We define a certified abstraction layer
as a triple pL1,M,L2q plus a mechanized proof object showing that
the layer implementation M , built on top of the interface L1 (the
underlay), indeed faithfully implements the desirable interface L2

above (the overlay). Here, the implements relation is often defined
as some simulation relation [22]. A certified layer can be viewed
as a “parameterized module” (from interfaces L1 to L2), a la an
SML functor [23]; but it enforces a stronger contextual correctness
property: a correct layer is like a “certified compiler,” capable of
converting any safe client program running on top of L2 into one
that has the same behavior but runs on top ofL1 (e.g., by “compiling”
abstract primitives in L2 into their implementation in M ).

A regular software module M (built on top of L1) with interface
L2 may not enjoy such a property because its client may invoke
another module M 1 which shares some states with M but imposes
different state invariants from those assumed by L2. An abstraction
layer does not allow such a client, instead, such M 1 must be either
built on top of L2 (thus respecting the invariants in L2), or below
L2 (in which case, L2 itself must be changed).

Our paper makes the following new contributions:

• We present the first language-based account of certified abstrac-
tion layers and show how they correspond to a rigorous form
of abstraction over deep specifications used widely in the sys-
tem community. A certified layer interface describes not only
the precise functionality of any underlying implementation but
also clear assumptions about its client contexts. Abstraction over
deep specifications leads to the powerful implementation inde-
pendence property (see Sec. 2): any two implementations of the
same layer interface have contextually equivalent behaviors.

• We present a new layer calculus showing how to formally specify,
program, verify, and compose certified abstraction layers (see
Sec. 3). Such a layer language plays a similar role as the module
language in SML [23], but its interface checking is not just
typechecking or signature matching; instead, it requires formal
verification of the implements relation in a proof assistant.

• We have instantiated the layer calculus on top of two core lan-
guages (see Sec. 4 and 5): ClightX, a variant of the CompCert
Clight language [5]; and LAsm, an x86 assembly language. Both
ClightX and LAsm can be used to program certified abstraction
layers. We use the Coq logic [35] to develop all the layer inter-
faces. Each ClightX or LAsm layer is parameterized over its
underlay interface, implemented using CompCert’s external call
mechanisms. We developed new tools and tactic libraries to help
automate the verification of the implements relation.

• We have also modified CompCert to build a new verified com-
piler, CompCertX, that can compile ClightX abstraction layers

into LAsm layers (see Sec. 6). CompCertX is novel because it
can prove a stronger correctness theorem for compiling individ-
ual functions in each layer—such a theorem requires reasoning
about memory injection [21] between the memory states of the
source and target languages. To support linking between ClightX
and LAsm layers, we show how to design the implements rela-
tion so that it is stable over memory injection.

• Using these new languages and tools, we have successfully
constructed several feature-rich certified OS kernels in Coq (see
Sec. 7). A certified kernel pLx86,K, Lkerq is a verified LAsm
implementation K, built on top of Lx86, and it implements the
set of system calls as specified in Lker . The correctness of the
kernel guarantees that if a user program P runs safely on top
of Lker , running the version of P linked with the kernel K on
Lx86 will produce the same behavior. All our certified kernels
are built by composing a collection of smaller layers. The most
realistic kernel consists of 37 layers, took less than one person
year to develop, and can boot a version of Linux as a guest.

The POPL Artifact Evaluation Committee reviewed the full artifact
of our entire effort, including ClightX and LAsm, the CompCertX
compiler, and the implementation of all certified kernels with Coq
proofs. The reviewers unanimously stated that our implementation
exceeded their expectations. Additional details about our work can
be found in the companion technical report [13].

2. Why abstraction layers?
In this section, we describe the main ideas behind deep specifications
and show why they work more naturally with abstraction layers than
with regular software modules.

2.1 Shallow vs. deep specifications
We introduce shallow and deep specifications to describe different
classes of requirements on software and hardware components.
Type information and program contracts are examples of “shallow”
specifications. Type-based module interfaces (e.g., ML signatures)
are introduced to support compositional static type checking and
separate compilation: a module M can be typechecked based on its
import interface L1 (without looking at L1’s implementation), and
shown to have types specified in its export interface L2.

To support compositional verification of strong functional cor-
rectness properties on a large system, we would hope that all of its
components are given “deep” specifications. A module M will be
verified based on its import interface L1 (without looking at L1’s
implementation), and shown to implement its export interface L2.

To achieve true modularity, we would like to reason about
the behaviors of M solely based on its import interface L1; and
we would also like its export interface L2 to describe the full
functionality of M while omitting the implementation details.

More formally, a deep specification captures everything we
want to know about any of its implementations—it must satisfy
the following important “implementation independence” property:

Implementation independence: Any two implementations
(e.g., M1 and M2) of the same deep specification (e.g., L)
should have contextually equivalent behaviors.

Different languages may define such contextual equivalence relation
differently, but regardless, we want that, given any whole-program
client P built on top of L, running P ‘M1 (i.e., P linked with M1)
should lead to the same observable result as running P ‘M2.

Without implementation independence, running P ‘M1 and
P ‘M2 may yield different observable results, so we can prove a
specific whole-program property that holds on P ‘M1 but not on
P ‘M2—such whole-program property cannot be proved based on
the program P and the specification L alone.

448



typedef enum {
TD_READY, TD_RUN,
TD_SLEEP, TD_DEAD

} td_state;

struct tcb {
td_state tds;
struct tcb *prev, *next;

};

struct tdq {
struct tcb *head, *tail;

};
// νtcbp and νtdqp
struct tcb tcbp[64];
struct tdq tdqp[64];
// κdequeue

struct tcb *
dequeue(struct tdq *q){

struct tcb *head,*next;
struct tcb *pid=null;
if(q == null)

return pid;
else {

head = q -> head;
if (head == null)
return pid;

else {
pid = head;
next = head -> next;
if(next == null) {
q -> head = null;
q -> tail = null;

} else {
next -> prev = null;
q -> head = next;

}
}

}
return pid;

} ...

Inductive td_state :=
| TD_READY | TD_RUN
| TD_SLEEP | TD_DEAD.

Inductive tcb :=
| TCBUndef
| TCBV (tds: td_state)

(prev next: Z)

Inductive tdq :=
| TDQUndef
| TDQV (head tail: Z)

Record abs:={tcbp:ZMap.t tcb;
tdqp:ZMap.t tdq}

Function σ̂dequeue a i :=
match (a.tdqp i) with
|TDQUndef => None
|TDQV h t =>
if zeq h 0 then
Some (a, 0)

else
match a.tcbp h with
|TCBUndef => None
|TCBV _ _ n =>
if zeq n 0 then
let q’:=(TDQV 0 0) in
Some (set_tdq a i q’, h)

else
match a.tcbp n with
|TCBUndef => None
|TCBV s’ _ n’ =>
let q’:=(TDQV n t) in
let a’:=set_tdq a i q’ in
let b:=(TCBV s’ 0 n’) in
Some (set_tcb a’ n b, h)

end
end

end ...

Figure 1. Concrete (in C) vs. abstract (in Coq) thread queues

Definition tcb := td_state.

Definition tdq := List Z.

Record abs’:={tcbp:ZMap.t tcb;
tdqp:ZMap.t tdq}

Function σ̂1dequeue a i :=

match (a.tdqp i) with
| h :: q’ =>

Some(set_tdq a i q’, h)
| nil => None
end ......

Figure 2. A more abstract queue (in Coq)

Hoare-style partial correctness specifications are rarely deep
specifications since they fail to satisfy implementation independence.
Given two implementations of a partial correctness specification for
a factorial function, one can return the correct factorial number and
another can just go into infinite loop. A program built on top of such
specification may not be reasoned about based on the specification
alone, instead, we have to peek into the actual implementation in
order to prove certain properties (e.g., termination).

In the rest of this paper, following CompCert [20], we will focus
on languages whose semantics are deterministic relative to external
events (formally, these languages are defined as both receptive
and determinate [33] and they support external nondeterminism
such as I/O and concurrency by making events explicit in the
execution traces). Likewise, we only consider interfaces whose
primitives have deterministic specifications. If L is a deterministic
interface, and both M1 and M2 implement L, then P ‘M1 and
P ‘M2 should have identical behaviors since they both follow the
semantics of runningP overL, which is deterministic. Deterministic
specifications are thus also deep specifications.

Deep specifications can, of course, also be nondeterministic.
They may contain resource bounds [6], numerical uncertainties [7],

L1   with  abs1   

interface  L   with abstract state:   abs   

module   M   with concrete state:   mem 
R R

module M1 

R1 

L2   with  abs2   

module M2 

R2 

client program  P 

Figure 3. Client code with conflicting abstract states?

etc. Such nondeterminism should be unobservable in the semantics
of a whole program, allowing implementation independence to
still hold. We leave the investigation of nondeterministic deep
specifications as future work.

2.2 Layers vs. modules
When a module (or a software component) implements an interface
with a shallow specification, we often hide its private memory state
completely from its client code. In doing so, we can guarantee
that the client cannot possibly break any invariants imposed on the
private state in the module implementation.

If a module implements an interface with a deep specification, we
would still hide the private memory state from its client, but we also
need to introduce an abstract state to specify the full functionality
of each primitive in the interface.

For example, Fig. 1 shows the implementation of a concrete
thread queue module (in C) and its interface with a deep specification
(in Coq). The local state of the C implementation consists of 64
thread queues (tdqp) and 64 thread control blocks (tcbp). Each
thread control block consists of the thread state, and a pair of pointers
(prev and next) indicating which linked-list queue it belongs to. The
dequeue function takes a pointer to a queue; it returns the head
block if the queue is not empty, or null if the queue is empty.

In the Coq specification (Fig. 1 right; we omitted some invariants
to make it more readable), we introduce an abstract state of type
abs where we represent each C array as a Coq finite map (ZMap.t),
and each pointer as an integer index (Z) to the tdq or tcb array.
The dequeue primitive σ̂dequeue is a mathematical function of type
absÑ ZÑ option (absˆ Z); when the function returns None, it
means that the abstract primitive faults. This dequeue specification
is intentionally made very similar to the C function, so we can easily
show that the C module indeed implements the specification.

We define that a module implements a specification if there
is a forward simulation [22] from the module implementation
to its specification. In the context of determinate and receptive
languages [33, 20], if the specification is also deterministic, it is
sufficient to find a forward simulation from the specification to its
implementation (this is often easier to prove in practice).

In the rest of this paper, following CompCert, we often call the
forward simulation from the implementation to its specification as
upward (forward) simulation and the one from the specification to
its implementation as downward (forward) simulation.

Fig. 2 shows a more abstract specification of the same queue
implementation where the new abstract state abs’ omits the prev
and next links in tcb and treats each queue simply as a Coq list. The
dequeue specification σ̂1dequeue is now even simpler, which makes it
easier to reason about its client, but it is now harder to prove that the
C module implements this more abstract specification. This explains
why we often introduce less abstract specifications (e.g., the one
in Fig. 1) as intermediate steps, so a complex abstraction can be
decomposed into several more tractable abstraction steps.

Deep specification brings out an interesting new challenge
shown in Fig. 3: what if a program P attempts to call primitives
defined in two different interfaces L1 and L2, which may export two

449



conflicting views (i.e., abstract states abs1 and abs2) of the same
abstract state abs (thus also the same concrete memory state mem)?

Here we assume that modules M,M1,M2 implement interfaces
L,L1, L2 via some simulation relations R,R1, R2 (lines marked
with a dot on one end) respectively. Clearly, calling primitives in L2

may violate the invariants imposed in L1, and vice versa, so L1 and
L2 are breaking each other’s abstraction when we run P . In fact,
even without M2 and L2, if we allow P to directly call primitives
in L, similar violation of L1 invariants can also occur.

This means that we must prohibit client programs such as P
above, and each deep specification must state the clear assumptions
about its valid client contexts. Each interface should come with a
single abstract state (abs) used by its primitives; and its client can
only access the same abs throughout its execution.

This is what abstraction layers are designed for and why they are
more compositional (with respect to deep specification) than regular
modules! Layers are introduced to limit interaction among different
modules: only modules with identical state views (i.e., R1, R2 and
abs1, abs2 must be identical) can be composed horizontally.

A layer interface seems to be defining a new “abstract machine”
because it only supports client programs with a particular view of the
memory state. The correctness of a certified layer implementation
allows us to transfer formal reasoning (of client programs) on one
abstract machine (the overlay) to another (the underlay).

Programming with certified abstraction layers enables a dis-
ciplined way of composing a large number of components in a
complex system. Without using layers, we may have to consider
arbitrary module interaction or dependencies: an invariant held in
one function can be easily broken when it calls a function defined
in another module. A layered approach aims to sort and isolate all
components based on a carefully designed set of abstraction levels
so we can reason about one small abstraction step at a time and
eliminate most unwanted interaction and dependencies.

3. A calculus of abstraction layers
Motivation A user of an abstraction layer pL1,M,L2q wants to
know that its implementation M (on top of the underlay interface
L1) can be used to run any program P written against the overlay
interface L2. If we consider L1, L2 as abstract machines and M
as a program transformation (which transforms a program P into
MpP q), then for some notion of refinement Ď, this property can be
stated as @P .MpP q@L1 Ď P@L2, meaning that the behavior of
MpP q executing on top of the underlay specification L1 refines that
of the program P executing on top of the overlay specification L2.

This view of abstraction layers captures a wide variety of
situations. Furthermore, two layers pL1,M,L2q and pL2, N, L3q

can be composed as pL1,M ˝ N,L3q, and the correctness of the
layer implementation M ˝N follows from that of M and N .

However, the layer interfaces are often not arbitrary abstract
machines, but simply instances of a base language, specialized to
provide layer-specific primitives and abstract state. The implementa-
tion is not an arbitrary transformation, but instead consists of some
library code to be linked with the client program. In order to prove
this transformation correct, we will verify the implementation of
each primitive separately, and then use these proofs in conjunction
with a general template for the instrumented language.

Abstract machines and program transformations are too general
to capture this redundant structure. The layer calculus presented in
this section provides fine-grained notions of layer interfaces and
implementations. It allows us to describe what varies from one layer
to the next and to assemble such layers in a generic way.

3.1 Prerequisites
To keep the formalism general and simple, we initially take the
syntax and behavior of the programs under consideration to be

abstract parameters. Specifically, in the remainder of this section we
will assume that the following are given:

• a set of identifiers i P I which will be used to name variables,
functions, and primitives (e.g., dequeue and tcbp in Fig. 1);

• sets of function definitions κ P K, and variable definitions ν P T,
as specified by the language (e.g., κdequeue and νtcbp in Fig. 1);

• a set of behaviors σ P Σ for the individual primitives of layers,
and the individual functions of programs (e.g., the step relation
σdequeue derived from the Coq function σ̂dequeue in Fig. 1).

More examples can be found in Sec. 4.
We also need to define how the behaviors refine one another.

This is particularly important because our layer interfaces bundle
primitive specifications, and because a relation between layer inter-
faces is defined pointwise over these primitives. Ultimately, we wish
to use these fine-grained layers and refinements to build complete
abstract machines and whole-machine simulations. This can only be
done if the refinements of individual primitives are consistent; for
example, if they are given in terms of the same simulation relation.

Hence, we index behavior refinement by the elements of a partial
monoid pR, ˝, idq. We will refer to the elements R P R of this
monoid as simulation relations. However, note that at this stage, the
elements of R are entirely abstract, and we require only that the
composition operator ˝ and identity element id satisfy the monoid
laws R ˝ pS ˝ T q “ pR ˝ Sq ˝ T and R ˝ id “ id ˝R “ R.

Finally, we need to interpret these abstract simulation relations as
refinement relations between behaviors. That is, for each R P R, we
require a relationďR on Σ. For instance, if the behaviors σ1, σ2 P Σ
are taken to be step relations over some sets of states, σ1 ďR σ2

may be interpreted as the following simulation diagram:

s1
σ1 //

R

s11

R

s2 σ2
// s12

That is, whenever two states s1, s2 are related by R in some sense,
and σ1 takes s1 to s11 in one step, then there exists s12 such that σ2

takes s2 to s12 in zero or more steps, and s12 and s11 are also related
byR. The relationsď´ should respect the monoid structure of R, so
that for any σ P Σ we have σ ďid σ, and so that wheneverR,S P R
and σ1, σ2, σ3 P Σ such that σ1 ďR σ2 and σ2 ďS σ3, it should
be the case that σ1 ďS˝R σ3.

3.2 Layer interfaces and modules
The syntax of the calculus is defined as follows:

L ::“ ∅ | i ÞÑ σ | i ÞÑ ν | L1 ‘ L2

M ::“ ∅ | i ÞÑ κ | i ÞÑ ν |M1 ‘M2

The layer interfaces L and modules M are essentially finite maps;
constructions of the form i ÞÑ are elementary single-binding
objects, and ‘ computes the union of two layers or modules. This
is illustrated by the proof-of-concept interpretation given in the
companion technical report [13]. For example, the thread queue
module, shown in Fig. 1, can be defined as Mthread queue :“ tcbp ÞÑ
νtcbp ‘ tdqp ÞÑ νtdqp ‘ dequeue ÞÑ κdequeue, while the overlay
interface can be defined as Lthread queue :“ dequeue ÞÑ σdequeue .

The rules are presented in Fig. 4. The inclusion preorder defined
on modules corresponds to the intuition that when M Ď N ,
any definition present in M must be present in N as well. The
composition operator‘ behaves like a join operator. However, while
M ‘ N is an upper bound of M and N , we do not require it to
be the least upper bound. The order on layer interfaces extends the

450



M1 ĎM2
M ĎM MLE-REFL

∅ ĎM MLE-EMPTY

M ‘∅ ĎM MLE-ID-RIGHT

pM1 ‘M2q ‘M3 ĎM1 ‘ pM2 ‘M3q MLE-ASSOC

M2 ‘M1 ĎM1 ‘M2 MLE-COMM

M1 ĎM1 ‘M2 MLE-UB-LEFT

M1 ĎM2 ^M2 ĎM3 ñM1 ĎM3 MLE-TRANS

M1 ĎM
1
1 ^M2 ĎM

1
2 ñM1 ‘M2 ĎM

1
1 ‘M

1
2 MLE-MON

L1 ďR L2 L ďid L LLE-REFL

∅ ďR L LLE-EMPTY

L‘∅ ďid L LLE-ID-RIGHT

pL1 ‘ L2q ‘ L3 ďid L1 ‘ pL2 ‘ L3q LLE-ASSOC

L2 ‘ L1 ďid L1 ‘ L2 LLE-COMM

L1 ďid L1 ‘ L2 LLE-UB-LEFT

L‘ L ďid L LLE-IDEMPOTENT

L1 ďR L2 ^ L2 ďS L3 ñ L1 ďS˝R L3 LLE-TRANS

L1 ďR L
1
1 ^ L2 ďR L

1
2 ñ L1 ‘ L2 ďR L

1
1 ‘ L

1
2 LLE-MON

σ1 ďR σ2 ñ i ÞÑ σ1 ďR i ÞÑ σ2 LLE-INTRO-PRIM

L1 $R M : L2 EMPTY
L $id ∅ : L

VAR
L $id i ÞÑ ν : i ÞÑ ν

L1 $R M : L2 L2 $S N : L3
VCOMP

L1 $R˝S M ‘N : L3

L $R M : L1 L $R N : L2
HCOMP

L $R M ‘N : L1 ‘ L2

L1 ďR L11 L1 $S M : L2 L12 ďT L2
CONSEQ

L11 $R˝S˝T M : L12

Figure 4. The fine-grained layer calculus

underlying simulation preorder ďR on behaviors. Compared to Ď,
it should satisfy the additional property LLE-IDEMPOTENT.

The judgment L1 $R M : L2 is akin to a typing judgment for
modules. It asserts that, using the simulation relation R, the module
M—running on top of L1—faithfully implements L2. Because
modules consist of code ultimately intended to be linked with a client
program, the empty module ∅ acts as a unit, and can implement any
layer interface L (EMPTY). Moreover, appending first N , then M to
a client program is akin to appending M ‘N in one step (VCOMP).
These rules correspond to the identity and composition properties
already present in the framework of abstract machines and program
transformations. However, the fine-grained calculus also provides a
way to split refinements (HCOMP): when two different layer interfaces
are implemented in a compatible way by two different modules on
top of a common underlay interface, then the union of the two
modules implements the union of the two interfaces.

This allows us to break down the problem of verifying a layer
implementation in smaller pieces, but ultimately, we need to handle
individual functions and primitives. The consequence rule (CONSEQ)
can be used to tie our notion of behavior refinement into the calculus.
However, to make the introduction of certified code possible, we
need a semantics of the underlying language.

3.3 Language semantics
Assume that layers and modules are interpreted in the respective sets
L and M. The semantics of a module can be understood as the effect
of its code has on the underlay interface, as specified by a function

J´K : MÑ pLÑ Lq
i ÞÑ ν ďid Ji ÞÑ νKL SEM-VAR

JMKpL‘ JNKLq ďid JM ‘NKL SEM-COMP

M1 ĎM2 ^ L1 ďR L2 ñ JM1KL1 ďR JM2KL2 SEM-MON

Figure 5. Semantics of modules

J´K : M Ñ L Ñ L. Given such a function, we can interpret the
typing judgment as:

L1 $R M : L2 ô L2 ďR L1 ‘ JMKL1.

Then the properties in Fig. 5 are sufficient to ensure the soundness
of the typing rules with respect to this interpretation.

Here, surprisingly, we require that the specification refine the
implementation! This is because our proof technique involves
turning such a downward simulation into the converse upward
simulation, as detailed in Sec. 5 (Theorem 1) and Sec. 4.3. Also, we
included L1 on the right-hand side of ďR to support pass-through
of primitives in the underlay L1 into the overlay L2.

The property SEM-COMP can be understood intuitively as follows.
In JMKpL ‘ JNKLq, the code of M is able to use the functions
defined in N in addition to the primitives of the underlay interface
L, but conversely the code of N cannot access the functions of
M . However, in JM ‘ NKL, the functions of M and N can call
each other freely, and therefore the result should be more defined.
The property SEM-MON states that making the module and underlay
larger should also result in a more defined semantics.

Once a language semantics is given, we introduce a language-
specific rule to prove the correctness of individual functions:

VCpL, κ, σq
FUN

L $id i ÞÑ κ : i ÞÑ σ

where the language-specific predicate VCpL, κ, σq asserts that the
function body κ faithfully implements the primitive behavior σ on
top of L. This rule can be combined with the rules of the calculus to
build up complete certified layer implementations.

Similarly, given a concrete language semantics, we will want to
tie the calculus back into the framework of abstract machines and
program transformations. For a layer interface L, we will define a
corresponding abstract machine meant to execute programs written
in a version of the language augmented with the primitives specified
in L. The program transformation associated with a module M will
simply concatenate the code of M to the client program. Then, for
a particular notion of refinement Ď, we will want to prove that the
typing judgments entail the contextual refinement property:

L1 $R M : L2

@P . pP ‘Mq@L1 Ď P@L2

Informally, if M faithfully implements L2 on top of L1, then
invocations in P of a primitive i with behavior σ in L2, can be
satisfied by calling the corresponding function κ in M .

Indeed in Sec. 4 and Sec. 5, the primitive specifications in
JMKL, based on step relations, are defined to reflect the possible
executions of the function definitions in M . Therefore, L2 ďR
L1 ‘ JMKL1 implies that, for any primitive implementation in M ,
the corresponding deep specification in L2 refines the execution of
that function definition. Hence the execution of program P with
underlay L2 refines that of P ‘M with underlay L1 (the properties
enumerated in Fig. 5 hold for a similar reason). Properties of the
language (i.e., being determinate and receptive) can then be used to
reverse this refinement into the desired pP ‘Mq@L1 Ď P@L2.

4. Layered programming in ClightX
In this section, we provide an instantiation of our framework for a
C-like language. This instantiation serves two purposes: it illustrates
a common use case for our framework, showing its usability and

451



practicality; and it shows that our framework can add modularization
and proof infrastructure to existing language subsets at minimal cost.

Our starting point: CompCert Clight Clight [5] is a subset of
C and is formalized in Coq as part of the CompCert project. Its
formal semantics relies on a memory model [21] that is not only
realistic enough to specify C pointer operations, but also designed to
simplify reasoning about non-aliasing of different variables. From
the programmer’s point of view, Clight avoids most pitfalls and
peculiarities of C such as nondeterminism in expressions with side
effects. On the other hand, Clight allows for pointer arithmetic and
is a true subset of C. Such simplicity and practicality turn Clight
into a solid choice for certified programming. However, Clight
provides little support for abstraction, and proving properties about
a Clight program requires intricate reasoning about data structures.
This issue is addressed by our layer infrastructure.

4.1 Abstract state, primitives, and layer interfaces
We enable abstraction in Clight and other CompCert languages by
instrumenting the memory states used by their semantics with an ab-
stract state component. This abstract state can be manipulated using
primitives, which are made available through CompCert’s external
function mechanism. We call the resulting language ClightX.

Abstract state and external functions The abstract state is not
just a ghost state for reasoning: it does influence the outcome
of executions! However, we seek to minimize its impact on the
existing proof infrastructure for program and compiler verification.
We do not modify the semantics of the basic operations of Clight,
or the type of values it uses. Instead, the abstract state is accessed
exclusively through Clight’s external function mechanism.

Primitives and layer interfaces CompCert offers a notion of ex-
ternal functions, which are useful in modeling interaction with the
environment, such as input/output. Indeed, CompCert models com-
piler correctness through traces of events which can be generated
only by external functions. CompCert axiomatizes the behaviors
of external functions without specifying them, and only assumes
they do not behave in a manner that violates compiler correctness.
We use the external function mechanism to extend Clight with our
primitive operations, and supply their specifications to make the
semantics of external functions more precise.

Definition 1 (Primitive specification). Let mem denote the type
of memory state, and let val denote the type of concrete values.
A primitive specification σ over the abstract state type A is a
predicate on pval˚ ˆ mem ˆ Aq ˆ pval ˆ mem ˆ Aq: when
σpargs,m, a, res,m1, a1q holds, we say that the primitive takes
arguments args , memory state m and abstract state a, and returns
a result res , a memory state m1 and an abstract state a1.

The type of abstract state and the set of available primitives will
constitute our notion of layer interface.

Definition 2 (Layer interface). A layer interface L is a tuple
L “ pA,P q whereA is the type of abstract state, and P is the set of
primitives as a finite map from identifiers to primitive specifications
over the abstract state A.

4.2 The ClightX parametric language
Syntax The syntax of ClightX (parameterized over a layer inter-
face L) is identical to that of Clight. It features global variables
(including function pointers), stack-allocated local variables, and
temporary variables t . Expressions have no side effects; in particu-
lar, they cannot contain any function call. They include full-fledged
pointer arithmetics (comparison, offset, C-style “arrays”).

e ::“ n |x |t Constant, variable, temporary
| &e |*e |e1 op e2 | . . .

Statements include assignment to a memory location or a temporary,
function call and return, and structured control (loops, etc.).

S ::“ e1 “ e2 Assignment to a memory location
| t :“ e Assignment to a temporary variable
| tÐ epe1, . . . q Function call
| returnpeq Function return
| S1;S2 | ifpeq S1 else S2 | whilepeq S

Function calls may refer to internal functions defined as part of
a module, or to primitives defined in the underlay L. However
these two cases are not distinguished syntactically. In fact, the layer
calculus allows for replacing primitive specifications with actual
code implementation, with no changes to the caller’s code.

Definition 3 (Functions, modules). A ClightX function is a tuple
κ “ ptargs, lvars, Sq, where targs is the list of temporaries to
receive the arguments, lvars is the list of local stack-allocated
variables with their sizes, and S is a statement, the function body. A
module M is a finite map from identifiers to ClightX functions.

Semantics Compared with Clight, the semantics of ClightXpLq
adds a notion of abstract state, and permits calls to the primitives
of L. We will write Lpiqpargs,m, a, res,m1, a1q to denote the
semantics of the primitive associated with identifier i in L.

We present the semantics of ClightX under the form of a big-step
semantics. We fix an injective mapping Γ from global variables to
memory block identifiers. We write JeKpl, τ,mq for the evaluation
of expression e under local variables l, temporaries τ and memory
state m. We write Γ, L,M, l $ S : pτ,m, aq Ó pres; τ 1,m1, a1q
for the semantics of statements: from the local environment l, the
temporary environment τ , the memory state m, and the abstract
state a, execution of S terminates and yields result res (or ¨ if no
result), temporary environment τ 1, memory state m1, and abstract
state a1. For instance, the rule for return statements is:

JeKpl, τ,mq “ res

Γ, L,M, l $ returnpeq : pτ,m, aq Ó pres; τ,m, aq

We write Γ, L,M $ f : pargs;m,aq ó pres;m1, a1q to say
that a function f defined either as an internal function in the module
M , or as a primitive in the layer interface L, called with list of
arguments args , from memory state m and abstract state a, returns
result res , memory m1 and abstract state a1.

For internal function calls, we first initialize the temporary
environment with the arguments, and allocate the local variables of
the callee (nextpmq denotes the next available block identifier in
memory m, not yet allocated). Then, we execute the body. Finally,
we deallocate the stack-allocated variables of the callee.

Mpfq “ ppt1, . . . , tnq, ppx1, sz1q, . . . , pxk, szkqq, Sq
m1 “ allocpszkq ˝ ¨ ¨ ¨ ˝ allocpsz1qpmq

l “ Hrx1 Ð nextpmqs . . . rxk Ð nextpmq ` k ´ 1s
τ “ Hrt1 Ð v1s . . . rtn Ð vns

Γ, L,M, l $ S : pτ,m1, aq Ó pres; τ 1,m2, a
1q

m1 “ freepnextpmq, sz1q ˝ ¨ ¨ ¨ ˝ freepnextpmq ` k ´ 1, szkqpm2q

Γ, L,M $ f : pv1, . . . , vn;m,aq ó pres;m1, a1q

For primitive calls, we simply query the layer interface L:

Lpfqpargs,m, a, res,m1, a1q

Γ, L,M $ f : pargs;m,aq ó pres;m1, a1q

Using the function judgment, we can state the rule for function call
statements as:

@i, JeiKpl, τ,mq “ vi JeKpl, τ,mq “ pb, 0q
Γpfq “ b Γ, L,M $ f : pv1, . . . , vn;m,aq ó pres;m1, a1q

τ 1 “ τ rtÐ ress

Γ, L,M, l $ tÐ epe1, . . . , enq : pτ,m, aq Ó p¨; τ 1,m1, a1q

452



@i . L1 $id i ÞÑ κi : i ÞÑ σ1i

L1 $id M : L11

@i . σi ďR σ1i

@i . i ÞÑ σi ďR i ÞÑ σ1i

L2 ďR L11
L1 $R M : L2

where L1 is the underlay, the module M “
À

i i ÞÑ κi, the intermediate
layer L11 “

À

i i ÞÑ σ1i, and the overlay L2 “
À

i i ÞÑ σi.

Figure 6. Building a certified ClightX layer

a1m1

a2m2
RabsRmem

Figure 7. Layer simulation relation

The full semantics of ClightX is given in the companion TR [13].

Definition 4 (Semantics of a module). Let M be a ClightX module,
andL be a layer interface. Let Γ be a mapping from global variables
to memory blocks. The semantics of a module M in ClightX(L),
written JMKL, is the layer interface defined as follows:

• the type of abstract state is the same as in L;
• the semantics of primitives are defined by the following rule:

f P dompMq Γ, L,M $ f : pargs;m,aq ó pres;m1, a1q

pJMKLqpfqpargs,m, a, res,m1, a1q

4.3 Layered programming and verification
To construct a certified abstraction layer pL1,M,L2q, we need to
find a simulation R such that L1 $R M : L2 holds. Fig. 6 gives
an overview of this process. We write M “

À

i i ÞÑ κi, where
i ranges over the function identifiers defined in module M , and
κi is the corresponding implementation. Global variables in M
should not be accessible from the layers above: their permissions are
removed in the overlay interface L2. The interface L2 also includes
a specification σi for each function i defined in M .

We decouple the task of code verification from that of data
structure abstraction. We introduce an intermediate layer interface,
L11 “

À

i i ÞÑ σ1i, with its specifications σ1i expressed in terms
of the underlay states. We first prove that L1 $id M : L11
holds. For each function i in M , we show that its implementation
κi is a downward simulation of its “underlay” specification σ1i,
that is, L1 $id i ÞÑ κi : i ÞÑ σ1i. We apply the HCOMP rule
to compose all the per-function simulation statements. Note the
simulation relations here are all id, meaning there is no abstraction
of data structures in these steps. We then prove L2 ďR L

1
1, which

means that each specification σi in L2 is an abstraction of the
intermediate specification σ1i via a simulation relation R. From
i ÞÑ σi ďR i ÞÑ σ1i, we apply the monotonicity rule LLE-MON

to get L2 ďR L11. Finally, we apply the CONSEQ rule to deduce
L1 $R M : L2.

Verifying ClightX functions L1 and L11 share the same views of
both concrete and abstract states, so no simulation relation is in-
volved during this step of verification (the FUN rule in Sec. 3.3).
Using Coq’s tactical language, we have developed a proof automa-
tion engine that can handle most of the functional correctness proofs
of ClightX programs. It contains two main parts: a ClightX state-
ment/expression interpreter that generates the verification conditions
by utilizing rules of ClightX big-step semantics, and an automated
theorem prover that discharges the generated verification conditions

typedef enum {
PG_RESERVED, PG_KERNEL,
PG_NORMAL

} pg_type;

struct page_info {
pg_type t;
uint u;

};
struct page_info AT[1<<20];

Notation RESV := 0.
Notation KERN := (RESV + 1).
Notation NORM := (KERN + 1).

Inductive page_info :=
| ATV (t: Z) (u: Z)
| ATUndef.

Record abs’’ :=
{AT: ZMap.t page_info}.

Figure 8. Concrete (C) vs. abstract (Coq) memory allocation table

// κat get

uint at_get (uint i){
uint allocated;
allocated = AT[i].u;
if (allocated != 0)

allocated = 1;
return allocated;

}

// κat set

void at_set (uint i, uint b){
AT[i].u = b;

}

Function σ̂at get a i :=
match (a.AT i) with
| ATV _ 0 => Some 0
| ATV _ _ => Some 1
| _ => None
end.

Function σ̂at set a i b :=
match (a.AT i) with
| ATV t _ =>
Some (set_AT a i (ATV t b))
| _ => None
end.

Figure 9. Concrete vs. abstract getter-setter functions for AT

Inductive σ1at set :=
| @ m m’ a ofs v n,

m.store AT ofs v = m’
-> ofs = n * 8 + 4
-> 0 <= n < 1048576

-> σ1at set (n::v::nil)
m a Vundef m’ a.

Inductive σat set :=
| @ m a a’ n v,

σ̂at set a n v = Some a’
-> 0 <= n < 1048576
-> σat set (n::v::nil)

m a Vundef m a’.

Figure 10. High level and low level specification for at set

on the fly. The automated theorem prover is a first order prover,
extended with different theory solvers, such as the theory of integer
arithmetic and the theory of CompCert style partial maps. The entire
automation engine is developed in Coq’s Ltac language.

Data abstraction Since primitives in L11 and L2 are atomic, we
prove the single-step downward simulation between L11 and L2 only
at the specification level. The simulation proof for the abstraction
can be made language independent. The simulation relation R
captures the relation between the underlay state (concrete memory
and abstract state) and the overlay state, and can be decomposed
as Rmem and Rabs (see Fig. 7). The relation Rmem ensures that the
concrete memory states m1 and m2 contain the same values, while
making sure the memory permissions for the part to be abstracted
are erased in the overlay memory m2. The component Rabs relates
the overlay abstract state a2 with the full underlay state pm1, a1q.

Through this decomposition, we achieve the following two
objectives: the client program can directly manipulate the abstract
state without worrying about its underlying concrete implementation
(which is hidden via Rmem), and the abstract state in the overlay is
actually implementable by the concrete memory and abstract state
in the underlay (via Rabs).

Common patterns We have developed two common design pat-
terns to further ease the task of verification. The getter-setter pattern
establishes memory abstraction by introducing new abstract states
and erasing the corresponding memory permissions for the overlay.
The overlay only adds the get and set primitives which are imple-
mented using simple memory load/store operations at the underlay.
The abs-fun pattern implements key functionalities, but does not
introduce new abstract state. Its implementation (on underlay) does
not touch concrete memory state. Instead, it only accesses the states



// κpalloc

uint palloc(uint nps){
uint i = 0, u;
uint freei = nps;
while(freei == nps

&& i < nps) {
u = at_get(i);
if (u == 0)

freei = i;
i ++;

}
if (freei != nps)

at_set(freei, 1);
return freei;

}

Definition first_free a n:
{v| 0<= fst v < n
/\ a.AT (fst v) = ATV (snd v) 0
/\ @ x, 0 <= x < fst v

-> „ a.AT x = ATV _ 0}
+ {@ x, 0 <= x < n

-> „ a.AT x = ATV _ 0}.

Function σ̂palloc a nps :=
match first_free a nps with
| inleft (exist (i, t) _) =>

(set_AT a i (ATV t 1), i)
| _ => (a, nps)

end.

Figure 11. Concrete (in C) vs. abstract (in Coq) palloc function

Inductive σ1palloc : spec :=

| @ m a a’ nps n,
σ̂palloc a nps = (a’, n)

-> 0 <= nps < 1048576

-> σ1palloc (nps::nil) m a n m a’.

Definition σpalloc := σ1palloc.

Figure 12. High level and low level specification for palloc function

that have already been abstracted, and it only does so using the
primitives provided by the underlay interface.

Figs. 8-12 show how we use the two patterns to implement
and verify a simplified physical memory allocator palloc, which
allocates and returns the first free entry in the physical memory
allocation table. Fig. 8-10 shows how we follow the getter-setter
pattern to abstract the allocation table into a new abstract state. As
shown in Fig. 8, we first turn the concrete C memory allocation table
implementation into an abstract Coq data type. Then we implement
the getter and setter functions for the memory allocation table, both
in C and Coq (see Fig. 9). The Coq functions σ̂at get and σ̂at set are
just intermediate specifications that are used later in the overlay
specifications. The actual underlay and overlay specifications of the
setter function at set are shown in Fig. 10.

We then prove L1 $id at set ÞÑ κat set : at set ÞÑ σ1at set, and
also at set ÞÑ σat set ďR at set ÞÑ σ1at set.

The code verification (first part) is easy for this pattern because
the memory load and store operations in the underlay match the
source code closely. The proof can be discharged by our automation
tactic. The main task of this pattern is to prove refinement (second
part): we design a simulation relation R relating the memory storing
the global variable at underlay with its corresponding abstract data
at overlay. The component Rmem ensures that there is no permission
for allocation table AT in overlay memory state m2, while the
component Rabs is defined as follows:

• @i P r0, 220
q, Rabs enforces the writable permission on AT[i]

at underlay memory state m1, and requires (a2.AT i) at overlay
to be (ATV AT[i].t AT[i].u).

• Except for AT, Rabs requires all other abstract data in underlay
and overlay to be the same.

The refinement proof for L2 ďR L11 involves the efforts to prove
that this relation R between underlay memory and overlay abstract
state is preserved by all the atomic primitives in both L11 and L2.

After we abstract the memory and get/set operations, we im-
plement palloc on top of L2, following the abs-fun pattern. The
previous overlay now becomes the new underlay (“L1”). Fig. 11
shows both the implementation of palloc in ClightX and the ab-
stract function in Coq. As before, we separately show that L1 $id
palloc ÞÑ κpalloc : palloc ÞÑ σ1palloc, and palloc ÞÑ σpalloc ďR

palloc ÞÑ σ1palloc holds. For the abs-fun pattern, the refinement proof
is easy. Since we do not introduce any new abstract states in this
pattern, the implementation only manipulates the abstract states
through the primitive calls of the underlay. Thus, as shown in Fig.
12, the corresponding underlay and overlay specifications are exactly
the same, so the relation R here is the identity (id) and the proof
of refinement is trivial. The main task for the abs-fun pattern is to
verify the code, which is done using our automation tactic.

The above examples show that for the getter-setter pattern, the
primary task is to prove data abstraction, while for the abs-fun
pattern, the main task is to do simple program verification. These
two tasks are well understood and manageable, so the decoupling
(via these two patterns) makes the layer construction much easier.

5. Layered programming in LAsm
In this section, we describe LAsm, the Layered Assembly language,
and the extended machine model which LAsm is based on.

The reason we are interested in assembly code and behavior is
threefold. First of all, even though we provide ClightX to write most
code, we are still interested in the actual assembly code running on
the actual machine. In Section 6, we will provide a verified compiler
to transport all proofs of code written in ClightX to assembly.

Secondly, there are parts of software that have to be manually
written in assembly for various reasons. For example, the standard
implementation of kernel context switch modifies the stack pointer
register ESP, which does not satisfy the C calling convention and
has to be verified in assembly. A linker will be defined in Section 6
to link them with compiled C code.

Last but not least, we are interested not only in the behavior
of our code, but also in the behavior of the context that will call
functions defined in our code. To be as general as possible, we allow
the context to include all valid assembly code sequences. To this
end, it is necessary to transport per-function refinement proofs to a
whole-machine contextual refinement proof.

The LAsm assembly language We start from the 32-bit x86
assembly subset specified in CompCert. CompCert x86 assembly is
modeled as a state machine with a register set and a memory state.
The register set consists of eight 32-bit general-purpose registers and
eight XMM registers designated as scalar double-precision floating-
point operands. The memory state is same as the one in Clight. In
particular, each function executes with its stack frame modeled in
its own memory block, so that the stack is not a contiguous piece
of memory. Another anomaly regarding function calls in CompCert
x86 assembly is that the return address is stored in pseudo-register
RA instead of being pushed onto the stack, so that the callee must
allocate its own stack frame and store the return address.

Similarly to ClightX, we extend the machine state with an
abstract state, which will be modified by primitives. This yields
LAsm, whose syntax is the same as that of CompCert x86 assembly,
except that the semantics will be parameterized over the type of
abstract states and the specifications of primitives. Most notably,
primitive calls are syntactically indistinguishable from normal
function calls, yet depend on the specifications semantically.

Moreover, in our Coq formalization, the semantics of LAsm
is also equipped with memory accessors for address translation in
order to handle both kernel memory linear mapping and user space
virtual memory. However, for the sake of presentation, we are going
to describe a simplified version of LAsm where memory accesses
only use the kernel memory.

We define the semantics of LAsm in small-step form. The
machine state is pρ,m, aq where ρ contains the values of registers,
m is the concrete memory state and a is the abstract state. Let M be
an LAsm module, which is a finite map from identifiers to arrays of
LAsm instructions, we write Γ, L,M $ pρ,m, aq Ñ pρ1,m1, a1q

454



a transition step in the LAsm machine. The full syntax and formal
semantics of LAsm is described in the companion technical report.

Assembly layer interfaces The semantics of LAsm is parameter-
ized over a layer interface. Different from C-style primitives (see
Def. 1), which are defined using argument list and return value,
primitives implemented in LAsm often utilize their full control over
the register set and are not restricted to a particular calling con-
vention (e.g. context switch). Therefore, it is necessary to extend
the structure of layer interfaces to allow assembly-style primitives
modifying the register set.

Definition 5 (Assembly-style primitive). An assembly-style prim-
itive specification p over the abstract state type A is a predicate
on pppreg Ñ valq ˆ mem ˆ Aq ˆ pppreg Ñ valq ˆ mem ˆ Aq.
ppρ,m, a, ρ1,m1, a1q says that the primitive p takes register set ρ,
memory state m and abstract state a as arguments, and returns
register set ρ1, memory state m1 and abstract state a1 as result.

By “style,” we mean the calling convention, not the language in
which they are actually implemented. C-style primitives may very
well be implemented as hand-written assembly code at underlay.

We can then define assembly layer interfaces by replacing the
primitive specification with our assembly-style one in Def. 2. But,
to make reasoning simpler, when defining assembly layer interfaces,
we distinguish C-style from assembly-style primitives. First, C-style
primitives can be refined by other C-style primitives. Second and
most importantly, it becomes possible to instantiate the semantics of
ClightX with an assembly layer interface by just considering C-style
primitives and ignoring assembly-style primitives (which might not
follow the C calling convention). In this way, ClightX code is only
allowed to call C-style primitives, whereas LAsm can actually call
both kinds of primitives.

Definition 6 (Assembly layer interface). An assembly layer inter-
face L is a tuple L “ pA,PClightX, PLAsmq where:

• pA,PClightXq is a C layer interface (see Def. 2)
• PLAsm is a finite map from identifiers to assembly-style primitive

specifications over the abstract stateA. The domains of PClightX

and PLAsm shall be disjoint.

Whole-machine semantics and contextual refinement Based on
the relational transition system which we just defined for LAsm,
we can define the whole-machine semantics including not only the
code that we wrote by hand or that we compile, but also the context
code that shall call our functions. To this end, it suffices to equip the
semantics with a notion of initial and final state, in a way similar to
the CompCert x86 whole-program assembly semantics.

In CompCert, the initial state consists of an empty register set
with only EIP (instruction pointer register) pointing to the main
function of the module, and the memory state is constructed by
allocating a memory block for each global variable of the program.
We follow the same approach for LAsm, except that we also need
an initial abstract state, provided by the layer interface, so we need
to extend its definition:

Definition 7 (Whole-machine layer interface). A whole-machine
layer interface L is a tuple L “ pA,PClightX, PLAsm, a0q where:

• pA,PClightX, PLAsmq is an assembly layer interface
• a0 : A is the initial abstract state.

Definition 8 (Whole-machine initial state). The whole-machine
LAsm initial state for layer interface L and module M is the LAsm
state pρ0,m0, a0q defined as follows:

• ρ0prq “

$

&

%

pΓpmainq, 0q if r “ EIP
0 if r “ RA
K otherwise

• m0 is constructed from the global variables of Γ, L,M
• a0 is the whole-machine initial state specified in L

Definition 9 (Whole-machine final state). A whole-machine LAsm
state pρ,m, aq is final with return code n if, and only if, ρpEAXq “
n and ρpEIPq “ 0, where EAX is the accumulator register.

Notice that ρpEIPq contains the integer 0, which is also the initial
return address and is not a valid pointer. This ensures that executions
do not go beyond a final state, following the CompCert x86 whole-
program semantics: main has returned to its “caller”, which does
not exist. Thus, the final state is uniquely determined (there can
be no other possible behavior once such a state is reached), so the
whole-machine semantics is deterministic once the primitives are.

Definition 10 (Whole-machine behavior). Let Γ be a mapping of
global variables to memory blocks. Then, we say that

• LAsmpΓ, L,Mq diverges if there is an infinite execution se-
quence from the whole-machine initial state for L

• LAsmpΓ, L,Mq terminates with return code n if there is a finite
execution sequence from the whole-machine initial state for L
to a whole-machine final state with return code n

• LAsmpΓ, L,Mq goes wrong if there is a finite execution se-
quence from the whole-machine initial state for L to a non-final
state that can take no step.

Then, we are interested in refinement between whole machines:

Definition 11 (Whole-machine refinement). Let Lhigh, Llow be
two whole-machine assembly layer interfaces, and Mhigh,Mlow

be two LAsm modules. Then, we say that Mlow@Llow refines
Mhigh@Lhigh, and write Mlow@Llow Ď Mhigh@Lhigh if, and only
if, for any Γ such that dompLhighq Y dompMhighq Y dompLlowq Y

dompMlowq Ď dompΓq and LAsmpΓ, Lhigh,Mhighq does not go
wrong, then (1) LAsmpΓ, Llow,Mlowq does not go wrong; (2) if
LAsmpΓ, Llow,Mlowq terminates with return code n, then so does
LAsmpΓ, Lhigh,Mhighq; (3) if LAsmpΓ, Llow,Mlowq diverges, so
does LAsmpΓ, Lhigh,Mhighq.

In our Coq implementation, we actually formalized the semantics
of LAsm with a richer notion of observable behaviors involving
CompCert-style events such as I/O. Thus, we define the whole-
machine behaviors and refinement using event traces a la CompCert
[20, 3.5 sqq.]: if the higher machine does not go wrong, then every
valid behavior of the lower machine is a valid behavior of the higher.

Finally, we can define contextual refinement between layer
interfaces through a module M :

Definition 12 (Contextual refinement). We say a module M im-
plements an overlay Lhigh on top of an underlay Llow, and write
Llow ( M : Lhigh if, and only if, for any module (context) M 1 dis-
joint from M,Llow, Lhigh, we have pM ‘M 1

q@Llow Ď M 1@Lhigh.

Per-module semantics As for ClightX, we can also specify the
semantics of an LAsm module as a layer interface. However, a major
difference between ClightX and LAsm is that it is not possible to
uniquely characterize the “per-function final state” at which function
execution should stop. Indeed, as in LAsm there is no control stack,
when considering the per-function semantics of a function f , it is
not possible to distinguish f exiting and returning control to its
caller, from a callee g returning to f .

Thus, even though both the step relation of the LAsm semantics
and the primitive specifications (of a layer interface) are determinis-
tic, the semantics of a function could still be non-deterministic.

Definition 13. Let L “ pA, , q be an assembly layer interface,
andM be an LAsm module. The module semantics JMKL is then the
assembly layer interface JMKL “ pA,H, P q, where the assembly-
style primitive specification P is defined for each f P dompMq

455



using the small-step semantics of LAsm as follows:

P pfqpρ,m, a, ρ1,m1, a1q
ô Γpfq “ b^ ρpEIPq “ pb, 0q

^Γ, L,M $ pρ,m, aq Ñ`
pρ1,m1, a1q

Soundness of per-module refinement In this paper, we aim at
showing that the layer calculus given in Section 3 is a powerful
device to prove contextual refinement: instead of proving the whole-
machine contextual refinement directly, we only need to prove the
downward simulation relations about individual modules, notated
as Llow $R M : Lhigh, and apply the soundness theorem to get the
contextual refinement properties at the whole-machine level.

Lemma 1 (Downward simulation diagram). Let pLlow,M,Lhighq

be a certified layer, such that Llow $R M : Lhigh. Then, for any
module M 1, we have the following downward simulation diagram:

shigh
Γ,Lhigh,M

1

1 //

R

s1high

R

slow
Γ,Llow,M‘M

1

` // s1low

Theorem 1 (Soundness). Let pLlow,M,Lhighq be a certified layer.
If the primitive specifications of Llow are deterministic and if
Llow $R M : Lhigh, then Llow (M : Lhigh.

Proof. Since the whole machine LAsmpΓ, Llow,Mq is deterministic,
we can flip the downward simulation given by Lemma 1 to an
upward one, hence the whole-machine refinement.

Since the per-function semantics is non-deterministic due to its
final state not being uniquely defined, we can only flip the downward
simulation to contextual refinement at the whole-machine level.

6. Certified compilation and linking
We would like to write most parts of our kernel in ClightX rather
than in LAsm for easier verification. This means that, for each layer
interface L, we have to compile our ClightX(L) source code to the
corresponding LAsm(L) assembly language in such a way that all
proofs at the ClightX level are preserved at the LAsm level.

This section describes how we have modified the CompCert
compiler to compile certified C layers into certified assembly layers.
It also talks about how we link compiled certified C layers with
other certified assembly layers.

6.1 The CompCertX verified compiler
To transport the proofs at ClightX down to LAsm, we adapt the
CompCert verified compiler to parameterize all its intermediate
languages over the layer interface L similarly to how we defined
ClightX(L), including the assembly language. This gives rise to
CompCertX(L) (for “CompCert eXtended”, where external func-
tions are instantiated with layer interface L).

CompCertX goes from ClightX to the similarly parameterized
AsmX and then to LAsm. We retain all features and optimizations
of CompCert, including function inlining, dead code elimination,
common subexpression elimination, and tail call recognition.
Compiler correctness for CompCertX Because CompCert only
proves semantics preservation for whole programs, the major chal-
lenge is to adapt the semantics preservation statements of all compi-
lation passes (from Clight to assembly) to per-function semantics.

The operational semantics of all CompCert languages are given
through small-step transition relations equipped with sets of whole-
program initial and final states, so we have to redesign those states
to per-function setting. For the initial state, whereas CompCert

constructs an initial memory and calls main with no arguments, we
take the function pointer to call, the initial memory, and the list of
arguments as parameters. For the final state, we take not only the
return value, but also the memory state when we exit the function.

Consequently, the compiler correctness proofs have to change.
Currently, CompCert uses a downward simulation diagram [20, 2.1]
for each pass from Clight, then, thanks to the fact that the CompCert
assembly language is deterministic (up to input values given by
the environment), CompCert composes all of them together before
turning them to a single upward simulation which actually entails
that the compiled code refines the source code.

In this work, we follow a similar approach: for each individual
pass, we prove per-function semantics preservation in a downward
simulation flavor. We do not, however, turn it into an upward
simulation, because the whole layer refinement proof is based
on downward simulation, which is in turn turned into an upward
simulation at whole-machine contextual refinement thanks to the
determinism (up to the environment) of LAsmpLq.
Memory state during compilation The main difference between
CompCert and CompCertX lies in the memory given at the begin-
ning of a function call.

In the whole-program setting, the initial state is the same across
all languages, because it is uniquely determined by the global
variables (which are preserved by compilation). On the other hand, in
the middle of the execution when entering an arbitrary function, the
memory in Clight is different from its assembly counterpart because
CompCert introduces memory transformations such as memory
injections or extensions [21, 5.4] to manage the callees’ stack frames.
This is actually advantageous for compilation of handling arguments
and the return address.

For CompCertX, within the module being compiled, the same
memory state mismatch also exists. At module entry, however, we
cannot assume much about the memory state because it is given as
a parameter to the semantics of each function in the module. In fact,
this memory state is determined by the caller, so it may very well
come from non-ClightX code (e.g., arbitrary assembly user code),
thus we have to take the same memory as initial state across all the
languages of CompCertX. It follows then that the arguments of the
function already have to be present in the memory, following the
calling convention imposed by the assembly language, even though
ClightX does not read the arguments from memory.

Another difference between CompCert and CompCertX is the
treatment of final memory states. In CompCert, only the return
value of a program is observable at the end; the final memory state
is not. By contrast, in CompCertX, the final memory state is passed
back to the caller hence observable. Thus, it is necessary to account
for memory transformations when relating the final states in the
simulation diagrams.
Compilation refinement relation Finally, the per-function com-
piler correctness statement of CompCertX can be roughly summa-
rized as this commutative diagram and formally defined below.

v,m1, a1
_�

j

��

_�

j

��

l

ρ
,m, a

LCpfq 44

LAsmpfq

**
l « mpρpESPqq ρ1,m2, a1

Definition 14. Let LC be a C layer interface, and LAsm be an
assembly layer interface. We say that LC is simulated by LAsm

by compilation, written LC ď
comp LAsm, if and only if, for any Γ, and

for any execution LCpfqpl,m, a, v,m1, a1q of a primitive f of LC
for some list l of arguments and some return value v, from memory
state m and abstract state a to m1 and a1, and for any register map
ρ such that the following requirements hold:

456



1. the memory m contains the arguments l in the stack pointed to
by ρpESPq

2. EIP points to the function f being called: ρpEIPq “ pΓpfq, 0q

Then, there is a primitive execution LAsmpfqpρ,m, a, ρ
1,m2, a1q

and a memory injection j from m1 to m2 preserving the addresses
of m such that the following holds:

• the values of callee-save registers in ρ are preserved in ρ1;
• ρ1pEIPq points to return address ρpRAq;
• the return value contained in ρ1pEAXq (for integers/pointers) or
ρ1pFP0q (for floating-points) is related to v by j;

Theorem 2. Let L be an assembly layer interface with all C-style
primitives preserving memory transformations. Then, for any M :

JMKL ďcomp JCompCertXpMqKL

More details can be found in the companion technical report.

6.2 Linking compiled code with assembly code
Contrary to traditional separate compilation, we target compiling
ClightX functions that may be called by LAsm assembly code. Since
the caller may be arbitrary LAsm code, not necessarily well-behaved
code written in or compiled from ClightX, we have to assume that
the memory we are given follows LAsm layout. When reasoning
about memory states that involve compiled code, we then have to
accommodate memory injections introduced by the compiler.

During a whole-machine refinement proof, the two memory
states of the overlay and the underlay are related with a simulation
relation R. However, consider when the higher (LAsm) code calls
an overlay primitive, that, in the underlay, is compiled from ClightX.
Because during the per-primitive simulation proofs we ignored the
effects of the compiler, the memory injection introduced by the
compiler may become a source of discrepancy. That is why we
encapsulate, in R, a memory injection between the higher memory
state and the lower memory state. This injection is identity until
the lower state calls a compiled ClightX function. Then, at every
such call, the layer simulation relation R can “absorb” compilation
refinement on its right-hand side:

Lemma 2. If L1 and LC are C overlays and LAsm is an assembly
underlay, with L1 ďR LC and LC ď

comp LAsm, then L1 ďR LAsm.

Proof. If R encapsulates a memory injection j0, and compilation
introduces a memory injection j, then, the simulation relation R
will still hold with the composed memory injection j ˝ j0.

Summary of the refinement proof with compilation and linking
Finally, the outline of proving layer refinement L1 $ M : L2,
where M “ CompCertXpMCq ‘MAsm is the union of a compiled
ClightX module and an LAsm module, is summarized in the
following steps, also shown in Fig. 13:

1. Split the overlay L2 into two layer interfaces L2,C and L2,Asm
where L2,C is a C layer interface containing primitive specifica-
tions to be implemented by ClightX code (necessarily C-style)
and L2,Asm is an assembly layer interface containing all other
primitives (implemented in LAsm), so that L2 “ L2,C‘L2,Asm.

2. For each such part of the overlay, design an intermediate layer
interface L11,C and L11,Asm with the same abstract state type as
L1 (see Section 4.3), and prove L2,C ďR L

1
1,C and L2,Asm ďR

L11,Asm independently of the implementation.

3. For both intermediate layer interfaces, prove that they are imple-
mented by modules MC and MAsm on top of L1 respectively, i.e.
L11,C ďid JMCKL1 and L11,Asm ďid JMAsmKL1.

4. Then, compile MC: JMCKL1 ď
comp JCompCertXpMCqKL1.

L2,C

ďR2. ��

À1. L2,Asm

ďR2. ��

“ L2

L11,C
ďid3. ��

L11,Asm

ďid3.

��

JMCKL1

ďcomp4. ��
JCompCertXpMCqKL1

À

ďid6. ��

JMAsmKL1

`JMKL1 “ JCompCertXpMCq ‘MAsmKL1
oo

ďR
5.

7.

Figure 13. Proof steps of layer refinement L1 $R M : L2

5. Using LLE-TRANS and LLE-MON to combine 2. and 3., we have:
L2,C ‘ L2,Asm ďR L

1
1,C ‘ L

1
1,Asm ďid JMCKL1 ‘ JMAsmKL1

On the C side (left of‘), Lemma 2 shows thatďR absorbsďcomp.
By 4.: L2,C ‘ L2,Asm ďR JCompCertXpMCqKL1 ‘ JMAsmKL1

6. From the soundness of HCOMP (proof in TR [13]), and because
M “ CompCertXpMCq ‘MAsm, we have:

JCompCertXpMCqKL1 ‘ JMAsmKL1 ďid JMKL1

7. Finally, by combining 5. and 6., we have L2,C ‘ L2,Asm ďR
JMKL1. Since L2 “ L2,C‘L2,Asm, by using LLE-UB-LEFT and
LLE-COMM, we have: L2 ďR JMKL1 ďid JMKL1 ‘ L1 ďid
L1 ‘ JMKL1, thus we get L1 $R M : L2.

7. Case study: certified OS kernels
To demonstrate the power of our new languages and tools, we have
applied our new layered approach to specify and verify four variants
of mCertiKOS kernels in the Coq proof assistant. This section
describes these kernels and the benefits of the approach.

The mCertiKOS base kernel is a simplified uniprocessor version
of the CertiKOS kernel [12] designed for the 32 bit x86 architecture.
It provides a multi-process environment for user-space applications
using separate virtual address space, where the communications
between different applications are established by message passing.
The mCertiKOS-hyp kernel, built on top of the base kernel, is a
realistic hypervisor kernel that can boot recent versions of unmod-
ified Linux operating systems (Debian 6.0.6 and Ubuntu 12.04.2).
The mCertiKOS-rz kernel extends the hypervisor supporting “ring
0” processes, hosting “certifiably safe” services and application
programs inside the kernel address space. Finally, we strip the last
kernel down to the mCertiKOS-emb kernel, removing virtualization,
virtual memory, and user-space interrupt handling. This results in a
minimal operating system suitable for embedded environments.

The layer structures of these kernels are shown in the top half
of Fig. 14; each block in the top half represents a collection of sub-
layers shown in the bottom half (as we zoom in on mCertiKOS-hyp).

mCertiKOS The layered approach is the key to our success in fully
certifying a kernel. In Sec. 4.3, we have shown how to define getters
and setters for abstract data types like those in Fig. 8, allowing
higher layers to manipulate abstract states. Furthermore, layering
is also crucial to certification of thread queues as discussed in
Sec. 2. Instead of directly proving that a C linked-list implements a
functional list, we insert an intermediate layer as shown in Fig. 1 to
divide the difficult task into two steps.

These may look like mere proof techniques for enabling abstract
states or reducing proof effort, but they echo the following mantra
which makes our certification more efficient and scalable:

457



MAT 
MATOp 
MATIntro 
PreInit 

MPMap 
MBit 
MPTInit 
MPTKern 
MPTComm 
MPTOp 
MPTIntro 

PThread 
PSched 
PCID 
PAbQueue 
PTDQInit 
PTDQIntro 
PTCBInit 
PTCBIntro 
PKCtxOp 
PKCtx 

PProc 
PUCtx 
PIPC 
PIPCIntro 

TSysCall 
TTrap 
TTrapArg 

VVM 
VSVM 
VVMCBOp 
VSVMIntro 
VVMCBInit 
VVMCBIntro 
VSVMSwitch 
VNPTInit 
VNPTIntro 

TRAP 

THR 
PROC 

VM 
MM 

(base) 

    PROC 
THR 

MM 

(emb) (hyp) 

VIRT 
TRAP 

THR 
PROC 

VM 
MM 

(rz) 

VIRT 
TRAP 

THR 
    PROC 

VM 
MM 

Figure 14. Various mCertiKOS layer structures. Layer short-hands:
TRAP: interrupt handling; VIRT: virtualization; PROC: process
management; THR: thread management; VM: virtual memory; MM:
physical memory management.

Abstract in minimal steps, specify full behavior, and hide all
underlying details.

This is also how we prove the overall contextual correctness guar-
antees for all system calls and interrupt handlers. Fig. 15 shows the
call graph of the page fault handler, including all functions called
both directly and indirectly. Circles indicate functions, solid arrows
mean primitive invocations, and faint dashed lines are primitives
that are translated by all the layers they pass through.

Defined in TSysCall layer interface, the page fault handler makes
use of proc exit and proc start, both defined in PProcd layer
interface. Since the invocations of them are separated by other
primitive calls, one may expect that the invariants need to be re-
established or the effects of the in-between calls re-interpreted.
Fortunately, as our mantra suggests, when the in-between layers
translate the two primitives to TTrap layer interface, the behaviors
of them are fully specified in terms of TTrap’s abstract states, and
the invariants of PProc layer interface are considered the underlying
details and have all been hidden. This is especially important for
calls like proc exit to ikern set which span over 20 layers with the
abstract states so different that direct translation is not feasible.

Finally, kernel initialization is another difficult task that has been
missing from other kernel verification projects. The traditional
kernel initialization process is not compatible with “specify full
behavior and hide all underlying details.” For example, start kernel
in Linux kernel makes a sequence of calls to module initializations.
mCertiKOS’s initialization (see its call graph in Fig. 16) is a chain of
calls to layer initializations; this pattern complies with the guideline
that initializing one layer should hide the detail about initializing the
lower layers. Without layering, the specifications of all functions
will be populated with initialization flags for each module they
depend on. This makes encapsulation harder and could also lead to
a quadratic blowup in size and proving effort.

mCertiKOS-hyp The mCertiKOS-hyp kernel provides core primi-
tives to build full-fledged user-level hypervisors by supporting one of
the two popular hardware virtualization technologies – AMD SVM.
The primitives include the operations for manipulating the virtual
machine status, handling VMEXITs, starting or stopping a virtual
machine, etc. The details of virtualization, e.g., the virtual machine
control block and the nested page table, are hidden from the guest
applications. The hypervisor functionalities are implemented in nine
layers and then inserted in between process management and inter-
rupt handling layers. The layered approach allows us to do so while
(1) only modeling virtualization-specific structures when needed;
(2) retaining primitives in the layer interface PProc by systematic
lifting; and (3) adding new primitives (including a new initialization
function) guaranteed not to interfere with existing primitives.

TSysCall pagefault_handler 

TTrap 

TTrapArg 

PProc 

save_uctx 

proc_start 

pf_resv 

set_err 

set_uctx 

PCID 

PMap PT_resv 
cid_get 

MPTOp PT_insrt 

MPTIntro set_PTE 

MAT palloc 

PreInit 

MATOp at_get at_set 

pf_get 

PUCtx 

ikern_set 

proc_exit 

setpmi 

restore_uctx 

setcr3 

Figure 15. Call graph of the page fault handler

Figure 16. Call graph of mCertiKOS initializer

mCertiKOS-rz The mCertiKOS-rz kernel explores a different
dimension—instead of adding intermediate layers, we augmented
a few existing layers (in mCertiKOS-hyp) with support of ring 0
processes. The main modification is at PProc, where an additional
kind of threads is defined. However, all the layers between PProc
and TSysCall also need to be extended to expose the functionality
as system calls. Thankfully, since all the new primitives are already
described in deep specifications, lifting them to system calls only
requires equality reasoning in Coq.

mCertiKOS-emb The mCertiKOS-emb kernel cuts features down
to a bare minimum: it does not switch to user mode, hence does not
require memory protection and does not provide system call inter-
faces. This requires removing features instead of adding them. Since
the layered structure minimizes entanglements by eliminating un-
necessary dependencies and code coupling, the removal process was
relatively easy and straightforward. Moreover, removing the top 12
layers requires no additional specifications for those now top-level
primitives—deep specifications are suitable for both internal rea-
sonings and external descriptions. Thread and process management
layers now sit directly on top of physical memory management;
virtual memory is never enabled. The layers remain largely the same
barring the removal of primitives mentioning page tables.

Evaluation and limitations The planning and development of
mCertiKOS took 9.5 person months plus 2 person months on linking
and code extraction. With the infrastructure in place, mCertiKOS-
hyp only took 1.5 person months to finish, and mCertiKOS-rz and
mCertiKOS-emb take half a person month each. The kernels are
written, layer by layer, in LAsm and ClightX abstract syntaxes along
with driver functions specifying how to compose (link) them. All
of those are in Coq for the proofs to refer to. We utilize Coq’s code
extraction to get an OCaml program which contains CompCertX,
the abstract syntax trees of the kernels, and the driver functions,
which invoke CompCertX on pieces of ClightX code and generate
the full assembly file. The output of the OCaml program is then fed
to an assembler to produce the kernel executable.

With the device drivers (running as user processes) and a cooper-
ative scheduler, most of the benchmarks in lmbench are under 2x
slowdown running in mCertiKOS-hyp, well within expected over-



head. Ring 0 processes, not used in the above experiment, can easily
lower the number as we measured one to two orders of magnitude
reduction in the number of cycles needed to serve system calls.

Because the proof was originally developed directly in terms of
abstract machines and program transformations, the current code
base does not yet reflect the calculus presented in Sec. 3 in its
entirety. Notably, vertical composition is done at the level of the
whole-machine contextual refinements obtained by applying the
soundness theorem to each individual abstraction layer.

Outside our verified kernels (mCertiKOS-hyp consists of about
3000 lines of C and assembly), there are 300 lines of C and 170 lines
of x86 assembly code that are not verified yet: the preinit procedure,
the ELF loader used by user process creation, and functions such as
memcpy which currently cannot be verified because of a limitation
arising from the CompCert memory model. Device drivers are
not verified because LAsm lacks device models for expressing
the correctness statement. Finally, the CompCert assembler for
converting LAsm into machine code remains unverified.

8. Related work
Hoare-style program verification Hoare logic [14] and its mod-
ern variants [32, 2, 26] were introduced to prove strong (partial
or total) correctness properties of programs annotated with pre-
and postconditions. A total-correctness Hoare triple rP sCrQs often
means a refinement between the implementation C and the speci-
fication rP,Qs: given any state S, if the precondition P pSq holds,
then the command C can run safely and terminate with a state that
satisfies Q. Though not often done, it is also possible to introduce
auxiliary/ghost states to serve as “abstract states” and prove that a
program implements a specification via a simulation.

Our layer language can be viewed as a novel way of imposing
a module system over Hoare-style program verification. We insist
on using interfaces with deep specifications and we address the
“conflicting abstract states” problem mentioned in Sec. 2. Traditional
program verification does not always use deep specification (for pre-
and post-conditions) so the module interfaces (e.g., rP,Qs) may
allow some safe but unwanted behaviors. Such gap is fine if the goal
is to just prove safety (as in static type-checking), but if we want
to prove the strong contextual correctness property across module
boundaries, it is important that each interface accurately describes
the functionality and scope of the underlying implementation.

In addition to the obvious benefits on compositionality, our
layered approach also enables a new powerful way of combining
programming- and specification languages in a single setting. Each
layer interface enables a new programming language at a specific
abstraction level, which is then used to implement layers at even
higher levels. As we move up the layer hierarchy, our programming
language gets closer and closer to the specification language—it
can call primitives at higher abstraction levels but it still supports
general-purpose programming (e.g., in ClightX).

Interestingly, we did not need to introduce any program logic
to verify our OS kernel code. Instead, we verify it directly using
the ClightX (or LAsm) language semantics (which is already conve-
niently parameterized over a layer interface). In fact, unlike Hoare
logic which shows that a program (e.g., C) refines a specification
(e.g., rP,Qs), we instead show there is a downward simulation from
the specification to the program. As in CompCert, we found this
easier to prove and we can do this because both our specification
and language semantics are deterministic relative to external events.

Stepwise program refinement Dijkstra [9] proposed to “realize”
a complex program by decomposing it into a hierarchy of linearly
ordered “abstract machines.” Based on this idea, the PSOS team at
SRI [27] developed the Hierarchical Development Methodology
(HDM) and applied HDM to design and specify an OS using

20 hierarchically organized modules. HDM was difficult to be
rigorously applied in practice, probably because of the lack of
powerful specification and proof tools. In this paper, we advance the
HDM paradigm by using a new formal layer language to connect
multiple layers and by implementing all certified layers and proofs
in a modern proof assistant. We also pursued decomposition more
aggressively since it made our verification task much easier.

Morgan’s refinement calculus [25] is a formalized approach to
Dijkstra’s stepwise refinement. Using this calculus, a high-level spec-
ification can be refined through a series of correctness-preserving
transformations and eventually turned into an efficient executable.
Our work imposes a new layer language to enhance compositional
reasoning. We use ClightX (or LAsm) and the Coq logic as our
“refinement” language, and use a certified layer (with deep specifica-
tion) to represent each such correctness-preserving transformation.
All our ClightX and LAsm instances have executable semantics and
can be compiled and linked using our new CompCertX compiler.

Separate compilation for CompCert Compositional compiler cor-
rectness is an extremely challenging problem [3, 15], especially
when it involves an open compiler with multiple languages [29].
In the context of CompCert, a recent proposal [4] aims to tackle
the full Clight language but it has not been fully implemented in
the CompCert compiler. While our CompCertX compiler proves a
stronger correctness theorem for each ClightX layer, the ClightX
language is subtly different from the original full-featured Clight
language. Within each ClightX layer, all locally allocated memory
blocks (e.g., stack frames) cannot be updated by functions defined
in another layer. This means that ClightX does not support the same
general “stack-allocated data structures” as in Clight. This is fine
for our OS kernels since they do not allocate any data structures on
stack, but it means that CompCertX can not be regarded as a full
featured separate compiler for CompCert.

OS kernel verification The seL4 team [17] were the first to build a
proof of functional correctness for a realistic microkernel. The seL4
work is impressive in that all the proofs were done inside a modern
mechanized proof assistant. They have shown that the behaviors of
7500 lines of their C code always follow an abstract specification
of their kernel. To make verification easier, they introduced an
intermediate executable specification to hide C specifics. Both their
abstract and executable specifications are “monolithic” as they are
not divided into layers to support abstraction among different kernel
modules. These kernel interdependencies led to more complex
invariants which may explain why their effort took 11 person years.

The initial seL4 effort was done completely at the C level so
it does not support many assembly level features such as address
translation. This also made verification of assembly code and kernel
initialization difficult (1200 lines of C and 500 lines of assembly are
still unverified). It is also unclear how to use their verified kernel
to reason about user-level programs since they would be running in
a different address space. Our certified kernels, on the other hand,
directly model assembly-level machines that support all kernel/user
and host/guest programs. Memory access to a user-level address
space must go through a page table, and memory access in a guest
virtual machine must go through a nested page table. We thus had
no problem verifying our kernel initialization or assembly code.

Modular verification of low-level code Vaynberg and Shao [36]
also used a layered approach to verify a small virtual memory
manager. Their layers are not linearly ordered; instead, their seven
abstract machines form a DAG with potential upcalls (i.e., calls
from a lower layer to upper ones). As a result, their initialization
function (an upcall) was much harder to verify. Their refinement
proofs between layers are insensitive to termination, from which
they can only prove partial correctness but not the strong contextual
correctness property which we prove in our current work.

459



Feng et al. [11] developed OCAP, an open framework for
linking components verified in different domain-specific program
logics. They verified a thread library with hardware interrupts and
preemption [10] using a variant of concurrent separation logic [28].
They decomposed the thread implementation into a sequential layer
(with interrupts disabled) and a concurrent layer (with interrupts
enabled). Chlipala [8] developed Bedrock, an automated Coq library
to support verified low-level programming. All these systems aimed
to prove partial correctness only, so they are quite different from
the layered simulation proofs given in this paper.

9. Conclusions
Abstraction layers are key techniques used in building large-scale
computer software and hardware. In this paper, we have presented
a novel language-based account of abstraction layers and shown
that they are particularly suitable for supporting abstraction over
deep specifications, which is essential for compositional verification
of strong correctness properties. We have designed a new layer
language and imposed it on two different core languages (ClightX
and LAsm). We have also built a verified compiler from ClightX to
LAsm. By aggressively decomposing each complex abstraction
into smaller abstraction steps, we have successfully developed
several certified OS kernels that prove deeper properties (contextual
correctness), contain smaller trusted computing bases (all code
verified at the assembly level), require significantly less effort (3000
lines of C and assembly code proved in less than 1 person year),
and demonstrate strong support for extensibility (layers are heavily
reused in different certified kernels). We expect that both deep
specifications and certified abstraction layers will become critical
technologies and important building blocks for developing large-
scale certified system infrastructures in the future.

Acknowledgments We thank Quentin Carbonneaux, David Cos-
tanzo, Rance DeLong, Xinyu Feng, Bryan Ford, Liang Gu, Jan Hoff-
mann, Hongjin Liang, Joshua Lockerman, Peter Neumann, David
Pichardie, members of the CertiKOS team at Yale, and anonymous
referees for helpful comments and suggestions that improved this
paper and the implemented tools. This research is based on work
supported in part by DARPA grants FA8750-10-2-0254 and FA8750-
12-2-0293, NSF grants 1065451 and 0915888, and ONR Grant
N00014-12-1-0478. It is also supported in part by China Scholar-
ship Council and National Natural Science Foundation of China
(NSFC grants 61229201 and 61202052). Any opinions, findings,
and conclusions contained in this document are those of the authors
and do not reflect the views of these agencies.

References
[1] C. Y. Baldwin and K. B. Clark. Design Rules: Volume 1, The Power of

Modularity. MIT Press, March 2000.

[2] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino.
Boogie: A modular reusable verifier for object-oriented programs. In
Proc. 4th Symp on Formal Methods for Components and Objects, 2005.

[3] N. Benton and C.-K. Hur. Biorthogonality, step-indexing and compiler
correctness. In ICFP’09, pages 97–108, 2009.

[4] L. Beringer, G. Stewart, R. Dockins, and A. W. Appel. Verified
compilation for shared-memory C. In ESOP’14, pages 107–127, 2014.

[5] S. Blazy and X. Leroy. Mechanized semantics for the Clight subset of
the C language. J. Automated Reasoning, 43(3):263–288, 2009.

[6] Q. Carbonneaux, J. Hoffmann, T. Ramananandro, and Z. Shao. End-to-
end verification of stack-space bounds for C programs. In PLDI’14.

[7] S. Chaudhuri, S. Gulwani, and R. Lublinerman. Continuity analysis of
programs. In POPL’10, pages 57–69, 2010.

[8] A. Chlipala. Mostly-automated verification of low-level programs in
computational separation logic. In PLDI’11, pages 234–245, 2011.

[9] E. W. Dijkstra. Notes on structured programming. In Structured
programming, pages 1–82. Academic Press, 1972.

[10] X. Feng, Z. Shao, Y. Dong, and Y. Guo. Certifying low-level programs
with hardware interrupts and preemptive threads. In PLDI’08, pages
170–182, June 2008.

[11] X. Feng, Z. Shao, Y. Guo, and Y. Dong. Combining domain-specific and
foundational logics to verify complete software systems. In VSTTE’08,
pages 54–69, 2008.

[12] L. Gu, A. Vaynberg, B. Ford, Z. Shao, and D. Costanzo. CertiKOS: a
certified kernel for secure cloud computing. In APSys ’11, 2011.

[13] R. Gu, J. Koenig, T. Ramananandro, Z. Shao, X. Wu, S.-C. Weng,
H. Zhang, and Y. Guo. Deep specifications and certified abstraction
layers. Yale Univ. Technical Report YALEU/DCS/TR-1500; http:
//flint.cs.yale.edu/publications/dscal.html, Oct. 2014.

[14] C. A. R. Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12(10):576–580, Oct. 1969.

[15] C.-K. Hur, D. Dreyer, G. Neis, and V. Vafeiadis. The marriage of
bisimulations and Kripke logical relations. In POPL’12, pages 59–72.

[16] D. Jackson. Software abstractions: logic, languages, and analysis. The
MIT Press, 2012.

[17] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, et al. seL4: Formal verification of an OS
kernel. In SOSP’09, pages 207–220, October 2009.

[18] L. Lamport. The temporal logic of actions. ACM Transactions on
Programming Languages and Systems, 16(3), May 1994.

[19] X. Leroy. The CompCert verified compiler. http://compcert.
inria.fr/, 2005–2014.

[20] X. Leroy. A formally verified compiler back-end. Journal of Automated
Reasoning, 43(4):363–446, 2009.

[21] X. Leroy and S. Blazy. Formal verification of a C-like memory
model and its uses for verifying program transformation. J. Automated
Reasoning, 41(1):1–31, 2008.

[22] N. A. Lynch and F. W. Vaandrager. Forward and backward simulations:
I. Untimed systems. Inf. Comput., 121(2):214–233, 1995.

[23] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of
Standard ML (Revised). MIT Press, Cambridge, Massachusetts, 1997.

[24] J. C. Mitchell. Representation independence and data abstraction. In
POPL’86, pages 263–276, January 1986.

[25] C. C. Morgan. Programming from specifications, 2nd Edition. Prentice-
Hall, 1994.

[26] A. Nanevski, G. Morrisett, and L. Birkedal. Polymorphism and
separation in Hoare type theory. In ICFP’06, pages 62–73, Sept. 2006.

[27] P. G. Neumann, R. S. Boyer, R. J. Feiertag, K. N. Levitt, and L. Robin-
son. A provably secure operating system: its system, its applications,
and proofs. Technical Report CSL-116, SRI, May 1980.

[28] P. W. O’Hearn. Resources, concurrency and local reasoning. In
CONCUR’04, pages 49–67, 2004.

[29] J. T. Perconti and A. Ahmed. Verifying an open compiler using multi-
language semantics. In ESOP’14, pages 128–148, 2014.

[30] B. C. Pierce. Types and Programming Languages. The MIT Press,
2002.

[31] J. C. Reynolds. Theories of Programming Languages. Cambridge
University Press, 1998.

[32] J. C. Reynolds. Separation logic: A logic for shared mutable data
structures. In LICS’02, pages 55–74, 2002.

[33] J. Sevcı́k, V. Vafeiadis, F. Z. Nardelli, S. Jagannathan, and P. Sewell.
CompCertTSO: A verified compiler for relaxed-memory concurrency.
J. ACM, 60(3), 2013.

[34] M. Spivey. The Z Notation: A reference manual. Prentice Hall, 1992.
[35] The Coq development team. The Coq proof assistant. http://coq.

inria.fr, 1999 – 2014.
[36] A. Vaynberg and Z. Shao. Compositional verification of a baby virtual

memory manager. In CPP’12, pages 143–159, Dec 2012.

460

http://flint.cs.yale.edu/publications/dscal.html
http://flint.cs.yale.edu/publications/dscal.html
http://compcert.inria.fr/
http://compcert.inria.fr/
http://coq.inria.fr
http://coq.inria.fr


Automatic Static Cost Analysis for Parallel
Programs

Jan Hoffmann and Zhong Shao

Yale University

Abstract. Static analysis of the evaluation cost of programs is an exten-
sively studied problem that has many important applications. However,
most automatic methods for static cost analysis are limited to sequential
evaluation while programs are increasingly evaluated on modern multicore
and multiprocessor hardware. This article introduces the first automatic
analysis for deriving bounds on the worst-case evaluation cost of parallel
first-order functional programs. The analysis is performed by a novel
type system for amortized resource analysis. The main innovation is a
technique that separates the reasoning about sizes of data structures
and evaluation cost within the same framework. The cost semantics of
parallel programs is based on call-by-value evaluation and the standard
cost measures work and depth. A soundness proof of the type system
establishes the correctness of the derived cost bounds with respect to the
cost semantics. The derived bounds are multivariate resource polynomials
which depend on the sizes of the arguments of a function. Type inference
can be reduced to linear programming and is fully automatic. A prototype
implementation of the analysis system has been developed to experimen-
tally evaluate the effectiveness of the approach. The experiments show
that the analysis infers bounds for realistic example programs such as
quick sort for lists of lists, matrix multiplication, and an implementation
of sets with lists. The derived bounds are often asymptotically tight and
the constant factors are close to the optimal ones.

Keywords: Functional Programming, Static Analysis, Resource Con-
sumption, Amortized Analysis

1 Introduction

Static analysis of the resource cost of programs is a classical subject of computer
science. Recently, there has been an increased interest in formally proving cost
bounds since they are essential in the verification of safety-critical real-time and
embedded systems.

For sequential functional programs there exist many automatic and semi-
automatic analysis systems that can statically infer cost bounds. Most of them
are based on sized types [1], recurrence relations [2], and amortized resource
analysis [3, 4]. The goal of these systems is to automatically compute easily-
understood arithmetic expressions in the sizes of the inputs of a program that
bound resource cost such as time or space usage. Even though an automatic

461



2 Jan Hoffmann and Zhong Shao

computation of cost bounds is undecidable in general, novel analysis techniques are
able to efficiently compute tight time bounds for many non-trivial programs [5–9].

For functional programs that are evaluated in parallel, on the other hand,
no such analysis system exists to support programmers with computer-aided
derivation of cost bounds. In particular, there are no type systems that derive
cost bounds for parallel programs. This is unsatisfying because parallel evalu-
ation is becoming increasingly important on modern hardware and referential
transparency makes functional programs ideal for parallel evaluation.

This article introduces an automatic type-based resource analysis for deriving
cost bounds for parallel first-order functional programs. Automatic cost analysis
for sequential programs is already challenging and it might seem to be a long shot
to develop an analysis for parallel evaluation that takes into account low-level
features of the underlying hardware such as the number of processors. Fortunately,
it has been shown [10, 11] that the cost of parallel functional programs can be
analyzed in two steps. First, we derive cost bounds at a high abstraction level
where we assume to have an unlimited number of processors at our disposal.
Second, we prove once and for all how the cost on the high abstraction level
relates to the actual cost on a specific system with limited resources.

In this work, we derive bounds on an abstract cost model that consists of
the work and the depth of an evaluation of a program [10]. Work measures
the evaluation time of sequential evaluation and depth measures the evaluation
time of parallel evaluation assuming an unlimited number of processors. It is
well-known [12] that a program that evaluates to a value using work w and depth
d can be evaluated on a shared-memory multiprocessor (SMP) system with p
processors in time Opmaxpw{p, dqq (see Section 2.3). The mechanism that is used
to prove this result is comparable to a scheduler in an operating system.

A novelty in the cost semantics in this paper is the definition of work and
depth for terminating and non-terminating evaluations. Intuitively, the non-
deterministic big-step evaluation judgement that is defined in Section 2 expresses
that there is a (possibly partial) evaluation with work n and depth m. This
statement is used to prove that a typing derivation for bounds on the depth or
for bounds on the work ensures termination.

Technically, the analysis computes two separate typing derivations, one for the
work and one for the depth. To derive a bound on the work, we use multivariate
amortized resource analysis for sequential programs [13]. To derive a bound
on the depth, we develop a novel multivariate amortized resource analysis for
programs that are evaluated in parallel. The main challenge in the design of
this novel parallel analysis is to ensure the same high compositionality as in
the sequential analysis. The design and implementation of this novel analysis
for bounds on the depth of evaluations is the main contribution of our work.
The technical innovation that enables compositionality is an analysis method
that separates the static tracking of size changes of data structures from the
cost analysis while using the same framework. We envision that this technique
will find further applications in the analysis of other non-additive cost such as
stack-space usage and recursion depth.

462



Automatic Static Cost Analysis for Parallel Programs 3

We describe the new type analysis for parallel evaluation for a simple first-
order language with lists, pairs, pattern matching, and sequential and parallel
composition. This is already sufficient to study the cost analysis of parallel
programs. However, we implemented the analysis system in Resource Aware ML
(RAML), which also includes other inductive data types and conditionals [14]. To
demonstrate the universality of the approach, we also implemented NESL’s [15]
parallel list comprehensions as a primitive in RAML (see Section 6). Similarly, we
can define other parallel sequence operations of NESL as primitives and correctly
specify their work and depth. RAML is currently extended to include higher-order
functions, arrays, and user-defined inductive types. This work is orthogonal to
the treatment of parallel evaluation.

To evaluate the practicability of the proposed technique, we performed an
experimental evaluation of the analysis using the prototype implementation in
RAML. Note that the analysis computes worst-case bounds instead of average-
case bounds and that the asymptotic behavior of many of the classic examples
of Blelloch et al. [10] does not differ in parallel and sequential evaluations. For
instance, the depth and work of quick sort are both quadratic in the worst-case.
Therefore, we focus on examples that actually have asymptotically different
bounds for the work and depth. This includes quick sort for lists of lists in
which the comparisons of the inner lists can be performed in parallel, matrix
multiplication where matrices are lists of lists, a function that computes the
maximal weight of a (continuous) sublist of an integer list, and the standard
operations for sets that are implemented as lists. The experimental evaluation
can be easily reproduced and extended: RAML and the example programs are
publicly available for download and through an user-friendly online interface [16].

In summary we make the following contributions.
1. We introduce the first automatic static analysis for deriving bounds on the

depth of parallel functional programs. Being based on multivariate resource
polynomials and type-based amortized analysis, the analysis is compositional.
The computed type derivations are easily-checkable bound certificates.

2. We prove the soundness of the type-based amortized analysis with respect
to an operational big-step semantics that models the work and depth of
terminating and non-terminating programs. This allows us to prove that
work and depth bounds ensure termination. Our inductively defined big-step
semantics is an interesting alternative to coinductive big-step semantics.

3. We implemented the proposed analysis in RAML, a first-order functional
language. In addition to the language constructs like lists and pairs that are
formally described in this article, the implementation includes binary trees,
natural numbers, tuples, Booleans, and NESL’s parallel list comprehensions.

4. We evaluated the practicability of the implemented analysis by performing
reproducible experiments with typical example programs. Our results show
that the analysis is efficient and works for a wide range of examples. The de-
rived bounds are usually asymptotically tight if the tight bound is expressible
as a resource polynomial.

The full version of this article [17] contains additional explanations, lemmas,
and details of the technical development.

463



4 Jan Hoffmann and Zhong Shao

2 Cost Semantics for Parallel Programs

In this section, we introduce a first-order functional language with parallel and
sequential composition. We then define a big-step operational semantics that
formalizes the cost measures work and depth for terminating and non-terminating
evaluations. Finally, we prove properties of the cost semantics and discuss the
relation of work and depth to the run time on hardware with finite resources.

2.1 Expressions and Programs

Expressions are given in let-normal form. This means that term formers are
applied to variables only when this does not restrict the expressivity of the
language. Expressions are formed by integers, variables, function applications,
lists, pairs, pattern matching, and sequential and parallel composition.

e, e1, e2 ::“ n | x | fpxq | px1, x2q || matchxwith px1, x2q ñ e

| nil | conspx1, x2q | matchxwith xnil ñ e1 ~ conspx1, x2q ñ e2y

| letx “ e1 in e2 | par x1 “ e1 andx2 “ e2 in e

The parallel composition par x1 “ e1 andx2 “ e2 in e is used to evaluate e1 and
e2 in parallel and bind the resulting values to the names x1 and x2 for use in e.

In the prototype, we have implemented other inductive types such as trees,
natural numbers, and tuples. Additionally, there are operations for primitive
types such as Booleans and integers, and NESL’s parallel list comprehensions [15].
Expressions are also transformed automatically into let normal form before the
analysis. In the examples in this paper, we use the syntax of our prototype
implementation to improve readability.

In the following, we define a standard type system for expressions and pro-
grams. Data types A,B and function types F are defined as follows.

A,B ::“ int | LpAq | A ˚B F ::“ AÑ B

Let A be the set of data types and let F be the set of function types. A signature
Σ : FID á F is a partial finite mapping from function identifiers to function
types. A context is a partial finite mapping Γ : Var á A from variable identifiers
to data types. A simple type judgement Σ;Γ $ e : A states that the expression
e has type A in the context Γ under the signature Σ. The definition of typing
rules for this judgement is standard and we omit the rules.

A (well-typed) program consists of a signature Σ and a family pef , yf qfPdompΣq

of expressions ef with a distinguished variable identifier yf such that Σ; yf :A $
ef :B if Σpfq “ AÑ B.

2.2 Big-Step Operational Semantics

We now formalize the resource cost of evaluating programs with a big-step
operational semantics. The focus of this paper is on time complexity and we only
define the cost measures work and depth. Intuitively, the work measures the time
that is needed in a sequential evaluation. The depth measures the time that is
needed in a parallel evaluation. In the semantics, time is parameterized by a
metric that assigns a non-negative cost to each evaluation step.

464



Automatic Static Cost Analysis for Parallel Programs 5

V,H
M

e1 ó ˝ | pw, dq

V,H
M

letx “ e1 in e2 ó ˝ | pM
let
`w,M let

`dq
(E:Let1) (E:Abort)

V,H
M

e ó ˝ | p0, 0q

V,H
M

e1 ó p`,H
1
q | pw1, d1q V rx ÞÑ `s, H 1 M

e2 ó ρ | pw2, d2q

V,H
M

letx “ e1 in e2 ó ρ | pM
let
`w1`w2,M

let
`d1`d2q

(E:Let2)

V,H
M

e1 ó ρ1 | pw1, d1q V,H
M

e2 ó ρ2 | pw2, d2q ρ1“ ˝ _ρ2“˝

V,H
M

par x1 “ e1 andx2 “ e2 in e ó ˝ | pM
Par
`w1`w2,M

Par
`maxpd1, d2qq

(E:Par1)

(E:Par2)

V,H
M
e1 ó p`1, H1q | pw1, d1q pw1, d1

q“pMPar
`w1`w2`w,M

Par
`maxpd1, d2q`dq

V,H
M

e2 ó p`2, H2q | pw2, d2q V rx1 ÞÑ`1, x2 ÞÑ`2s, H1ZH2
M

e ó p`,H 1
q | pw, dq

V,H 1 M
par x1 “ e1 andx2 “ e2 in e ó p`,H

1
q | pw1, d1

q

Fig. 1. Interesting rules of the operational big-step semantics.

Motivation. A distinctive feature of our big-step semantics is that it models
terminating, failing, and diverging evaluations by inductively describing finite
subtrees of (possibly infinite) evaluation trees. By using an inductive judgement
for diverging and terminating computations while avoiding intermediate states,
it combines the advantages of big-step and small-step semantics. This has two
benefits compared to standard big-step semantics. First, we can model the resource
consumption of diverging programs and prove that bounds hold for terminating
and diverging programs. (In some cost metrics, diverging computations can have
finite cost.) Second, for a cost metric in which all diverging computations have
infinite cost we are able to show that bounds imply termination.

Note that we cannot achieve this by step-indexing a standard big-step se-
mantics. The available alternatives to our approach are small-step semantics and
coinductive big-step semantics. However, it is unclear how to prove the soundness
of our type system with respect to these semantics. Small-step semantics is
difficult to use because our type-system models an intentional property that goes
beyond the classic type preservation: After performing a step, we have to obtain
a refined typing that corresponds to a (possibly) smaller bound. Coinductive
derivations are hard to relate to type derivations because type derivations are
defined inductively.

Our inductive big-step semantics can not only be used to formalize resource
cost of diverging computations but also for other effects such as event traces. It is
therefore an interesting alternative to recently proposed coinductive operational
big-step semantics [18].

Semantic Judgements. We formulate the big-step semantics with respect to
a stack and a heap. Let Loc be an infinite set of locations modeling memory
addresses on a heap. A value v ::“ n | p`1, `2q | pcons, `1, `2q | nil P Val is either
an integer n P Z, a pair of locations p`1, `2q, a node pcons, `1, `2q of a list, or nil.

A heap is a finite partial mapping H : Loc á Val that maps locations to
values. A stack is a finite partial mapping V : Var á Loc from variable identifiers

465



6 Jan Hoffmann and Zhong Shao

to locations. Thus we have boxed values. It is not important for the analysis
whether values are boxed.

Figure 1 contains a compilation of the big-step evaluation rules (the full
version contains all rules). They are formulated with respect to a resource metric
M . They define the evaluation judgment

V,H M e ó ρ | pw, dq where ρ ::“ p`,Hq | ˝ .

It expresses the following. In a fixed program pef , yf qfPdompΣq, if the stack V
and the initial heap H are given then the expression e evaluates to ρ. Under the
metric M , the work of the evaluation of e is w and the depth of the evaluation
is d. Unlike standard big-step operational semantics, ρ can be either a pair of a
location and a new heap, or ˝ (pronounced busy) indicating that the evaluation
is not finished yet.

A resource metric M : K Ñ Q`0 defines the resource consumption in each
evaluation step of the big-step semantics with a non-negative rational number.
We write Mk for Mpkq.

An intuition for the judgement V,H M e ó ˝ | pw, dq is that there is a
partial evaluation of e that runs without failure, has work w and depth d, and
has not yet reached a value. This is similar to a small-step judgement.

Rules. For a heap H, we write H, ` ÞÑ v to express that ` R dompHq and to
denote the heap H 1 such that H 1pxq “ Hpxq if x P dompHq and H 1p`q “ v.
In the rule E:Par2, we write H1 Z H2 to indicate that H1 and H2 agree on
the values of locations in dompH1q X dompH2q and to a combined heap H with
dompHq “ dompH1qYdompH2q. We assume that the locations that are allocated
in parallel evaluations are disjoint. That is easily achievable in an implementation.

The most interesting rules of the semantics are E:Abort, and the rules
for sequential and parallel composition. They allow us to approximate infinite
evaluation trees for non-terminating evaluations with finite subtrees. The rule
E:Abort states that we can partially evaluate every expression by doing zero
steps. The work w and depth d are then both zero (i.e., w “ d “ 0).

To obtain an evaluation judgement for a sequential composition letx “ e1 in e2

we have two options. We can use the rule E:Let1 to partially evaluate e1 using
work w and depth d. Alternatively, we can use the rule E:Let2 to evaluate e1

until we obtain a location and a heap p`,H 1q using work w1 and depth d1. Then
we evaluate e2 using work w2 and depth d2. The total work and depth is then
given by M let`w1`w2 and M let`d1`d2, respectively.

Similarly, we can derive evaluation judgements for a parallel composition
par x1 “ e1 andx2 “ e2 in e using the rules E:Par1 and E:Par2. In the rule
E:Par1, we partially evaluate e1 or e2 with evaluation cost pw1, d1q and pw2, d2q.
The total work is then MPar`w1`w2 (the cost for the evaluation of the parallel
binding plus the cost for the sequential evaluation of e1 and e2). The total depth is
MPar`maxpd1, d2q (the cost for the evaluation of the binding plus the maximum
of the cost of the depths of e1 and e2). The rule E:Par2 handles the case in
which e1 and e2 are fully evaluated. It is similar to E:Let2 and the cost of the
evaluation of the expression e is added to both the cost and the depth since e is
evaluated after e1 and e2.

466



Automatic Static Cost Analysis for Parallel Programs 7

2.3 Properties of the Cost-Semantics

The main theorem of this section states that the resource cost of a partial
evaluation is less than or equal to the cost of an evaluation of the same expression
that terminates.

Theorem 1. If V,H M e ó p`,H 1q | pw, dq and V,H M e ó ˝ | pw1, d1q then
w1 ď w and d1 ď d.

Theorem 1 can be proved by a straightforward induction on the derivation of the
judgement V,H M e ó p`,H 1q | pw, dq.

Provably Efficient Implementations. While work is a realistic cost-model
for the sequential execution of programs, depth is not a realistic cost-model for
parallel execution. The main reason is that it assumes that an infinite number of
processors can be used for parallel evaluation. However, it has been shown [10]
that work and depth are closely related to the evaluation time on more realistic
abstract machines.

For example, Brent’s Theorem [12] provides an asymptotic bound on the
number of execution steps on the shared-memory multiprocessor (SMP) machine.
It states that if V,H M e ó p`,H 1q | pw, dq then e can be evaluated on a p-
processor SMP machine in time Opmaxpw{p, dqq. An SMP machine has a fixed
number p of processes and provides constant-time access to a shared memory. The
proof of Brent’s Theorem can be seen as the description of a so-called provably
efficient implementation, that is, an implementation for which we can establish
an asymptotic bound that depends on the number of processors.

Classically, we are especially interested in non-asymptotic bounds in resource
analysis. It would thus be interesting to develop a non-asymptotic version of
Brent’s Theorem for a specific architecture using more refined models of concur-
rency [11]. However, such a development is not in the scope of this article.

Well-Formed Environments and Type Soundness. For each data type A
we inductively define a set JAK of values of type A. Lists are interpreted as lists
and pairs are interpreted as pairs.

JintK “ Z JA ˚BK “ JAKˆ JBK
JLpAqK “ tra1, . . . , ans | n P N, ai P JAKu

If H is a heap, ` is a location, A is a data type, and a P JAK then we write
H ( ` ÞÑ a :A to mean that ` defines the semantic value a P JAK when pointers
are followed in H in the obvious way. The judgment is formally defined in the
full version of the article.

We write H ( ` :A to indicate that there exists a, necessarily unique, semantic
value a P JAK so that H ( ` ÞÑ a :A . A stack V and a heap H are well-formed
with respect to a context Γ if H ( V pxq :Γ pxq holds for every x P dompΓ q. We
then write H ( V : Γ .

Simple Metrics and Progress. In the reminder of this section, we prove a
property of the evaluation judgement under a simple metric. A simple metric M
assigns the value 1 to every resource constant, that is, Mpxq “ 1 for every x P K.
With a simple metric, work counts the number of evaluation steps.

467



8 Jan Hoffmann and Zhong Shao

Theorem 2 states that, in a well-formed environment, well-typed expressions
either evaluate to a value or the evaluation uses unbounded work and depth.

Theorem 2 (Progress). Let M be a simple metric, Σ;Γ $ e : B, and H (

V : Γ . Then V,H M e ó p`,H 1q | pw, dq for some w, d P N or for every n P N
there exist x, y P N such that V,H M e ó ˝ | px, nq and V,H M e ó ˝ | pn, yq.

A direct consequence of Theorem 2 is that bounds on the depth of programs
under a simple metric ensure termination.

3 Amortized Analysis and Parallel Programs

In this section, we give a short introduction into amortized resource analysis for
sequential programs (for bounding the work) and then informally describe the
main contribution of the article: a multivariate amortized resource analysis for
parallel programs (for bounding the depth).

Amortized Resource Analysis. Amortized resource analysis is a type-based
technique for deriving upper bounds on the resource cost of programs [3]. The
advantages of amortized resource analysis are compositionality and efficient
type inference that is based on linear programming. The idea is that types are
decorated with resource annotations that describe a potential function. Such
a potential function maps the sizes of typed data structures to a non-negative
rational number. The typing rules ensure that the potential defined by a typing
context is sufficient to pay for the evaluation cost of the expression that is typed
under this context and for the potential of the result of the evaluation.

The basic idea of amortized analysis is best explained by example. Consider
the function mult : int ˚ Lpintq Ñ Lpintq that takes an integer and an integer list
and multiplies each element of the list with the integer.

mult(x,ys) = match ys with | nil Ñ nil

| (y::ys’) Ñ x*y::mult(x,ys’)

For simplicity, we assume a metric M˚ that only counts the number of multipli-

cations performed in an evaluation in this section. Then V,H M˚

multpx, ysq ó
p`,H 1q | pn, nq for a well-formed stack V and heap H in which ys points to a list
of length n. In short, the work and depth of the evaluation of multpx, ysq is |ys|.

To obtain a bound on the work in type-based amortized resource analysis, we
derive a type of the following form.

x:int, ys:Lpintq;Q M˚

multpx, ysq : pLpintq, Q1q

Here Q and Q1 are coefficients of multivariate resource polynomials pQ : Jint ˚
LpintqK Ñ Q`0 and pQ1 : JLpintqK Ñ Q`0 that map semantic values to non-negative
rational numbers. The rules of the type system ensure that for every evaluation
context (V,H) that maps x to a number m and ys to a list a, the potential
pQpm, aq is sufficient to cover the evaluation cost of multpx, ysq and the potential
pQ1pa

1q of the returned list a1. More formally, we have pQpm, aq ě w ` pQ1pa
1q if

V,H M˚

multpx, ysq ó p`,H 1q | pw, dq and ` points to the list a1 in H 1.

468



Automatic Static Cost Analysis for Parallel Programs 9

In our type system we can for instance derive coefficients Q and Q1 that
represent the potential functions

pQpn, aq “ |a| and pQ1paq “ 0 .

The intuitive meaning is that we must have the potential |ys| available when
evaluating multpx, ysq. During the evaluation, the potential is used to pay for the
evaluation cost and we have no potential left after the evaluation.

To enable compositionality, we also have to be able to pass potential to the
result of an evaluation. Another possible instantiation of Q and Q1 would for
example result in the following potential.

pQpn, aq “ 2¨|a| and pQ1paq “ |a|

The resulting typing can be read as follows. To evaluate multpx, ysq we need the
potential 2|ys| to pay for the cost of the evaluation. After the evaluation there is
the potential |multpx, ysq| left to pay for future cost in a surrounding program.
Such an instantiation would be needed to type the inner function application in
the expression multpx,multpz, ysqq.

Technically, the coefficients Q and Q1 are families that are indexed by sets
of base polynomials. The set of base polynomials is determined by the type
of the corresponding data. For the type int ˚ Lpintq, we have for example Q “

tqp˚,rsq, qp˚,r˚sq, qp˚,r˚,˚sq, . . .u and pQpn, aq “ qp˚,rsq` qp˚,r˚sq¨|a|` qp˚,r˚,˚sq¨
`

|a|
2

˘

`

. . .. This allows us to express multivariate functions such as m ¨ n.

The rules of our type system show how to describe the valid instantiations of
the coefficients Q and Q1 with a set of linear inequalities. As a result, we can use
linear programming to infer resource bounds efficiently.

A more in-depth discussion can be found in the literature [3, 19, 7].

Sequential Composition. In a sequential composition letx “ e1 in e2, the
initial potential, defined by a context and a corresponding annotation pΓ,Qq,
has to be used to pay for the work of the evaluation of e1 and the work of the
evaluation of e2. Let us consider a concrete example again.

mult2(ys) = let xs = mult(496,ys) in

let zs = mult(8128,ys) in (xs,zs)

The work (and depth) of the evaluation of the expression mult2pysq is 2|ys| in the
metric M˚. In the type judgement, we express this bound as follows. First, we
type the two function applications of mult as before using

x:int, ys:Lpintq;Q M˚

multpx, ysq : pLpintq, Q1q

where pQpn, aq “ |a| and pQ1paq “ 0. In the type judgement

ys:Lpintq;R M˚

mult2pysq : pLpintq ˚ Lpintq, R1q

we require that pRpaq ě pQpaq`pQpaq, that is, the initial potential (defined by the
coefficients R) has to be shared in the two sequential branches. Such a sharing can
still be expressed with linear constraints. such as rr˚s ě qp˚,r˚sq ` qp˚,r˚sq. A valid
instantiation of R would thus correspond to the potential function pRpaq “ 2|a|.
With this instantiation, the previous typing reflects the bound 2|ys| for the
evaluation of mult2pysq.

469



10 Jan Hoffmann and Zhong Shao

A slightly more involved example is the function dyad : Lpintq ˚ Lpintq Ñ
LpLpintqq which computes the dyadic product of two integer lists.

dyad (u,v) = match u with | nil Ñ nil

| (x::xs) Ñ let x’ = mult(x,v) in

let xs’ = dyad(xs,v) in x’::xs’;

Using the metric M˚ that counts multiplications, multivariate resource analysis
for sequential programs derives the bound |u|¨|v|. In the cons branch of the
pattern match, we have the potential |xs|¨|v| ` |v| which is shared to pay for the
cost |v| of multpx, vq and the cost |xs|¨|v| of dyadpxs, vq.

Moving multivariate potential through a program is not trivial; especially in
the presence of nested data structures like trees of lists. To give an idea of the
challenges, consider the expression e that is defined as follows.

let xs = mult(496,ys) in

let zs = append(ys,ys) in dyad(xs,zs)

The depth of evaluating e in the metric M˚ is bounded by |ys| ` 2|ys|2. Like
in the previous example, we express this in amortized resource analysis with
the initial potential |ys| ` 2|ys|2. This potential has to be shared to pay for the
cost of the evaluations of multp496, ysq (namely |ys|) and dyadpxs, zsq (namely
2|ys|2). However, the type of dyad requires the quadratic potential |xs|¨|zs|. In
this simple example, it is easy to see that |xs|¨|zs| “ 2|ys|2. But in general, it is
not straightforward to compute such a conversion of potential in an automatic
analysis system, especially for nested data structures and super-linear size changes.
The type inference for multivariate amortized resource analysis for sequential
programs can analyze such programs efficiently [7].

Parallel Composition. The insight of this paper is that the potential method
works also well to derive bounds on parallel evaluations. The main challenge in
the development of an amortized resource analysis for parallel evaluations is to
ensure the same compositionality as in sequential amortized resource analysis.

The basic idea of our new analysis system is to allow each branch in a parallel
evaluation to use all the available potential without sharing. Consider for example
the previously defined function mult2 in which we evaluate the two applications
of mult in parallel.

mult2par(ys) = par xs = mult(496,ys)

and zs = mult(8128,ys) in (xs,zs)

Since the depth of multpn, ysq is |ys| for every n and the two applications of mult
are evaluated in parallel, the depth of the evaluation of mult2parpysq is |ys| in the
metric M˚.

In the type judgement, we type the two function applications of mult as in
the sequential case in which

x:int, ys:Lpintq;Q M˚

multpx, ysq : pLpintq, Q1q

such that pQpn, aq “ |a| and pQ1paq “ 0. In the type judgement

ys:Lpintq;R M˚

mult2parpysq : pLpintq ˚ Lpintq, R1q

for mult2par we require however only that pRpaq ě pQpaq. In this way, we express
that the initial potential defined by the coefficients R has to be sufficient to

470



Automatic Static Cost Analysis for Parallel Programs 11

cover the cost of each parallel branch. Consequently, a possible instantiation of
R corresponds to the potential function pRpaq “ |a|.

In the function dyad, we can replace the sequential computation of the inner
lists of the result by a parallel computation in which we perform all calls to the
function mult in parallel. The resulting function is dyad par.

dyad_par (u,v) = match u with | nil Ñ nil

| (x::xs) Ñ par x’ = mult(x,v)

and xs’ = dyad_par(xs,v) in x’::xs’;

The depth of dyad par is |v|. In the type-based amortized analysis, we hence start
with the initial potential |v|. In the cons branch of the pattern match, we can
use the initial potential to pay for both, the cost |v| of multpx, vq and the cost |v|
of the recursive call dyadpxs, vq without sharing the initial potential.

Unfortunately, the compositionality of the sequential system is not preserved
by this simple idea. The problem is that the naive reuse of potential that is
passed through parallel branches would break the soundness of the system. To
see why, consider the following function.

mult4(ys) = par xs = mult(496,ys)

and zs = mult(8128,ys) in (mult(5,xs), mult(10,zs))

Recall, that a valid typing for xs “ multp496, ysq could take the initial potential
2|ys| and assign the potential |xs| to the result. If we would simply reuse the
potential 2|ys| to type the second application of mult in the same way then we
would have the potential |xs| ` |zs| after the parallel branches. This potential
could then be used to pay for the cost of the remaining two applications of mult.
We have now verified the unsound bound 2|ys| on the depth of the evaluation of
the expression mult4pysq but the depth of the evaluation is 3|ys|.

The problem in the previous reasoning is that we doubled the part of the
initial potential that we passed on for later use in the two parallel branches of
the parallel composition. To fix this problem, we need a separate analysis of the
sizes of data structures and the cost of parallel evaluations.

In this paper, we propose to use cost-free type judgements to reason about
the size changes in parallel branches. Instead of simply using the initial potential
in both parallel branches, we share the potential between the two branches but
analyze the two branches twice. In the first analysis, we only pay for the resource
consumption of the first branch. In the second, analysis we only pay for resource
consumption of the second branch.

A cost-free type judgement is like any other type judgement in amortized
resource analysis but uses the cost-free metric cf that assigns zero cost to every
evaluation step. For example, a cost-free typing of the function multpysq would
express that the initial potential can be passed to the result of the function. In
the cost-free typing judgement

x:int, ys:Lpintq;Q cf multpx, ysq : pLpintq, Q1q

a valid instantiation of Q and Q1 would correspond to the potential

pQpn, aq “ |a| and pQ1paq “ |a| .

The intuitive meaning is that in a call zs “ multpx, ysq, the initial potential |ys|
can be transformed to the potential |zs| of the result.

471



12 Jan Hoffmann and Zhong Shao

Using cost-free typings, we can now correctly reason about the depth of the
evaluation of mult4. We start with the initial potential 3|ys| and have to consider
two cases in the parallel binding. In the first case, we have to pay only for resource
cost of multp496, ysq. So we share the initial potential and use 2|ys|: |ys| to pay
the cost of multp496, ysq and |ys| to assign the potential |xs| to the result of the
application. The reminder |ys| of the initial potential is used in a cost-free typing
of multp8128, ysq where we assign the potential |zs| to the result of the function
without paying any evaluation cost. In the second case, we derive a similar typing
in which the roles of the two function calls are switched. In both cases, we start
with the potential 3|ys| and end with the potential |xs| ` |zs|. We use it to pay
for the two remaining calls of mult and have verified the correct bound.

In the univariate case, using the notation from [3, 19], we could formulate
the type rule for parallel composition as follows. Here, the coefficients Q are
not globally attached to a type or context but appear locally at list types such
as Lqpintq. The sharing operator Γ . pΓ1, Γ2, Γ3q requires the sharing of the
potential in the context Γ in the contexts Γ1,Γ2 and Γ3. For instance, we have
x:L6pintq .px:L2pintq, x:L3pintq, x:L1pintqq.

Γ .p∆1, Γ2, Γ
1q Γ .pΓ1, ∆2, Γ

1q Γ1
M e1 : A1 ∆2

cf e2 : A2

∆1
cf e1 : A1 Γ2

M e2 : A2 Γ 1, x1:A1, x2:A2
M e : B

Γ M par x1 “ e1 andx2 “ e2 in e : B

In the rule, the initial potential Γ is shared twice using the sharing operator ..
First, to pay the cost of evaluating e2 and e, and to pass potential to x1 using the
cost-free type judgement ∆1

cf e1 : A1. Second, to pay the cost of evaluation
e1 and e, and to pass potential to x2 via the judgement ∆2

cf e2 : A2.
This work generalizes the idea to multivariate resource polynomials for which

we also have to deal with mixed potential such as |x1|¨|x2|. The approach features
the same compositionality as the sequential version of the analysis. As the
experiments in Section 7 show, the analysis works well for many typical examples.

The use of cost-free typings to separate the reasoning about size changes of
data structures and resource cost in amortized analysis has applications that go
beyond parallel evaluations. Similar problems arise in sequential (and parallel)
programs when deriving bounds for non-additive cost such as stack-space usage
or recursion depth. We envision that the developed technique can be used to
derive bounds for these cost measures too.
Other Forms of Parallelism. The binary parallel binding is a simple yet
powerful form of parallelism. However, it is (for example) not possible to directly
implement NESL’s model of sequences that allows to perform an operation for
every element in the sequence in constant depth. The reason is that the parallel
binding would introduce a linear overhead.

Nevertheless it is possible to introduce another binary parallel binding that is
semantically equivalent except that it has zero depth cost. We can then analyze
more powerful parallelism primitives by translating them into code that uses this
cost-free parallel binding. To demonstrate such a translation, we implemented
NESL’s [15] parallel sequence comprehensions in RAML (see Section 6).

472



Automatic Static Cost Analysis for Parallel Programs 13

4 Resource Polynomials and Annotated Types

In this section, we introduce multivariate resource polynomials and annotated
types. Our goal is to systematically describe the potential functions that map data
structures to non-negative rational numbers. Multivariate resource polynomials
are a generalization of non-negative linear combinations of binomial coefficients.
They have properties that make them ideal for the generation of succinct linear
constraint systems in an automatic amortized analysis. The presentation might
appear quite low level but this level of detail is necessary to describe the linear
constraints in the type rules.

Two main advantages of resource polynomials are that they can express more
precise bounds than non-negative linear-combinations of standard polynomials
and that they can succinctly describe common size changes of data that appear
in construction and destruction of data. More explanations can be found in the
previous literature on multivariate amortized resource analysis [13, 7].

4.1 Resource Polynomials

A resource polynomial maps a value of some data type to a nonnegative ratio-
nal number. Potential functions and thus resource bounds are always resource
polynomials.

Base Polynomials. For each data type A we first define a set PpAq of functions
p : JAK Ñ N that map values of type A to natural numbers. These base polynomials
form a basis (in the sense of linear algebra) of the resource polynomials for type
A. The resource polynomials for type A are then given as nonnegative rational
linear combinations of the base polynomials. We define PpAq as follows.

Ppintq “ ta ÞÑ 1u PpA1 ˚A2q “ tpa1, a2q ÞÑ p1pa1q ¨ p2pa2q | pi P PpAiqu

PpLpAqq “ tΣΠrp1, . . . , pks | k P N, pi P PpAqu

We have ΣΠrp1, . . . , pkspra1, . . . , ansq “
ř

1ďj1ă¨¨¨ăjkďn

ś

1ďiďk pipajiq. Every
set PpAq contains the constant function v ÞÑ 1. For lists LpAq this arises for
k “ 0 (one element sum, empty product).

For example, the function ` ÞÑ
`

|`|
k

˘

is in PpLpAqq for every k P N; simply take

p1 “ . . . “ pk “ 1 in the definition of PpLpAqq. The function p`1, `2q ÞÑ
`

|`1|
k1

˘

¨
`

|`2|
k2

˘

is in PpLpAq ˚ LpBqq for every k1, k2 P N and r`1, . . . , `ns ÞÑ
ř

1ďiăjďn

`

|`i|
k1

˘

¨
`

|`j |
k2

˘

P PpLpLpAqqq for every k1, k2 P N.

Resource Polynomials. A resource polynomial p : JAK Ñ Q`0 for a data type A
is a non-negative linear combination of base polynomials, i.e., p “

ř

i“1,...,m qi ¨pi
for qi P Q`0 and pi P PpAq. RpAq is the set of resource polynomials for A.

An instructive, but not exhaustive, example is given by Rn “ RpLpintq ˚ ¨ ¨ ¨ ˚
Lpintqq. The set Rn is the set of linear combinations of products of binomial
coefficients over variables x1, . . . , xn, that is, Rn “ t

řm
i“1 qi

śn
j“1

`

xj

kij

˘

| qi P

Q`0 ,m P N, kij P Nu. Concrete examples that illustrate the definitions follow in
the next subsection.

473



14 Jan Hoffmann and Zhong Shao

4.2 Annotated Types

To relate type annotations in the type system to resource polynomials, we
introduce names (or indices) for base polynomials. These names are also helpful
to intuitively explain the base polynomials of a given type.

Names For Base Polynomials. To assign a unique name to each base polyno-
mial we define the index set IpAq to denote resource polynomials for a given data
type A. Essentially, IpAq is the meaning of A with every atomic type replaced
by the unit index ˝.

Ipintq “ t˝u IpA1 ˚A2q “ tpi1, i2q | i1 P IpA1q and i2 P IpA2qu

IpLpAqq “ tri1, . . . , iks | k ě 0, ij P IpAqu
The degree degpiq of an index i P IpAq is defined as follows.

degp˝q “ 0 degpi1, i2q “ degpi1q ` degpi2q

degpri1, . . . , iksq “ k ` degpi1q ` ¨ ¨ ¨ ` degpikq

Let IkpAq “ ti P IpAq | degpiq ď ku. The indices i P IkpAq are an enumeration
of the base polyonomials pi P PpAq of degree at most k. For each i P IpAq, we
define a base polynomial pi P PpAq as follows: If A “ int then p˝pvq “ 1 . If
A “ pA1 ˚A2q is a pair type and v “ pv1, v2q then ppi1,i2qpvq “ pi1pv1q ¨ pi2pv2q. If
A “ LpBq is a list type and v P JLpBqK then pri1,...,imspvq “ ΣΠrpi1 , . . . , pimspvq.
We use the notation 0A (or just 0) for the index in IpAq such that p0A

paq “ 1 for
all a. We have 0int “ ˝ and 0pA1˚A2q “ p0A1

, 0A2
q and 0LpBq “ rs. If A “ LpBq

for a data type B then the index r0, . . . , 0s P IpAq of length n is denoted by just
n. We identify the index pi1, i2, i3, i4q with the index pi1, pi2, pi3, i4qqq.

Examples. First consider the type int. The index set Ipintq “ t˝u only contains
the unit element because the only base polynomial for the type int is the constant
polynomial p˝ : Z Ñ N that maps every integer to 1, that is, p˝pnq “ 1 for all
n P Z. In terms of resource-cost analysis this implies that the resource polynomials
can not represent cost that depends on the value of an integer.

Now consider the type Lpintq. The index set for lists of integers is IpLpintqq “
trs, r˝s, r˝, ˝s, . . .u, the set of lists of unit indices ˝. The base polynomial prs :
JLpintqK Ñ N is defined as prspra1, . . . , ansq “ 1 (one element sum and empty
product). More interestingly, we have pr˝spra1, . . . , ansq “

ř

1ďjďn 1 “ n and

pr˝,˝spra1, . . . , ansq “
ř

1ďj1ăj2ďn
1 “

`

n
2

˘

. In general, if ik “ r˝, . . . , ˝s is as list

with k unit indices then pikpra1, . . . , ansq “
ř

1ďj1ă¨¨¨ăjkďn
1 “

`

n
k

˘

. The intuition
is that the base polynomial pikpra1, . . . , ansq describes a constant resource cost
that arises for every ordered k-tuple paj1 , . . . , ajnq.

Finally, consider the type LpLpintqq of lists of lists of integers. The corre-
sponding index set is IpLpLpintqqq “ trsuYtris | i P IpLpintqquYtri1, i2s | i1, i2 P
IpLpintqqu Y ¨ ¨ ¨ . Again we have prs : JLpLpintqqK Ñ N and prspra1, . . . , ansq “ 1.
Moreover we also get the binomial coefficients again: If the index ik “ rrs, . . . , rss
is as list of k empty lists then pikpra1, . . . , ansq “

ř

1ďj1ă¨¨¨ăjkďn
1 “

`

n
k

˘

. This
describes a cost that would arise in a program that computes something of con-
stant cost for tuples of inner lists (e.g., sorting with respect to the smallest head
elements). However, the base polynomials can also refer to the lengths of the inner

474



Automatic Static Cost Analysis for Parallel Programs 15

lists. For instance, we have prr˝, ˝sspra1, . . . , ansq “
ř

1ďiďn

`

|ai|
2

˘

, which repre-
sents a quadratic cost for every inner list (e.g, sorting the inner lists). This is not
to be confused with the base polynomial pr˝,˝spra1, . . . , ansq “

ř

1ďiăjďn |ai||aj |,
which can be used to account for the cost of the comparisons in a lexicographic
sorting of the outer list.

Annotated Types and Potential Functions. We use the indices and base
polynomials to define type annotations and resource polynomials. We then give
examples to illustrate the definitions.

A type annotation for a data type A is defined to be a family

QA “ pqiqiPIpAq with qi P Q`0
We say QA is of degree (at most) k if qi “ 0 for every i P IpAq with degpiq ą k.
An annotated data type is a pair pA,QAq of a data type A and a type annotation
QA of some degree k.

Let H be a heap and let ` be a location with H ( `ÞÑa :A for a data
type A. Then the type annotation QA defines the potential ΦHp`:pA,QAqq “
ř

iPIpAq qi ¨ pipaq. If a P JAK and Q is a type annotation for A then we also write

Φpa : pA,Qqq for
ř

i qipipaq.
Let for example, Q “ pqiqiPLpintq be an annotation for the type Lpintq and

let qrs “ 2, qr˝s “ 2.5, qr˝,˝,˝s “ 8, and qi “ 0 for all other i P IpLpintqq. The we

have Φpra1, . . . , ans : pLpintq, Qqq “ 2` 2.5n` 8
`

n
3

˘

.

The Potential of a Context. For use in the type system we need to extend
the definition of resource polynomials to typing contexts. We treat a context like
a tuple type. Let Γ “ x1:A1, . . . , xn:An be a typing context and let k P N. The
index set IpΓ q is defined through IpΓ q “ tpi1, . . . , inq | ij P IpAjqu.

The degree of i “ pi1, . . . , inq P IpΓ q is defined through degpiq “ degpi1q `
¨ ¨ ¨ ` degpinq. As for data types, we define IkpΓ q “ ti P IpΓ q | degpiq ď ku. A
type annotation Q for Γ is a family Q “ pqiqiPIkpΓ q with qi P Q`0 . We denote a
resource-annotated context with Γ ;Q. Let H be a heap and V be a stack with
H ( V : Γ where H ( V pxjqÞÑaxj

: Γ pxjq .
The potential of an annotated context Γ ;Q with respect to then environment

H and V is ΦV,HpΓ ;Qq “
ř

pi1,...,inqPIkpΓ q
q~ı
śn
j“1 pij paxj q. In particular, if Γ “

H then IkpΓ q “ tpqu and ΦV,HpΓ ; qpqq “ qpq. We sometimes also write q0 for qpq.

5 Type System for Bounds on the Depth

In this section, we formally describe the novel resource-aware type system. We
focus on the type judgement and explain the rules that are most important for
handling parallel evaluation. The full type system is given in the extended version
of this article [17].

The main theorem of this section proves the soundness of the type system
with respect to the depths of evaluations as defined by the operational big-step
semantics. The soundness holds for terminating and non-terminating evaluations.

Type Judgments. The typing rules in Figure 2 define a resource-annotated
typing judgment of the form

Σ;Γ ; tQ1, . . . , Qnu
M e : pA,Q1q

475



16 Jan Hoffmann and Zhong Shao

where M is a metric, n P t1, 2u, e is an expression, Σ is a resource-annotated
signature (see below), pΓ ;Qiq is a resource-annotated context for every i P
t1, . . . , nu, and pA,Q1q is a resource-annotated data type. The intended meaning
of this judgment is the following. If there are more than ΦpΓ ;Qiq resource units
available for every i P t1, . . . , nu then this is sufficient to pay for the depth of the
evaluation of e under the metric M . In addition, there are more than Φpv:pA,Q1qq
resource units left if e evaluates to a value v.

In outermost judgements, we are only interested in the case where n “ 1 and
the judgement is equivalent to the similar judgement for sequential programs [7].
The form in which n “ 2 is introduced in the type rule E:Par for parallel
bindings and eliminated by multiple applications of the sharing rule E:Share
(more explanations follow).

The type judgement is affine in the sense that every variable in a context
Γ can be used at most once in the expression e. Of course, we have to also
deal with expressions in which a variable occurs more than once. To account for
multiple variable uses we use the sharing rule T:Share that doubles a variable
in a context without increasing the potential of the context.

As usual Γ1, Γ2 denotes the union of the contexts Γ1 and Γ2 provided that
dompΓ1q X dompΓ2q “ H. We thus have the implicit side condition dompΓ1q X

dompΓ2q “ H whenever Γ1, Γ2 occurs in a typing rule. Especially, writing Γ “
x1:A1, . . . , xk:Ak means that the variables xi are pairwise distinct.

Programs with Annotated Types. Resource-annotated first-order types have
the form pA,Qq Ñ pB,Q1q for annotated data types pA,Qq and pB,Q1q. A
resource-annotated signature Σ is a finite, partial mapping of function identi-
fiers to sets of resource-annotated first-order types. A program with resource-
annotated types for the metric M consists of a resource-annotated signature Σ
and a family of expressions with variables identifiers pef , yf qfPdompΣq such that

Σ; yf :A;Q M ef : pB,Q1q for every function type pA,Qq Ñ pB,Q1q P Σpfq.

Sharing. Let Γ, x1:A, x2:A;Q be an annotated context. The sharing operation
.Q defines an annotation for a context of the form Γ, x:A. It is used when the
potential is split between multiple occurrences of a variable. Details can be found
in the full version of the article.

Typing Rules. Figure 2 shows the annotated typing rules that are most
relevant for parallel evaluation. Most of the other rules are similar to the rules
for multivariate amortized analysis for sequential programs [13, 20]. The main
difference it that the rules here operate on annotations that are singleton sets
tQu instead of the usual context annotations Q.

In the rules T:Let and T:Par, the result of the evaluation of an expression e
is bound to a variable x. The problem that arises is that the resulting annotated
context ∆,x:A,Q1 features potential functions whose domain consists of data
that is referenced by x as well as data that is referenced by ∆. This potential
has to be related to data that is referenced by ∆ and the free variables in e.

To express the relations between mixed potentials before and after the evalu-
ation of e, we introduce a new auxiliary binding judgement of the from

Σ;Γ,∆;Q M e ∆,x:A;Q1

476



Automatic Static Cost Analysis for Parallel Programs 17

Σ;Γ1, Γ2;R
M

e1  Γ2, x:A;R1

Σ; , Γ2, x:A; tR1
u

M
e2 : pB,Q1

q Q “ R`M let

Σ;Γ1, Γ2; tQu
M

letx “ e1 in e2 : pB,Q1
q

(T:Let)

Σ;Γ1, Γ2,∆;P
cf

e1  Γ2,∆, x1:A1;P 1

Σ;Γ2,∆, x1:A1;P 1 M
e2  ∆,x1:A1, x2:A2;R

Σ;Γ2,∆, x1:A1;Q1 cf
e2  ∆,x1:A1, x2:A2;R

Σ;Γ1, Γ2,∆;Q
M
e1  Γ2,∆, x1:A1;Q1 Σ;∆,x1:A1, x2:A2;R

M
e : pB,R1

q

Σ;Γ1, Γ2,∆; tQ`MPar, P `MPar
u

M
par x1 “ e1 andx2 “ e2 in e : pB,R1

q

(T:Par)

Σ;Γ, x1:A, x2:A; tP1, . . . , Pmu
M

e : pB,Q1
q @i Dj : Qj“.Pi

Σ;Γ, x:A; tQ1, . . . , Qnu
M

erx{x1, x{x2s : pB,Q1
q

(T:Share)

˛ ˛ ˛

@j P Ip∆q: j“~0 ùñ Σ;Γ ;πΓj pQq
M

e : pA, πx:Aj pQ1
qq

j‰~0 ùñ Σj ;Γ ;πΓj pQq
cf

e : pA, πx:Aj pQ1
qq

Σ;Γ,∆;Q
M

e ∆,x:A;Q1
(B:Bind)

Fig. 2. Selected novel typing rules for annotated types and the binding rule for multi-
variate variable binding.

in the rule B:Bind. The intuitive meaning of the judgement is the following.
Assume that e is evaluated in the context Γ,∆, that FVpeq P dompΓ q, and
that e evaluates to a value that is bound to the variable x. Then the initial
potential ΦpΓ,∆;Qq is larger than the cost of evaluating e in the metric M plus
the potential of the resulting context Φp∆,x:A;Q1q.

The rule T:Par for parallel bindings par x1 “ e1 andx2 “ e2 in e is the main
novelty in the type system. The idea is that we type the expressions e1 and
e2 twice using the new binding judgement. In the first group of bindings, we
account for the cost of e1 and derive a context Γ2, ∆, x1:A1;P 11 in which the
result of the evaluation of e1 is bound to x1. This context is then used to bind
the result of evaluating e2 in the context ∆,x1:A1, x2:A2;R without paying for
the resource consumption. In the second group of bindings, we also derive the
context ∆,x1:A1, x2:A2;R but pay for the cost of evaluating e2 instead of e1.
The type annotations Q1 and Q2 for the initial context Γ “ Γ1, Γ2, ∆ establish
a bound on the depth d of evaluating the whole parallel binding: If the depth
of evaluating e1 is larger than the depth of evaluating e2 then ΦpΓ ;Q1q ě d.
Otherwise we have ΦpΓ ;Q2q ě d. If the parallel binding evaluates to a value v
then we have additionally that maxpΦpΓ ;Q1q, ΦpΓ ;Q2qq ě d` Φpv:pB,Q1qq.

It is important that the annotations Q1 and Q2 of the initial context Γ1, Γ2, ∆
can defer. The reason is that we have to allow a different sharing of potential in
the two groups of bindings. If we would require Q1 “ Q2 then the system would
be too restrictive. However, each type derivation has to establish the equality
of the two annotations directly after the use of T:Par by multiple uses of the

477



18 Jan Hoffmann and Zhong Shao

sharing rule T:Share. Note that T:Par is the only rule that can introduce a
non-singleton set tQ1, Qnu of context annotations.

T:Share has to be applied to expressions that contain a variable twice (x in
the rule). The sharing operation .P transfers the annotation P for the context
Γ, x1:A, x2:A into an annotation Q for the context Γ, x:A without loss of potential
. This is crucial for the accuracy of the analysis since instances of T:Share are
quite frequent in typical examples. The remaining rules are affine in the sense
that they assume that every variable occurs at most once in the typed expression.

T:Share is the only rule whose premiss allows judgements that contain a
non-singleton set tP1, . . . , Pmu of context annotations. It has to be applied to
produce a judgement with singleton set tQu before any of the other rules can be
applied. The idea is that we always have n ď m for the set tQ1, . . . , Qnu and the
sharing operation . i is used to unify the different Pi.

Soundness. The operational big-step semantics with partial evaluations makes
it possible to state and prove a strong soundness result. An annotated type
judgment for an expression e establishes a bound on the depth of all evaluations
of e in a well-formed environment; regardless of whether these evaluations diverge
or fail.Moreover, the soundness theorem states also a stronger property for
terminating evaluations. If an expression e evaluates to a value v in a well-formed
environment then the difference between initial and final potential is an upper
bound on the depth of the evaluation.

Theorem 3 (Soundness). If H ( V :Γ and Σ;Γ ;Q $ e:pB,Q1q then there
exists a Q P Q such that the following holds.
1. If V,H M e ó p`,H 1q | pw, dq then d ď ΦV,HpΓ ;Qq ´ ΦH1p`:pB,Q

1qq.
2. If V,H M e ó ρ | pw, dq then d ď ΦV,HpΓ ;Qq.

Theorem 3 is proved by a nested induction on the derivation of the evaluation
judgment and the type judgment Γ ;Q $ e:pB,Q1q. The inner induction on the
type judgment is needed because of the structural rules. There is one proof for
all possible instantiations of the resource constants.

The proof of most rules is very similar to the proof of the rules for multivariate
resource analysis for sequential programs [7]. The main novelty is the treatment
of parallel evaluation in the rule T:Par which we described previously.

If the metric M is simple (all constants are 1) then it follows from Theorem
3 that the bounds on the depth also prove the termination of programs.

Corollary 1. Let M be a simple metric. If H ( V :Γ and Σ;Γ ;Q $ e:pA,Q1q
then there are w P N and d ď ΦV,HpΓ ;Qq such that V,H M e ó p`,H 1q | pw, dq
for some ` and H 1.

Type Inference. In principle, type inference consists of four steps. First, we
perform a classic type inference for the simple types such as nat array. Second,
we fix a maximal degree of the bounds and annotate all types in the derivation of
the simple types with variables that correspond to type annotations for resource
polynomials of that degree. Third, we generate a set of linear inequalities, which
express the relationships between the added annotation variables as specified by

478



Automatic Static Cost Analysis for Parallel Programs 19

the type rules. Forth, we solve the inequalities with an LP solver such as CLP.
A solution of the linear program corresponds to a type derivation in which the
variables in the type annotations are instantiated according to the solution.

In practice, the type inference is slightly more complex. Most importantly,
we have to deal with resource-polymorphic recursion in many examples. This
means that we need a type annotation in the recursive call that differs from the
annotation in the argument and result types of the function. To infer such types
we successively infer type annotations of higher and higher degree. Details can be
found in previous work [21]. Moreover, we have to use algorithmic versions of the
type rules in the inference in which the non-syntax-directed rules are integrated
into the syntax-directed ones [7]. Finally, we use several optimizations to reduce
the number of generated constraints. See [7] for an example type derivation.

6 Nested Data Parallelism

The techniques that we describe in this work for a minimal function language
scale to more advanced parallel languages such as Blelloch’s NESL [15].

To describe the novel type analysis in this paper, we use a binary binding
construct to introduce parallelism. In NESL, parallelism is introduced via built-in
functions on sequences as well as parallel sequence comprehension that is similar
to Haskell’s list comprehension. The depth of all built-in sequence functions such
as append and sum is constant in NESL. Similarly, the depth overhead of the
parallel sequence comprehension is constant too. Of course, it is possible to define
equivalent functions in RAML. However, the depth would often be linear since
we, for instance, have to sequentially form the resulting list.

Nevertheless, the user definable resource metrics in RAML make it easy to
introduce built-in functions and language constructs with customized work and
depth. For instance we could implement NESL’s append like the recursive append
in RAML but use a metric inside the function body in which all evaluation steps
have depth zero. Then the depth of the evaluation of appendpx, yq is constant
and the work is linear in |x|.

To demonstrate this ability of our approach, we implemented parallel list
comprehensions, NESL’s most powerful construct for parallel computations. A
list comprehension has the form t e : x1 in e1 ; . . . ; xn in en | eb u. where e is
an expression, e1, . . . , en are expressions of some list type, and eb is a boolean
expression. The semantics is that we bind x1, . . . , xn successively to the elements
of the lists e1, . . . , en and evaluate eb and e under these bindings. If eb evaluates
to true under a binding then we include the result of e under that binding in the
resulting list. In other words, the above list comprehension is equivalent to the
Haskell expression r e | px1, . . . , xnq Ð zipn e1 . . . en , eb s.

The work of evaluating t e : x1 in e1 ; . . . ; xn in en | eb u is sum of the cost of
evaluating e1, . . . , en´1 and en plus the sum of the cost of evaluating eb and e
with the successive bindings to the elements of the results of the evaluation of
e1, . . . , en. The depth of the evaluation is sum of the cost of evaluating e1, . . . , en´1

and en plus the maximum of the cost of evaluating eb and e with the successive
bindings to the elements of the results of the ei.

479



20 Jan Hoffmann and Zhong Shao

Function Name / Computed Depth Bound / Run Time Asym. Behav.

Function Type Computed Work Bound

dyad 10m` 10n` 3 0.19 s Opn`mq

Lpintq˚Lpintq Ñ LpLpintqq 10mn` 17n` 3 0.20 s Opnmq

dyad all 1.6̄n3
´4n2

`10nm`14.6̄n`5 1.66 s Opn2
`mq

LpLpintqq Ñ LpLpLpintqqq 1.3̄n3
`5n2m2

`8.5n2m` . . . 0.96 s Opn3
`n2m2

q

m mult1 15xy ` 16x` 10n` 6 0.37 s Opxyq

LpLpintqq˚LpLpintqq Ñ LpLpintqq 15xyn` 16nm` 18n` 3 0.36 s Opxynq

m mult pairs [M :“ LpLpintqq] 4n2
`15nmx`10nm`10n`3 3.90 s O(nm + mx)

LpMq˚LpMq Ñ LpMq 7.5n2m2x`7n2m2
`n2mx . . . 6.35 s Opn2m2xq

m mult2 [M :“ LpLpintqq] 35u` 10y ` 15x` 11n` 40 2.75 s Opz`x`nq

pM˚natq˚pM˚natqÑM 3.5u2y`uyz`14.5uy` . . . 2.99 s Opnxpz`yqq

quicksort list 12n2
` 16nm` 12n` 3 0.67 s Opn2

`mq

LpLpintqq Ñ LpLpintqq 8n2m`15.5n2
´8nm`13.5n`3 0.51 s Opn2mq

intersection 10m` 12n` 3 0.49 s Opn`mq

Lpintq˚Lpintq Ñ Lpintq 10mn` 19n` 3 0.28 s Opnmq

product 8mn` 10m` 14n` 3 1.05 s Opnmq

Lpintq˚Lpintq Ñ Lpint˚intq 18mn` 21n` 3 0.71 s Opnmq

max weight 46n` 44 0.39 s Opnq

Lpintq Ñ int˚Lpintq 13.5n2
` 65.5n` 19 0.30 s Opn2

q

fib 13n` 4 0.09 s Opnq

nat ˚ nat Ñ nat ´´´ 0.12 s Op2n
q

dyad comp 13 0.28 s Op1q

Lpintq˚Lpintq Ñ LpLpintqq 6mn` 5n` 2 0.13 s Opnmq

find 12m` 29n` 22 0.38 s Opm`nq

Lpintq˚Lpintq Ñ LpLpintqq 20mn` 18m` 9n` 16 0.41 s Opnmq

Table 1. Compilation of Computed Depth and Work Bounds.

7 Experimental Evaluation

We implemented the developed automatic depth analysis in Resource Aware ML
(RAML). The implementation consists mainly of adding the syntactic form for the
parallel binding and the parallel list comprehensions together with the treatment
in the parser, the interpreter, and the resource-aware type system. RAML is
publically available for download and through a user-friendly online interface [16].
On the project web page you also find the source code of all example programs
and of RAML itself.

We used the implementation to perform an experimental evaluation of the
analysis on typical examples from functional programming. In the compilation
of our results we focus on examples that have a different asymptotic worst-case
behavior in parallel and sequential evaluation. In many other cases, the worst-case
behavior only differs in the constant factors. Also note that many of the classic
examples of Blelloch [10]—like quick sort—have a better asymptotic average
behavior in parallel evaluation but the same asymptotic worst-case behavior in
parallel and sequential cost.

Table 1 contains a representative compilation of our experimental results. For
each analyzed function, it shows the function type, the computed bounds on
the work and the depth, the run time of the analysis in seconds and the actual
asymptotic behavior of the function. The experiments were performed on an iMac
with a 3.4 GHz Intel Core i7 and 8 GB memory. As LP solver we used IBM’s

480



Automatic Static Cost Analysis for Parallel Programs 21

CPLEX and the constraint solving takes about 60% of the overall run time of the
prototype on average. The computed bounds are simplified multivariate resource
polynomials that are presented to the user by RAML. Note that RAML also
outputs the (unsimplified) multivariate resource polynomials. The variables in
the computed bounds correspond to the sizes of different parts of the input. As
naming convention we use the order n,m, x, y, z, u of variables to name the sizes
in a depth-first way: n is the size of the first argument, m is the maximal size of
the elements of the first argument, x is the size of the second argument, etc.

All bounds are asymptotically tight if the tight bound is representable by a
multivariate resource polynomial. For example, the exponential work bound for
fib and the logarithmic bounds for bitonic sort are not representable as a resource
polynomial. Another example is the loose depth bound for dyad all where we
would need the base function max1ďiďnmi but only have

ř

1ďiďnmi.

Matrix Operations. To study programs that use nested data structures we
implemented several matrix operations for matrices that are represented by lists
of lists of integers. The implemented operations include, the dyadic product
from Section 3 (dyad), transposition of matrices (transpose, see [16]), addition of
matrices (m add, see [16]), and multiplication of matrices (m mult1 and m mult2).

To demonstrate the compositionality of the analysis, we have implemented
two more involved functions for matrices. The function dyad all computes the
dyadic product (using dyad) of all ordered pairs of the inner lists in the argument.
The function m mult pairs computes the products M1 ¨M2 (using m mult1) of all
pairs of matrices such that M1 is in the first list of the argument and M2 is in
the second list of the argument.

Sorting Algorithms. The sorting algorithms that we implemented include quick
sort and bitonic sort for lists of integers (quicksort and bitonic sort, see [16]).

The analysis computes asymptotically tight quadratic bounds for the work
and depth of quick sort. The asymptotically tight bounds for the work and depth
of bitonic sort are Opn log nq and Opn log2 nq, respectively, and can thus not be
expressed by polynomials. However, the analysis computes quadratic and cubic
bounds that are asymptotically optimal if we only consider polynomial bounds.

More interesting are sorting algorithms for lists of lists, where the comparisons
need linear instead of constant time. In these algorithms we can often perform
the comparisons in parallel. For instance, the analysis computes asymptotically
tight bounds for quick sort for lists of lists of integers (quicksort list, see Table 1).

Set Operations. We implemented sets as unsorted lists without duplicates.
Most list operations such as intersection (Table 1), difference (see [16]), and
union (see [16]) have linear depth and quadratic work. The analysis finds these
asymptotically tight bounds.

The function product computes the Cartesian product of two sets. Work
and depth of product are both linear and the analysis finds asymptotically tight
bounds. However, the constant factors in the parallel evaluation are much smaller.

Miscellaneous. The function max weight (Table 1) computes the maximal weight
of a (connected) sublist of an integer list. The weight of a list is simply the sum
of its elements. The work of the algorithm is quadratic but the depth is linear.

481



22 Jan Hoffmann and Zhong Shao

Finally, there is a large class of programs that have non-polynomial work
but polynomial depth. Since the analysis can only compute polynomial bounds
we can only derive bounds on the depth for such programs. A simple example
in Table 1 is the function fib that computes the Fibonacci numbers without
memoization.

Parallel List Comprehensions. The aforementioned examples are all imple-
mented without using parallel list comprehensions. Parallel list comprehensions
have a better asymptotic behavior than semantically-equivalent recursive func-
tions in RAML’s current resource metric for evaluation steps.

A simple example is the function dyad comp which is equivalent to dyad and
which is implemented with the expression ttx ˚ y : y in ysu : x in xsu. As listed
in Table 1, the depth of dyad comp is constant while the depth of dyad is linear.
RAML computes tight bounds.

A more involved example is the function find that finds a given integer list
(needle) in another list (haystack). It returns the starting indices of each occur-
rence of the needle in the haystack. The algorithm is described by Blelloch [15]
and cleverly uses parallel list comprehensions to perform the search in parallel.
RAML computes asymptotically tight bounds on the work and depth.

Discussion. Our experiments show that the range of the analysis is not reduced
when deriving bounds on the depth: The prototype implementation can always
infer bounds on the depth of a program if it can infer bounds on the sequential
version of the program. The derivation of bounds for parallel programs is also
almost as efficient as the derivation of bounds for sequential programs.

We experimentally compared the derived worst-case bounds with the measured
work and depth of evaluations with different inputs. In most cases, the derived
bounds on the depth are asymptotically tight and the constant factors are close
or equal to the optimal ones. As a representative example, the full version of the
article contains plots of our experiments for quick sort for lists of lists.

8 Related Work

Automatic amortized resource analysis was introduced by Hofmann and Jost for
a strict first-order functional language [3]. The technique has been applied to
higher-order functional programs [22], to derive stack-space bounds for functional
programs [23], to functional programs with lazy evaluation [4], to object-oriented
programs [24, 25], and to low-level code by integrating it with separation logic [26].
All the aforementioned amortized-analysis–based systems are limited to linear
bounds. The polynomial potential functions that we use in this paper were
introduced by Hoffmann et al. [19, 13, 7]. In contrast to this work, none of the
previous works on amortized analysis considered parallel evaluation. The main
technical innovation of this work is the new rule for parallel composition that is
not straightforward. The smooth integration of this rule in the existing framework
of multivariate amortized resource analysis is a main advantages of our work.

Type systems for inferring and verifying cost bounds for sequential programs
have been extensively studied. Vasconcelos et al. [27, 1] described an automatic
analysis system that is based on sized-types [28] and derives linear bounds for

482



Automatic Static Cost Analysis for Parallel Programs 23

higher-order sequential functional programs. Dal Lago et al. [29, 30] introduced
linear dependent types to obtain a complete analysis system for the time complex-
ity of the call-by-name and call-by-value lambda calculus. Crary and Weirich [31]
presented a type system for specifying and certifying resource consumption.
Danielsson [32] developed a library, based on dependent types and manual cost
annotations, that can be used for complexity analyses of functional programs.
We are not aware of any type-based analysis systems for parallel evaluation.

Classically, cost analyses are often based on deriving and solving recurrence
relations. This approach was pioneered by Wegbreit [33] and has been extensively
studied for sequential programs written in imperative languages [6, 34] and
functional languages [35, 2].

In comparison, there has been little work done on the analysis of parallel
programs. Albert et al. [36] use recurrence relations to derive cost bounds for
concurrent object-oriented programs. Their model of concurrent imperative
programs that communicate over a shared memory and the used cost measure is
however quite different from the depth of functional programs that we study.

The only article on using recurrence relations for deriving bounds on parallel
functional programs that we are aware of is a technical report by Zimmermann [37].
The programs that were analyzed in this work are fairly simple and more involved
programs such as sorting algorithms seem to be beyond its scope. Additionally, the
technique does not provide the compositionality of amortized resource analysis.

Trinder et al. [38] give a survey of resource analysis techniques for parallel and
distributed systems. However, they focus on the usage of analyses for sequential
programs to improve the coordination in parallel systems. Abstract interpretation
based approaches to resource analysis [5, 39] are limited to sequential programs.

Finally, there exists research that studies cost models to formally analyze
parallel programs. Blelloch and Greiner [10] pioneered the cost measures work
and depth that we use in this work. There are more advanced cost models that
take into account caches and IO (see, e.g., Blelloch and Harper [11]), However,
these works do not provide machine support for deriving static cost bounds.

9 Conclusion

We have introduced the first type-based cost analysis for deriving bounds on
the depth of evaluations of parallel function programs. The derived bounds are
multivariate resource polynomials that can express a wide range of relations
between different parts of the input. As any type system, the analysis is naturally
compositional. The new analysis system has been implemented in Resource Aware
ML (RAML) [14]. We have performed a thorough and reproducible experimental
evaluation with typical examples from functional programming that shows the
practicability of the approach.

An extension of amortized resource analysis to handle non-polynomial bounds
such as max and log in a compositional way is an orthogonal research question
that we plan to address in the future. A promising direction that we are currently
studying is the use of numerical logical variables to guide the analysis to derive
non-polynomial bounds. The logical variables would be treated like regular

483



24 Jan Hoffmann and Zhong Shao

variables in the analysis. However, the user would be responsible for maintaining
and proving relations such as a “ log n where a is a logical variable an n is
the size of a regular data structure. In this way, we would gain flexibility while
maintaining the compositionality of the analysis.

Another orthogonal question is the extension of the analysis to additional
language features such as higher-order functions, references, and user-defined
data structures. These extensions have already been implemented in a prototype
and pose interesting research challenges in there own right. We plan to report on
them in a forthcoming article.

Acknowledgments. This research is based on work supported in part by NSF
grants 1319671 and 1065451, and DARPA grants FA8750-10-2-0254 and FA8750-
12-2-0293. Any opinions, findings, and conclusions contained in this document
are those of the authors and do not reflect the views of these agencies.

References

1. Vasconcelos, P.: Space Cost Analysis Using Sized Types. PhD thesis, School of
Computer Science, University of St Andrews (2008)

2. Danner, N., Paykin, J., Royer, J.S.: A Static Cost Analysis for a Higher-Order Lan-
guage. In: 7th Workshop on Prog. Languages Meets Prog. Verification (PLPV’13).
(2013) 25–34

3. Hofmann, M., Jost, S.: Static Prediction of Heap Space Usage for First-Order
Functional Programs. In: 30th ACM Symp. on Principles of Prog. Langs. (POPL’03).
(2003) 185–197

4. Simões, H.R., Vasconcelos, P.B., Florido, M., Jost, S., Hammond, K.: Automatic
Amortised Analysis of Dynamic Memory Allocation for Lazy Functional Programs.
In: 17th Int. Conf. on Funct. Prog. (ICFP’12). (2012) 165–176

5. Gulwani, S., Mehra, K.K., Chilimbi, T.M.: SPEED: Precise and Efficient Static
Estimation of Program Computational Complexity. In: 36th ACM Symp. on
Principles of Prog. Langs. (POPL’09). (2009) 127–139

6. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost Analysis of
Java Bytecode. In: 16th Euro. Symp. on Prog. (ESOP’07). (2007) 157–172

7. Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate Amortized Resource Analysis.
ACM Trans. Program. Lang. Syst. (2012)

8. Brockschmidt, M., Emmes, F., Falke, S., Fuhs, C., Giesl, J.: Alternating Runtime
and Size Complexity Analysis of Integer Programs. In: Tools and Alg. for the
Constr. and Anal. of Systems - 20th Int. Conf. (TACAS’14). (2014) 140–155

9. Sinn, M., Zuleger, F., Veith, H.: A Simple and Scalable Approach to Bound Analysis
and Amortized Complexity Analysis. In: Computer Aided Verification - 26th Int.
Conf. (CAV’14). (2014) 743–759

10. Blelloch, G.E., Greiner, J.: A Provable Time and Space Efficient Implementation
of NESL. In: 1st Int. Conf. on Funct. Prog. (ICFP’96). (1996) 213–225

11. Blelloch, G.E., Harper, R.: Cache and I/O Efficent Functional Algorithms. In: 40th
ACM Symp. on Principles Prog. Langs. (POPL’13). (2013) 39–50

12. Harper, R.: Practical Foundations for Programming Languages. Cambridge Uni-
versity Press (2012)

13. Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate Amortized Resource Analysis.
In: 38th ACM Symp. on Principles of Prog. Langs. (POPL’11). (2011)

484



Automatic Static Cost Analysis for Parallel Programs 25

14. Hoffmann, J., Aehlig, K., Hofmann, M.: Resource Aware ML. In: 24rd Int. Conf.
on Computer Aided Verification (CAV’12). (2012)

15. Blelloch, G.E.: Nesl: A nested data-parallel language (version 3.1). Technical
Report CMU-CS-95-170, CMU (1995)

16. Aehlig, K., Hofmann, M., Hoffmann, J.: RAML Web Site. http://raml.tcs.ifi.

lmu.de (2010-2014)

17. Hoffmann, J., Shao, Z.: Automatic Static Cost Analysis for Parallel Programs. http:
//cs.yale.edu/~hoffmann/papers/parallelcost2014.pdf (2014) Full Version.

18. Charguéraud, A.: Pretty-Big-Step Semantics. In: 22nd Euro. Symp. on Prog.
(ESOP’13). (2013) 41–60

19. Hoffmann, J., Hofmann, M.: Amortized Resource Analysis with Polynomial Poten-
tial. In: 19th Euro, Symp. on Prog. (ESOP’10). (2010)

20. Hoffmann, J., Shao, Z.: Type-Based Amortized Resource Analysis with Integers and
Arrays. In: 12th International Symposium on Functional and Logic Programming
(FLOPS’14). (2014)

21. Hoffmann, J., Hofmann, M.: Amortized Resource Analysis with Polymorphic
Recursion and Partial Big-Step Operational Semantics. In: Prog. Langs. and
Systems - 8th Asian Symposium (APLAS’10). (2010)

22. Jost, S., Hammond, K., Loidl, H.W., Hofmann, M.: Static Determination of
Quantitative Resource Usage for Higher-Order Programs. In: 37th ACM Symp. on
Principles of Prog. Langs. (POPL’10). (2010) 223–236

23. Campbell, B.: Amortised Memory Analysis using the Depth of Data Structures.
In: 18th Euro. Symp. on Prog. (ESOP’09). (2009) 190–204

24. Hofmann, M., Jost, S.: Type-Based Amortised Heap-Space Analysis. In: 15th Euro.
Symp. on Prog. (ESOP’06). (2006) 22–37

25. Hofmann, M., Rodriguez, D.: Automatic Type Inference for Amortised Heap-Space
Analysis. In: 22nd Euro. Symp. on Prog. (ESOP’13). (2013) 593–613

26. Atkey, R.: Amortised Resource Analysis with Separation Logic. In: 19th Euro.
Symp. on Prog. (ESOP’10). (2010) 85–103

27. Vasconcelos, P.B., Hammond, K.: Inferring Costs for Recursive, Polymorphic and
Higher-Order Functional Programs. In: Int. Workshop on Impl. of Funct. Langs.
(IFL’03), Springer-Verlag LNCS (2003) 86–101

28. Hughes, J., Pareto, L., Sabry, A.: Proving the Correctness of Reactive Systems
Using Sized Types. In: 23th ACM Symp. on Principles of Prog. Langs. (POPL’96).
(1996) 410–423

29. Lago, U.D., Gaboardi, M.: Linear Dependent Types and Relative Completeness.
In: 26th IEEE Symp. on Logic in Computer Science (LICS’11). (2011) 133–142

30. Lago, U.D., Petit, B.: The Geometry of Types. In: 40th ACM Symp. on Principles
Prog. Langs. (POPL’13). (2013) 167–178

31. Crary, K., Weirich, S.: Resource Bound Certification. In: 27th ACM Symp. on
Principles of Prog. Langs. (POPL’00). (2000) 184–198

32. Danielsson, N.A.: Lightweight Semiformal Time Complexity Analysis for Purely
Functional Data Structures. In: 35th ACM Symp. on Principles Prog. Langs.
(POPL’08). (2008) 133–144

33. Wegbreit, B.: Mechanical Program Analysis. Commun. ACM 18(9) (1975) 528–539

34. Alonso-Blas, D.E., Genaim, S.: On the limits of the classical approach to cost
analysis. In: 19th Int. Static Analysis Symposium (SAS’12). (2012) 405–421

35. Grobauer, B.: Cost Recurrences for DML Programs. In: 6th Int. Conf. on Funct.
Prog. (ICFP’01). (2001) 253–264

485



26 Jan Hoffmann and Zhong Shao

36. Albert, E., Arenas, P., Genaim, S., Gómez-Zamalloa, M., Puebla, G.: Cost Analysis
of Concurrent OO Programs. In: Prog. Langs. and Systems - 9th Asian Symposium
(APLAS’11). (2011) 238–254

37. Zimmermann, W.: Automatic Worst Case Complexity Analysis of Parallel Programs.
Technical Report TR-90-066, University of California, Berkeley (1990)

38. Trinder, P.W., Cole, M.I., Hammond, K., Loidl, H.W., Michaelson, G.: Resource
Analyses for Parallel and Distributed Coordination. Concurrency and Computation:
Practice and Experience 25(3) (2013) 309–348

39. Zuleger, F., Sinn, M., Gulwani, S., Veith, H.: Bound Analysis of Imperative Programs
with the Size-change Abstraction. In: 18th Int. Static Analysis Symposium (SAS’11).
(2011)

486



Compositional Certified Resource Bounds

Quentin Carbonneaux Jan Hoffmann Zhong Shao
Yale University, USA

{quentin.carbonneaux, jan.hoffmann, zhong.shao}@yale.edu

Abstract
This paper presents a new approach for automatically deriving worst-
case resource bounds for C programs. The described technique
combines ideas from amortized analysis and abstract interpretation
in a unified framework to address four challenges for state-of-
the-art techniques: compositionality, user interaction, generation
of proof certificates, and scalability. Compositionality is achieved
by incorporating the potential method of amortized analysis. It
enables the derivation of global whole-program bounds with local
derivation rules by naturally tracking size changes of variables in
sequenced loops and function calls. The resource consumption
of functions is described abstractly and a function call can be
analyzed without access to the function body. User interaction is
supported with a new mechanism that clearly separates qualitative
and quantitative verification. A user can guide the analysis to
derive complex non-linear bounds by using auxiliary variables and
assertions. The assertions are separately proved using established
qualitative techniques such as abstract interpretation or Hoare
logic. Proof certificates are automatically generated from the local
derivation rules. A soundness proof of the derivation system with
respect to a formal cost semantics guarantees the validity of the
certificates. Scalability is attained by an efficient reduction of bound
inference to a linear optimization problem that can be solved by
off-the-shelf LP solvers. The analysis framework is implemented
in the publicly-available tool C4B. An experimental evaluation
demonstrates the advantages of the new technique with a comparison
of C4B with existing tools on challenging micro benchmarks and
the analysis of more than 2900 lines of C code from the cBench
benchmark suite.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Verification, Reliability

Keywords Quantitative Verification, Resource Bound Analysis,
Static Analysis, Amortized Analysis, LP Solving, Program Logic

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PLDI’15, June 13–17, 2015, Portland, OR, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3468-6/15/06. . . $15.00.
http://dx.doi.org/10.1145/2737924.2737955

1. Introduction
In software engineering and software verification, we often would
like to have static information about the quantitative behavior of
programs. For example, stack and heap-space bounds are important
to ensure the reliability of safety-critical systems [37]. Static energy
usage information is critical for autonomous systems and has
applications in cloud computing [17, 18]. Worst-case time bounds
can help create constant-time implementations that prevent side-
channel attacks [9, 32]. Loop and recursion-depth bounds are
used to ensure the accuracy of programs that are executed on
unreliable hardware [14] and complexity bounds are needed to
verify cryptographic protocols [8]. In general, quantitative resource
information can provide useful feedback for developers.

Available techniques for automatically deriving worst-case re-
source bounds fall into two categories. Techniques in the first cate-
gory derive impressive bounds for numerical imperative programs,
but are not compositional. This is problematic if one needs to derive
global whole-program bounds. Techniques in the second category
derive tight whole-program bounds for programs with regular loop
or recursion patterns that decrease the size of an individual variable
or data structure. They are highly compositional, scale for large
programs, and work directly on the syntax. However, they do not
support multivariate interval-based resource bounds (e.g., x ´ y)
which are common in C programs. Indeed, it has been a long-time
open problem to develop compositional resource analysis techniques
that can work for typical imperative code with non-regular iteration
patterns, signed integers, mutation, and non-linear control flow.

Tools in the first category include SPEED [22], KoAT [13],
PUBS [1], Rank [3], and LOOPUS [38]. They lack compositionality
in at least two ways. First, they all base their analysis on some form
of ranking function or counter instrumentation that is linked to a
local analysis. As a result, loop bounds are arithmetic expressions
that depend on the values of variables just before the loop. This
makes it hard to give a resource bound on a sequence of loops and
function calls in terms of the input parameters of a function. Second,
while all popular imperative programming languages provide a
function or procedure abstraction, available tools are not able to
abstract resource behavior; instead, they have to inline the procedure
body to perform their analysis.

Tools in the second category originate form the potential method
of amortized analysis and type systems for functional programs [26,
28]. It has been shown that class definitions of object-oriented pro-
grams [29] and data-structure predicates of separation logic [7] can
play the role of the type system in imperative programs. However, a
major weakness of existing potential-based techniques is that they
can only associate potential with individual program variables or
data structures. For C programs, this fails for loops as simple as
for(i=x;i<y;i++) where y ´ i decreases, but not |i|.

A general problem with existing tools (in both categories) is
user interaction. When a tool fails to find a resource bound for a
program, there is no possibility for sound user interaction to guide

487



the tool during bound derivation. For example, there is no concept
of manual proofs of resource bounds; and no framework can support
composition of manually derived bounds with automatically inferred
bounds.

This paper presents a new compositional framework for automat-
ically deriving resource bounds on C programs. This new approach
is an attempt to unify the two aforementioned categories: It solves
the compositionality issues of techniques for numerical imperative
code by adapting amortized-analysis–based techniques from the
functional world. Our automated analysis is able to infer resource
bounds on C programs with mutually-recursive functions and inte-
ger loops. The resource behavior of functions can be summarized in
a functional specification that can be used at every call site without
accessing the function body. To our knowledge this is the first tech-
nique based on amortized analysis that is able to derive bounds that
depend on negative numbers and differences of variables. It is also
the first resource analysis technique for C that deals naturally with
recursive functions and sequenced loops, and can handle resources
that may become available during execution (e.g., when freeing
memory). Compared to more classical approaches based on rank-
ing functions, our tool inherits the benefits of amortized reasoning.
Using only one simple mechanism, it handles:

• interactions between sequential loops or function calls through
size changes of variables,
• nested loops that influence each other with the same set of

modified variables,
• and amortized bounds as found, for example, in the Knuth-

Morris-Pratt algorithm for string search.

The main innovations that make amortized analysis work on imper-
ative languages are to base the analysis on a Hoare-like logic and
to track multivariate quantities instead of program variables. This
leads to precise bounds expressed as functions of sizes |rx, ys| “
maxp0, y ´ xq of intervals. A distinctive feature of our analysis
system is that it reduces linear bound inference to a linear optimiza-
tion problem that can be solved by off-the-shelf LP solvers. This
enables the efficient inference of global bounds for larger programs.
Moreover, our local inference rules automatically generate proof
certificates that can be easily checked in linear time.

The use of the potential method of amortized analysis makes
user interaction possible in different ways. For one thing, we can
directly combine the new automatic analysis with manually derived
bounds in a previously-developed quantitative Hoare logic [15] (see
Section 7). For another thing, we describe a new mechanism that
allows the separation of quantitative and qualitative verification
(see Section 6). Using this mechanism, the user can guide the
analysis by using auxiliary variables and logical assertions that
can be verified by existing qualitative tools such as Hoare logic or
abstract interpretation. In this way, we can benefit from existing
automation techniques and provide a middle-ground between fully
automatic and fully manual verification for bound derivation. This
enables the semi-automatic inference of non-linear bounds, such as
polynomial, logarithmic, and exponential bounds.

We have implemented the analysis system in the tool C4B and
experimentally evaluated its effectiveness by analyzing system code
and examples from the literature. C4B has automatically derived
global resource bounds for more than 2900 lines of C code from the
cBench benchmark suite. The extended version of this article [16]
contains more than 30 challenging loop and recursion patterns that
we collected from open source software and the literature. Our
analysis can find asymptotically tight bounds for all but one of these
patterns, and in most cases the derived constant factors are tight.
To compare C4B with existing techniques, we tested our examples
with tools such as KoAT [13], Rank [3], and LOOPUS [38]. Our

experiments show that the bounds that we derive are often more
precise than those derived by existing tools. Only LOOPUS [38],
which also uses amortization techniques, is able to achieve a similar
precision.

Examples from cBench and micro benchmarks demonstrate the
practicality and expressiveness of the user guided bound inference.
For example, we derive a logarithmic bound for a binary search
function and a bound that amortizes the cost of k increments to a
binary counter (see Section 6).

In summary, we make the following contributions.

• We develop the first automatic amortized analysis for C pro-
grams. It is naturally compositional, tracks size changes of vari-
ables to derive global bounds, can handle mutually-recursive
functions, generates resource abstractions for functions, derives
proof certificates, and handles resources that may become avail-
able during execution.
• We show how to automatically reduce the inference of linear

resource bounds to efficient LP solving.
• We describe a new method of harnessing existing qualitative

verification techniques to guide the automatic amortized analysis
to derive non-linear resource bounds with LP solving.
• We prove the soundness of the analysis with respect to a

parametric cost semantics for C programs. The cost model can
be further customized with function calls (tickpnq) that indicate
resource usage.
• We implemented our resource bound analysis in the publicly-

available tool C4B.
• We present experiments with C4B on more than 2900 lines of

C code. A detailed comparison shows that our prototype is the
only tool that can derive global bounds for larger C programs
while being as powerful as existing tools when deriving linear
local bounds for tricky loop and recursion patterns.

2. The Potential Method
The idea that underlies the design of our framework is amortized
analysis [39]. Assume that a program S executes on a starting state
σ and consumes n resource units of some user-defined quantity. We
denote that by writing pS, σq ón σ1 where σ1 is the program state
after the execution. The basic idea of amortized analysis is to define
a potential function Φ that maps program states to non-negative
numbers and to show that Φpσq ě n if σ is a program state such
that pS, σq ón σ1. Then Φpσq is a valid resource bound.

To obtain a compositional reasoning we also have to take into
account the state resulting from a program’s execution. We thus use
two potential functions, one that applies before the execution, and
one that applies after. The two functions must respect the relation
Φpσq ě n` Φ1pσ1q for all states σ and σ1 such that pS, σq ón σ1.
Intuitively, Φpσq must provide enough potential for both, paying for
the resource cost of the computation and paying for the potential
Φ1pσ1q on the resulting state σ1. That way, if pσ, S1q ón σ1 and
pσ1, S2q óm σ2, we get Φpσq ě n ` Φ1pσ1q and Φ1pσ1q ě
m`Φ2pσ2q. This can be composed as Φpσq ě pn`mq`Φ2pσ2q.
Note that the initial potential function Φ provides an upper bound
on the resource consumption of the whole program. What we have
observed is that, if we define tΦuS tΦ1u to mean

@σ nσ1. pσ, Sq ón σ
1
ùñ Φpσq ě n` Φ1pσ1q ,

then we get the following familiar looking rule

tΦuS1 tΦ
1
u tΦ1uS2 tΦ

2
u

tΦuS1;S2 tΦ
2
u .

488



t¨; 0` T
K
¨|rx, ys|u

while (x+K<=y) {

tx`K ď y; 0` T
K
¨|rx, ys|u

x=x+K;

tx ď y; T ` T
K
¨|rx, ys|u

tick(T);

tx ď y; 0` T
K
¨|rx, ys|u

}

tx ě y; 0` T
K
¨|rx, ys|u

Figure 1. Derivation of a tight bound on the number of ticks for
a standard for loop. The parameters K ą 0 and T ą 0 are not
program variables but denote concrete constants.

This rule already shows a departure from classical techniques that are
based on ranking functions. Reasoning with two potential functions
promotes compositional reasoning by focusing on the sequencing of
programs. In the previous rule, Φ gives a bound for S1;S2 through
the intermediate potential Φ1, even though it was derived on S1 only.
Similarly, other language constructs lead to rules for the potential
functions that look very similar to Hoare logic or effect system rules.
These rules enable reasoning about resource usage in a flexible and
compositional way, which, as a side effect, produces a certificate for
the derived resource bound.

The derivation of a resource bound using potential functions is
best explained by example. If we use the tick metric that assigns
cost n to the function call tickpnq and cost 0 to all other operations
then the cost of the following example can be bounded by |rx, ys| “
maxpy´x, 0q.

while (x<y) { x=x+1; tick(1); } (Example 1)

To derive this bound, we start with the initial potential Φ0 “ |rx, ys|,
which we also use as the loop invariant. For the loop body we have
(like in Hoare logic) to derive a triple tΦ0u x “ x` 1; tickp1q tΦ0u.
We can only do so if we utilize the fact that x ă y at the beginning
of the loop body. The reasoning then works as follows. We start
with the potential |rx, ys| and the fact that |rx, ys| ą 0 before
the assignment. If we denote the updated version of x after the
assignment by x1 then the relation |rx, ys| “ |rx1, ys| ` 1 between
the potential before and after the assignment x “ x` 1 holds. This
means that we have the potential |rx, ys| ` 1 before the statement
tickp1q. Since tickp1q consumes one resource unit, we end up with
potential |rx, ys| after the loop body and have established the loop
invariant again.

Figure 1 shows a derivation of the bound T
K
¨|rx, ys| on the

number of ticks for a generalized version of Example 1 in which we
increment x by a constant K ą 0 and consume T ą 0 resources
in each iteration. The reasoning is similar to the one of Example 1
except that we obtain the potential K¨ T

K
after the assignment. In

the figure, we separate logical assertions from potential functions
with semicolons. Note that the logical assertions are only used in
the rule for the assignment x “ x` K.

To the best of our knowledge, no other implemented tool for C is
currently capable of deriving a tight bound on the cost of such a loop.
For T “ 1 (many systems focus on the number of loop iterations
without a cost model) and K “ 10, KoAT computes the bound
|x| ` |y| ` 10, Rank computes the bound y ´ x´ 7, and LOOPUS
computes the bound y´x´9. Only PUBS computes the tight bound
0.1py ´ xq if we translate the program into a term-rewriting system
by hand. We will show in the following sections that the potential
method makes automatic bound derivation straightforward.

The concept of a potential function is a generalization of the
concept of a ranking function. A potential function can be used like

a ranking function if we use the tick metric and add the statement
tickp1q to every back edge of the program (loops and function calls).
However, a potential function is more flexible. For example, we can
use a potential function to prove that Example 2 does not consume
any resources in the tick metric.

while (x<y) {tick(-1); x=x+1; tick(1)} (Example 2)

while (x<y) { x=x+1; tick(10); } (Example 3)

Similarly we can prove that Example 3 can be bounded by 10|rx, ys|.
In both cases, we reason exactly like in the first version of the while
loop to prove the bound. Of course, such loops with different tick
annotations can be seamlessly combined in a larger program.

3. Compositional Resource-Bound Analysis
In this section we describe the high-level design of the automatic
amortized analysis that we implemented in C4B. Examples explain
and motivate our design decisions.

Linear Potential Functions. To find resource bounds automati-
cally, we first need to restrict our search space. In this work, we fo-
cus on the following form of potential functions, which can express
tight bounds for many typical programs and allows for inference
with linear programming.

Φpσq “ q0 `
ÿ

x,yPdompσq^x‰y

qpx,yq ¨ |rσpxq, σpyqs| .

Here σ : pLocals Ñ Zq ˆ pGlobals Ñ Zq is a simplified
program state that maps variable names to integers, |ra, bs| “
maxp0, b ´ aq, and qi P Q`0 . To simplify the references to the
linear coefficients qi, we introduce an index set I . This set is
defined to be t0u Y tpx, yq | x, y P Var ^ x ‰ yu. Each index
i corresponds to a base function fi in the potential function: 0
corresponds to the constant function σ ÞÑ 1, and px, yq corresponds
to σ ÞÑ |rσpxq, σpyqs|. Using these notations we can rewrite the
above equality as Φpσq “

ř

iPI qifipσq.We often write xy to
denote the index px, yq. This allows us to uniquely represent any
linear potential function Φ as a quantitative annotationQ “ pqiqiPI ,
that is, a family of non-negative rational numbers where only a finite
number of elements are not zero.

In the potential functions, we treat constants as global variables
that cannot be assigned to. For example, if the program contains the
constant 1988 then we have a variable c1988 and σpc1988q “ 1988.
We assume that every program state includes the constant c0.

Abstract Program State. In addition to the quantitative annota-
tions, our automatic amortized analysis needs to maintain a minimal
abstract state to justify certain operations on quantitative annotations.
For example when analyzing the code x Ð x` y, it is helpful to
know the sign of y to determine which intervals will increase or
decrease. The knowledge needed by our rules can be inferred by
local reasoning (i.e. in basic blocks without recursion and loops)
within usual theories (e.g. Presburger arithmetic or bit vectors).

The abstract program state is represented as logical contexts in
the derivation system used by our automated tool. Our implementa-
tion finds these logical contexts using abstract interpretation with
the domain of linear inequalities. We observed that the rules of the
analysis often require only minimal local knowledge. This means
that it is not necessary for us to compute precise loop invariants and
only a rough fixpoint (e.g. keeping only inequalities on variables
unchanged by the loop) is sufficient to obtain good bounds.

Challenging Loops. One might think that our set of potential
functions is too simplistic to be able to express and prove bounds
for realistic programs. Nevertheless, we can handle challenging
example programs without special tricks or techniques. Examples

489



while (n>x) {
tnąx; |rx, ns|`|ry,ms|u
if (m>y)
tmąy; |rx, ns|`|ry,ms|u
y=y+1;
t¨; 1`|rx, ns|`|ry,ms|u

else
tnąx; |rx, ns|`|ry,ms|u
x=x+1;
t¨; 1`|rx, ns|`|ry,ms|u

t¨; 1`|rx, ns|`|ry,ms|u
tick(1);

} t¨; |rx, ns|`|ry,ms|u

|rx, ns| ` |ry,ms|

speed 1

while (x<n) {
txăn; |rx, ns|`|rz, ns|u
if (z>x)
txăn; |rx, ns|`|rz, ns|u
x=x+1;
t¨; 1`|rx, ns|`|rz, ns|u

else
tzďx, xăn; |rx, ns|`|rz, ns|u
z=z+1;
t¨; 1`|rx, ns|`|rz, ns|u

t¨; 1`|rx, ns|`|rz, ns|u
tick(1);

} t¨; |rx, ns|`|rz, ns|u

|rx, ns| ` |rz, ns|

speed 2

while (z-y>0) {
tyăz; 3.1|ry, zs|`0.1|r0, ys|u
y=y+1;
t¨; 3`3.1|ry, zs|`0.1|r0, ys|u
tick(3);
t¨; 3.1|ry, zs|`0.1|r0, ys|u

}
t¨; 3.1|ry, zs|`0.1|r0, ys|u
while (y>9) {
tyą9; 3.1|ry, zs|`0.1|r0, ys|u
y=y-10;
t¨; 1`3.1|ry, zs|`0.1|r0, ys|u
tick(1);

} t¨; 3.1|ry, zs|`0.1|r0, ys|u

3.1|ry, zs| ` 0.1|r0, ys|

t08a

while (n<0) {
tnă0; P pn, yqu
n=n+1;
t¨; 59`P pn, yqu
y=y+1000;
t¨; 9`P pn, yqu
while (y>=100 && *){
tyą99; 9`P pn, yqu
y=y-100;
t¨; 14`P pn, yqu
tick(5);

} t¨; 9`P pn, yqu
tick(9);

} t¨; P pn, yqu

59|rn, 0s|`0.05|r0, ys|

t27

Figure 2. Derivations of bounds on the number of ticks for challenging examples. Examples speed 1 and speed 2 (from [22]) use tricky
iteration patterns, t08a contains sequential loops so that the iterations of the second loop depend on the first, and t27 contains interacting
nested loops. In Example t27, we use the abbreviation P pn, yq :“ 59|rn, 0s|`0.05|r0, ys|.

void c_down (int x,int y) {
if (x>y) {tick(1); c_up(x-1,y);}

}
void c_up (int x, int y) {

if (y+1<x) {tick(1); c_down(x,y+2);}
}

0.33` 0.67|ry, xs| (c downpx, yq)
0.67|ry, xs| (c uppx, yq)

t39

for (; l>=8; l-=8)
/* process one block */
tick(N);

for (; l>0; l--)
/* save leftovers */
tick(1);

N
8
|r0, ls| if N ě 8

7 8´N
8
` N

8
|r0, ls| if N ă 8

t61

for (;;) {
do { l++; tick(1); }

while (l<h && *);
do { h--; tick(1); }

while (h>l && *);
if (h<=l) break;
tick(1); /* swap elems. */ }

2` 3|rl, hs|

t62

Figure 3. Example t39 shows two mutually-recursive functions with the computed tick bounds. Example t61 and t62 demonstrate the unique
compositionality of our system. In t61, N ě 0 is a fixed but arbitrary constant.

speed 1 and speed 2 in Figure 2, which are taken from previous
work [22], demonstrate that our method can handle tricky iteration
patterns. The SPEED tool [22] derives the same bounds as our
analysis but requires heuristics for its counter instrumentation. These
loops can also be handled with inference of disjunctive invariants,
but in the abstract interpretation community, these invariants are
known to be notoriously difficult to generate. In Example speed 1
we have one loop that first increments variable y up to m and
then increments variable x up to n. We derive the tight bound
|rx, ns| ` |ry,ms|. Example speed 2 is even trickier, and we found
it hard to find a bound manually. However, using potential transfer
reasoning as in amortized analysis, it is easy to prove the tight bound
|rx, ns| ` |rz, ns|.

Nested and Sequenced Loops. Example t08a in Figure 2 shows
the ability of the analysis to discover interaction between sequenced
loops through size change of variables. We accurately track the size
change of y in the first loop by transferring the potential 0.1 from
|ry, zs| to |r0, ys|. Furthermore, t08a shows again that we do not
handle the constants 1 or 0 in any special way. In all examples we
could replace 0 and 1 with other constants like in the second loop
and still derive a tight bound. Example t27 in Figure 2 shows how
amortization can be used to handle interacting nested loops. In the
outer loop we increment the variable n until n “ 0. In each of the
|rn, 0s| iterations, we increment the variable y by 1000. Then we
non-deterministically (expressed by ˚) execute an inner loop that
decrements y by 100 until y ă 100. The analysis discovers that

only the first execution of the inner loop depends on the initial value
of y. We again derive tight constant factors.

Mutually Recursive Functions. As mentioned, the analysis also
handles advanced control flow like break and return statements, and
mutual recursion. Example t39 in Figure 3 contains two mutually-
recursive functions with their automatically derived tick bounds.
The function c down decrements its first argument x until it reaches
the second argument y. It then recursively calls the function c up,
which is dual to c down. Here, we count up y by 2 and call c down.
C4B is the only available system that computes a tight bound.

Compositionality. With two concrete examples from open-source
projects we demonstrate that the compositionality of our method is
indeed crucial in practice.

Example t61 in Figure 3 is typical for implementations of block-
based cryptographic primitives: Data of arbitrary length is consumed
in blocks and the leftover is stored in a buffer for future use when
more data is available. It is present in all the block encryption
routines of PGP and also used in performance critical code to unroll
a loop. For example we found it in a bit manipulating function of the
libtiff library and a CRC computation routine of MAD, an MPEG
decoder. This looping pattern is handled particularly well by our
method. If N ě 8, C4B infers the bound N

8
|r0, ls|, but if N ă 8,

it infers 7 8´N
8
` N

8
|r0, ls|. The selection of the block size (8) and

the cost in the second loop (tickp1q) are random choices and C4B
would also derive tight bound for other values.

490



To understand the resource bound for the case N ă 8, first note
that the cost of the second loop is |r0, ls|. After the first loop, we
still have N

8
|r0, ls| potential available from the invariant. So we

have to raise the potential of |r0, ls| from N
8

to 1, that is, we must
pay 8´N

8
|r0, ls|. But since we got out of the first loop, we know

that l ă 8, so it is sound to only pay 7 8´N
8

potential units instead.
This level of precision and compositionality is only achieved by our
novel analysis, no other available tool derives the aforementioned
tight bounds.

Example t62 (Figure 3) is the inner loop of a quick sort imple-
mentation in cBench. More precisely, it is the partitioning part of the
algorithm. This partition loop has linear complexity, and feeding it
to our analysis gives the worst-case bound 2` 3|rl, hs|. This bound
is not optimal but it can be refined by rewriting the program. To
understand the bound, we can reason as follows. If h ě l initially,
the cost of the loop is 2. Otherwise, the cost of each round (at most
3) can be payed using the potential of rl, hs by the first increment
to l because we know that l ă h. The two inner loops can also use
rl, hs to pay for their inner costs. KoAT fails to find a bound and
LOOPUS derives the quadratic bound ph´ l ´ 1q2. Following the
classical technique, these tools try to find one ranking function for
each loop and combine them multiplicatively or additively.

In the extended version [16] is a list of more than 30 classes of
challenging programs that we can automatically analyze. Section 8
contains a more detailed comparison with other tools.

4. Derivation System
In the following we describe the local and compositional derivation
rules of the automatic amortized analysis.

Cost Aware Clight. We present the rules for a subset of Clight.
Clight is the first intermediate language of the CompCert com-
piler [34]. It is a subset of C with a unified looping construct and
side-effect free expressions. We reuse most of CompCert’s syntax
but instrument the semantics with a resource metricM that accounts
for the cost (an arbitrary rational number) of each step in the oper-
ational semantics. For example, Mepexpq is the cost of evaluating
the expression exp. The rationals Mf and Mr account respectively
for the cost of a call to the function f and the cost of returning from
it. More details are provided in Section 7.

In the rules, assignments are restricted to the form x Ð y or
xÐ x˘ y. In the implementation, a Clight program is converted
into this form prior to analysis without changing the resource cost.
This is achieved by using a series of cost-free assignments that do
not result in additional cost in the semantics. Non-linear operations
such as x Ð z ˚ y or x Ð arys are handled by assigning 0 to
coefficients like qxa and qax that contain x after the assignment.
This sound treatment ensures that no further loop bounds depend on
the result of the non-linear operation.

Judgements. The derivation system for the automatic amortized
analysis is defined in Figure 4. The derivation rules derive judge-
ments of the form

pΓB ;QBq, pΓR;QRq $ tΓ;QuS tΓ1;Q1u.

The part tΓ;QuS tΓ1;Q1u of the judgement can be seen as a
quantitative Hoare triple. All assertions are split into two parts,
the logical part and the quantitative part. The quantitative part
Q represents a potential function as a collection of non-negative
numbers qi indexed by the index set I . The logical part Γ is left
abstract but is enforced by our derivation system to respect classic
Hoare logic constraints. The meaning of this basic judgment is as
follows: If S is executed with starting state σ, the assertions in Γ
hold, and at least Qpσq resources are available then the evaluation

does not run out of resources and, if the execution terminates in state
σ1, there are at least Q1pσ1q resources left and Γ1 holds for σ1.

The judgement is a bit more involved since we have to take into
account the early exit statements break and return. This is similar
to classical Hoare triples in the presence of non-linear control flow.
In the judgement, pΓB ;QBq is the postcondition that holds when
breaking out of a loop using break. Similarly, pΓR;QRq is the
postcondition that holds when returning from a function call.

As a convention, if Q and Q1 are quantitative annotations we
assume that Q “ pqiqiPI and Q1 “ pq1iqiPI . The notation Q ˘ n
used in many rules defines a new context Q1 such that q10 “ q0 ˘ n
and @i ‰ 0. q1i “ qi. In all the rules, we have the implicit side
condition that all rational coefficients are non-negative. Finally, if
a rule mentions Q and Q1 and leaves the latter undefined at some
index i we assume that q1i “ qi.

Function Specifications. During the analysis, function specifica-
tions are quadruples pΓf ;Qf ,Γ

1
f ;Q1f q where Γf ;Qf depend on

~args , and Γ1f ;Q1f depend on ret . These parameters are instantiated
by appropriate variables on call sites. A distinctive feature of our
analysis is that it respects the function abstraction: when deriving a
function specification it generates a set of constraints and the above
quadruple; once done, the constraint set can readily be reused for
every call site and the function need not be analyzed multiple times.
Therefore, the derivation rules are parametric in a function context
∆ that we leave implicit in the rules presented here. More details
can be found in the extended version.

Derivation Rules. The rules of our derivation system must serve
two purposes. They must attach potential to certain program vari-
able intervals and use this potential, when it is allowed, to pay for
resource consuming operations. These two purposes are illustrated
on the Q:SKIP rule. This rule reuses its precondition as postcon-
dition, it is explained by two facts: First, no resource is consumed
by the skip operation, thus no potential has to be used to pay for
the evaluation. Second, the program state is not changed by the
execution of a skip statement. Thus all potential available before the
execution of the skip statement is still available after.

The rules Q:INCP, Q:DECP, and Q:INC describe how the
potential is distributed after a size change of a variable. The rule
Q:INCP is for increments xÐ x`y and Q:DECP is for decrements
x Ð x ´ y. They both apply only when we can deduce from the
logical context Γ that y ě 0. Of course, there are symmetrical rules
Q:INCN and Q:DECN (not presented here) that can be applied if
y is negative. The rules are all equivalent in the case where y “ 0.
The rule Q:INC can be applied if we cannot find the sign of y.

To explain how rules for increment and decrement work, it is
sufficient to understand the rule Q:INCP. The others follow the same
idea and are symmetrical. In Q:INCP, the program updates a variable
x with x ` y where y ě 0. Since x is changed, the quantitative
annotation must be updated to reflect the change of the program state.
We write x1 for the value of x after the assignment. Since x is the
only variable changed, only intervals of the form ru, xs and rx, us
will be resized. Note that for any u, rx, us will get smaller with the
update, and if x1 P rx, us we have |rx, us| “ |rx, x1s| ` |rx1, us|.
But |rx, x1s| “ |r0, ys| which means that the potential q10y in
the postcondition can be increased by qxu under the guard that
x1 P rx, us. Dually, the interval rv, xs can get bigger with the update.
We know that |rv, x1s| ď y ` |rv, xs|. So we decrease the potential
of r0, ys by qvx to pay for this change. The rule ensures this only
for v R U because x ď v otherwise, and thus |rv, xs| “ 0.

The rule Q:LOOP is a cornerstone of our analysis. To apply it on
a loop body, one needs to find an invariant potential Q that will pay
for the iterations. At each iteration, Ml resources are spent to jump
back. This explains the postcondition Q`Ml. Since the loop can
only be exited with a break statement, the postcondition tΓ1;Q1u for

491



B,R $ tΓ;Qu skip tΓ;Qu
(Q:SKIP)

B,R $ tΓ;Q`Mau assert e tΓ^e;Qu
(Q:ASSERT)

B,R $ tΓ;Q`Mtpnqu tickpnq tΓ;Qu
(Q:TICK)

pΓ;QBq, R $ tΓ;QB`Mbu break tΓ1;Q1u
(Q:BREAK)

P “ QRrret{xs Γ “ ΓRrret{xs @i P dompP q. pi “ qi

B, pΓR;QRq $ tΓ;Qu return x tΓ1;Q1u
(Q:RETURN)

pΓ1;Q1q, R $ tΓ;QuS tΓ;Q`Mlu

B,R $ tΓ;Qu loop S tΓ1;Q1u
(Q:LOOP)

B,R $ tΓ;QuS1 tΓ
1;Q1`Msu B,R $ tΓ1;Q1uS2 tΓ

2;Q2u

B,R $ tΓ;QuS1;S2 tΓ
2;Q2u

(Q:SEQ)

B,R $ tΓ^e;Q´M1
c quS1 tΓ

1;Q1u
B,R $ tΓ^ e;Q´M2

c uS2 tΓ
1;Q1u

B,R $ tΓ;Q`Mepequ ifpeq S1 else S2 tΓ
1;Q1u

(Q:IF)

Γ |ù y ě 0 U “ tu | Γ |ù x` y P rx, usu
q10y “ q0y `

ř

uPU qxu ´
ř

vRU qvx

B,R $ tΓrx{x`ys;Q`Mu`Mepx`yquxÐ x` y tΓ;Q1u
(Q:INCP)

M “Mu `Mepx˘yq
q10y “ q0y ´

ř

v qvx q1y0 “ qy0 ´
ř

v qxv

B,R $ tΓrx{x˘ys;Q`MuxÐ x˘ y tΓ;Q1u
(Q:INC)

q1xy , q
1
yx P Q`0

@u.pqyu “ q1xu ` q
1
yu ^ quy “ q1ux ` q

1
uyq

B,R $ tΓrx{ys;Q`Mu`MepyquxÐ y tΓ;Q1u
(Q:SET)

Γ |ù y ě 0 U “ tu | Γ |ù x´ y P ru, xsu
q1y0 “ qy0 `

ř

uPU qux ´
ř

vRU qxv

B,R $ tΓrx{x´ys;Q`Mu`Mepx´yquxÐ x´ y tΓ;Q1u
(Q:DECP)

pΓf ;Qf ,Γ
1
f ;Q1f q P ∆pfq Loc “ LocalspQq @i ‰ j. xi ‰ xj c P Q`0 Q “ P ` S Q1 “ P 1 ` S U “ Qf r ~args{~xs

U 1 “ Q1f rret{rs @i P dompUq. pi “ ui @i P dompU 1q. p1i “ u1i @i R dompU 1q. p1i “ 0 @i R Loc. si “ 0

B,R $ tΓf r ~args{~xs^ΓLoc;Q`c`Mf u r Ð fp~xq tΓ1f rret{rs^ΓLoc;Q
1`c´Mru

(Q:CALL)

Σf “ p~y, Sf q
B, pΓ1f ;Q1f q $ tΓf r ~args{~ys;Qf r ~args{~ysuSf tΓ

1;Q1u

pΓf ;Qf ,Γ
1
f ;Q1f q P ∆pfq

(Q:EXTEND)

B,R $ tΓ2;Q2uS tΓ
1
2;Q12u Γ1 |ù Γ2

Q1 ľΓ1
Q2 Γ12 |ù Γ11 Q12 ľΓ1

2
Q11

B,R $ tΓ1;Q1uS tΓ
1
1;Q11u

(Q:WEAK)

L “ txy | DlxyPN .Γ |ù lxy ď |rx, ys|u U “ txy | DuxyPN .Γ |ù |rx, ys| ď uxyu
@i P U . q1i ě qi ´ ri @i P L. q1i ě qi ` pi @i R UYLYt0u. q1i ě qi q10 ě q0`

ř

iPU uiri ´
ř

iPL lipi

Q1 ľΓ Q
(RELAX)

Figure 4. Inference rules of the quantitative analysis.

the statement loop S is used as break postcondition in the derivation
for S.

Another interesting rule is Q:CALL. It needs to account for the
changes to the stack caused by the function call, the arguments/re-
turn value passing, and the preservation of local variables. We can
sum up the main ideas of the rule as follows.

• The potential in the pre- and postcondition of the function
specification is equalized to its matching potential in the callee’s
pre- and postcondition.
• The potential of intervals |rx, ys| is preserved across a function

call if x and y are local.
• The unknown potentials after the call (e.g. |rx, gs|, with x local

and g global) are set to zero in the postcondition.

If x and y are local variables and fpx, yq is called, Q:CALL splits
the potential of |rx, ys| in two parts. One part to perform the
computation in the function f and one part to keep for later use after
the function call. This splitting is realized by the equations Q “

P`S and Q1 “ P 1`S1. Arguments in the function precondition
pΓf ;Qf q are named using a fixed vector ~args of names different
from all program variables. This prevents name conflicts and ensures
that the substitution r ~args{~xs is meaningful. Symmetrically, we use
the unique name ret to represent the return value in the function’s
postcondition pΓ1f ;Q1f q.

The rule Q:WEAK is the only rule that is not syntax directed. We
could integrate weakenings into every syntax directed rule but, for
the sake of efficiency, the implementation uses a simple heuristic
instead. The high-level idea of Q:WEAK is the following: If we

have a sound judgement, then it is sound to add more potential to
the precondition and remove potential from the postcondition. The
concept of more potential is formalized by the relation Q1 ľΓ Q
that is defined in the rule RELAX. This rule also deals with the
important task of transferring constant potential (represented by q0)
to interval sizes and vice versa. If we can deduce from the logical
context that the interval size |rx, ys| ě ` is larger than a constant `
then we can turn the potential qxy¨|rx, ys| form the interval into the
constant potential `¨qxy and guarantee that we do not gain potential.
Conversely, if |rx, ys| ď u for a constant u then we can transfer
constant potential u¨qxy to the interval potential qxy¨|rx, ys| without
gaining potential.

5. Automatic Inference via LP Solving
We separate the search of a derivation in two steps. As a first step we
go through the functions of the program and apply inductively the
derivation rules of the automatic amortized analysis. This is done in
a bottom-up way for each strongly connected component (SCC) of
the call graph. During this process our tool uses symbolic names for
the rational coefficients qi in the rules. Each time a linear constraint
must be satisfied by these coefficients, it is recorded in a global list
for the SCC using the symbolic names. We reuse the constraint list
for every call from outside the SCC.

We then feed the collected constraints to an off-the-shelf LP
solver (currently CLP [19]). If the solver successfully finds a
solution, we know that a derivation exists and extract the values for
the initial Q from the solver to get a resource bound for the program.
To get a full derivation, we extract the complete solution from the

492



pxă10;Bdeq $ txě10;Qdeu x “ x´ 10 t¨;P deu
(Q:DECP)

pxă10;Bweq $ txě10;Qweu x “ x´ 10 t¨;Pweu
(Q:WEAK)

pxă10;Btiq $ t¨;Qtiu tickp5q t¨;P tiu
(Q:TICK)

pxă10;Bsqq $ txě10;Qsqu x “ x´ 10; tickp5q t¨;P squ
(Q:SEQ)

pxă10;Bifq $ txě10;Qifu x “ x´ 10; tickp5q t¨;P ifu
(Q:WEAK)

¨
¨
¨
¨
¨
¨
¨

pxă10;Bbrq $ txă10;Qbru break tK;P bru
(Q:BREAK)

pxă10;Belq $ txă10;Qelu break t¨;P elu
(Q:WEAK)

pxă10;Bloq $ t¨;Qlou if px ě 10q px “ x´ 10; tickp5qq else break t¨;P lou
(Q:IF)

p¨;Bq $ t¨;Qqu loop if px ě 10q px “ x´ 10; tickp5qq else break txă10;P u
(Q:LOOP)

Constraints:

P“Blo ^Q“Qlo“P lo Bel“Bif“Blo ^Qel“Qif“Qlo ^ P el“P if“P lo Bel“Bbr ^Qel ľpxă10q Q
br ^ P br ľp¨q P

el

Bbr“Qbr Bif“Bsq ^Qif ľpxă10q Q
sq ^ P sq ľp¨q P

if Bsq“Bwe“Bti ^Qsq“Qwe ^ Pwe“Qti ^ P ti“P sq

Qti“P ti ` 5 Bwe“Bde ^Qwe ľpxă10q Q
de ^ P de ľp¨q P

we pde
0,10“q

de
0,10 ` q

de
0,x ^ p

de
0 “q

de
0 ^ @pα, βq ‰ p0, 10q. pde

α,β“q
de
α,β

Linear Objective Function: 1¨qx,0 ` 10000¨q0,x ` 11¨qx,10 ` 9990¨q10,x Constant Objective Function: 1¨q0 ` 11¨q0,10

Figure 5. An example derivation as produced C4B. The constraints are resolved by an off-the-shelf LP solver.

solver and apply it to the symbolic names qi of the coefficients in
the derivation. If the LP solver fails to find a solution, an error is
reported.

Figure 5 contains an example derivation as produced by C4B.
The upper case letters (with optional superscript) such as Qde are
families of variables that are later part of the constraint system
that is passed to the LP solver. For example Qde stands for the
potential function qde

0 `q
de
x,0|rx, 0s|`q

de
0,x|r0, xs|`q

de
x,10|rx, 10s|`

qde
10,x|r10, xs| ` qde

0,10|r0, 10s|, where the variables such as qde
x,10 are

yet unknown and later instantiated by the LP solver.
In general, the weakening rule can be applied after every syntax

directed rule. However, it can be left out in practice at some places
to increase the efficiency of the tool. The weakening operation ľΓ is
defined by the rule RELAX. It is parameterized by a logical context
that is used to gather information on interval sizes. For example,

P de
ľp¨q P

we
” pwe

0,10 ď pde
0,10 ` u0,10 ´ v0.10

^ pwe
0 ď pde

0 ´ 10¨u0,10 ` 10¨v0.10

^ @pα, βq ‰ p0, 10q. pwe
α,β ď pde

α,β .

The other rules are syntax directed and applied inductively. For
example, the outermost expression is a loop, so we use the rule
Q:Loop at the root of the derivation tree. At this point, we do
not know yet whether a loop invariant exists. But we produce the
constraints Qlo

“ P lo. These constraints express the fact that the
potential functions before and after the loop body are equal and thus
constitute an invariant.

After the constraint generation, the LP solver is provided with
an objective function to be minimized. We wish to minimize the
initial potential, which is a resource bound on the whole program.
Here it is given by Q. Moreover, we would like to express that
minimization of linear potential such as q10,x|r10, xs| takes priority
over minimization of constant potential such as q0,10|r0, 10s|.

To get a tight bound, we use modern LP solvers that allow
constraint solving and minimization at the same time: First we
consider our initial constraint set as given in Figure 5 and ask the
solver to find a solution that satisfies the constraints and minimizes
the linear expression 1¨qx,0 ` 10000¨q0,x ` 11¨qx,10 ` 9990¨q10,x.
The penalties given to certain factors are used to prioritize certain
intervals. For example, a bound with r10, xs will be preferred to
another with r0, xs because |r10, xs| ď |r0, xs|. The LP solver now
returns a solution of the constraint set and an objective value. The
solver also memorizes the optimization path that led to the optimal

solution. In this case, the objective value would be 5000 since the LP
solver assigns q0,x “ 0.5 and q˚ “ 0 otherwise. We now add the
constraint 1¨qx,0 ` 10000¨q0,x ` 11¨qx,10 ` 9990¨q10,x ď 5000
to our constraint set and ask the solver to optimize the objective
function q0 ` 11¨q0,10. This happens in almost no time in practice.
The final solution is q0,x “ 0.5 and q˚ “ 0 otherwise. Thus the
derived bound is 0.5|r0, xs|.

A notable advantage of the LP-based approach compared to SMT-
solver–based techniques is that a satisfying assignment is a proof
certificate instead of a counter example. To provide high-assurance
bounds, this certificate can be checked in linear time by a simple
validator.

6. Logical State and User Interaction
While complete automation is desirable, it is not always possible
since the problem of bound derivation is undecidable. In this section
we present a new technique to derive complex resource bounds semi-
automatically by leveraging our automation. Our goal is to develop
an interface between bound derivation and established qualitative
verification techniques.

When the resource bound of a program depends on the contents
of the heap, or is non-linear (e.g. logarithmic, exponential), we in-
troduce a logical state using auxiliary variables. Auxiliary variables
guide C4B during bound derivation but they do not change the
behavior of the program.

More precisely, the technique consists of the following steps.
First, a program P that fails to be analyzed automatically is enriched
by auxiliary variables ~x and assertions to form a program Plp~xq.
Second, an initial value ~Xpσq for the logical variables is selected to
satisfy the proposition:

@nσ σ1. pσ, Plp ~Xpσqqq ón σ
1
ùñ Dn1ďn. pσ, P q ón1 σ1. (*)

Since the annotated program and the original one are usually
syntactically close, the proof of this result goes by simple induction
on the resource-aware evaluation judgement. Third, using existing
automation tools, a bound Bp~xq for Plp~xq is derived. Finally this
bound, instantiated with ~X , gives the final resource bound for the
program P .

This idea is illustrated by the program in Figure 6. The parts
of the code in blue are annotations that were added to the original
program text. The top-level loop increments a binary counter k
times. A naive analysis of the algorithm yields the quadratic bound
k ¨N . However, the algorithm is in fact linear and its cost is bounded

493



1 logical state invariant tna “ #1paqu
2 while (k > 0) {
3 x=0;
4 while (x < N && a[x] == 1) {
5 assert(na > 0);
6 a[x]=0; na--;
7 tick(1); x++; }
8 if (x < N) { a[x]=1; na++; tick(1); }
9 k--;

10 }

Figure 6. Assisted bound derivation using logical state. We write
#1paq for #ti | 0ďiăN^aris“1u and use the tick metric. The
derived bound is 2|r0, ks| ` |r0, nas|.

1 logical state invariant tlg ą log2ph´ lqu
2 bsearch(x,l,h,lg) {
3 if (h-l > 1) {
4 assert(lg > 0);
5 m = l + (h-l)/2;
6 lg--; if (a[m]>x) h=m; else l=m;
7 tick(Mbsearch);
8 l = bsearch(x,l,h,lg);
9 tick(´Mbsearch);

10 } else return l;
11 }

Figure 7. Assisted bound derivation using logical state. We write
log2pxq for the integer part of logarithm of x in base 2. The semi-
automatically derived bound is |r0, lgs|.

by 2k `#1paq where #1paq denotes the number of one entries in
the array a. Since this number depends on the heap contents, no
tool available for C is able to derive the linear bound. However,
it can be inferred by our automated tool if a logical variable na
is introduced. This logical variable is a reification of the number
#1paq in the program. For example, on line 6 of the example we
are setting a[x] to 0 and because of the condition we know that
this array entry was 1. To reflect this change on #1paq, the logical
variable na is decremented. Similarly, on line 8, an array entry
which was 0 becomes 1, so na is incremented. To complete the step
2 of the systematic procedure described above, we must show that
the extra assertion na > 0 on line 5 cannot fail. We do it by proving
inductively that na “ #1paq and remarking that since a[x] == 1 is
true, we must have #1paqą0, thus the assertion na > 0 never fails.

Another simple example is given in Figure 7 where a logarithmic
bound on the stack consumption of a binary search program is
proved using logical variable annotations. Once again, annotations
are in blue in the program text. In this example, to ease the proof
of equivalence between the annotated program and the original one,
we use the inequality lg ą log2ph´ lq as invariant. This allows a
simpler proof because, when working with integer arithmetic, it is
not always the case that log2px´ x{2q “ log2pxq ´ 1.

Generally, we observed that because the instrumented program
is structurally same as the original one, it is enough to prove that the
added assertions never fail in order to show the two programs satisfy
the proposition (*). This can usually be piggybacked on standard
static-analysis tools.

7. Soundness Proof
The soundness of the analysis builds on a new cost semantics for
Clight and an extended quantitative logic. Using these two tools, the
soundness of the automatic analysis described in Section 3 is proved
by a translation morphism to the logic.

The main parts of the soundness proof are formalized with Coq
and available for download. The full definitions of the cost semantics
and the quantitative Hoare logic, and more details on the soundness
proof can be found in the extended version of this article.

Cost Semantics for Clight. To base the soundness proof on a
formal ground, we start by defining a new cost-aware operational
semantics for Clight. Clight’s operational semantics is based on
small-step transitions and continuations. Expressions—which do
not have side effects—are evaluated in a big-step fashion.

A program state σ “ pθ, γq is composed of two maps from
variable names to integers. The first map, θ : Locals Ñ Z, assigns
integers to local variables of a function, and the second map,
γ : Globals Ñ Z, gives values to global variables of the program.
In this article, we assume that all values are integers but in the
implementation we support all data types of Clight. The evaluation
function J¨K maps an expression e P E to a value JeKσ P Z in the
program state σ. We write σpxq to obtain the value of x in program
state σ. Similarly, we write σrx ÞÑ vs for the state based on σ where
the value of x is updated to v.

The small-step semantics is standard, except that it tracks the
resource consumption of a program. The semantics is parametric
in the resource of interest for the user of our system. We achieve
this independence by parameterizing evaluations with a resource
metric M ; a tuple of rational numbers and two maps. Each of
these parameters indicates the amount of resource consumed by
a corresponding step in the semantics. Resources can be released by
using a negative cost. Two sample rules for update and tick follow.

σ1 “ σrx ÞÑ JeKσs
pσ, xÐ e,K, cq Ñ

pσ1, skip,K, c´Mu´Mepeqq

(U)
pσ, tickpnq,K, cq Ñ
pσ, skip,K, c´Mtpnqq

(T)

The rules have as implicit side condition that c is non-negative. This
makes it possible to detect a resource crash as a stuck configuration
where c ă 0.

Quantitative Hoare Logic. To prove the soundness of C4B we
found it useful to go through an intermediate step using a quantitative
Hoare logic. This logic is at the same time a convenient semantic
tool and a clean way to interface manual proofs with our automation.
We base it on a logic for stack usage [15], add support for arbitrary
resources, and simplify the handling of auxiliary state.

We define quantitative Hoare triples as B;R $L tQuS tQ
1
u

where B, R, Q, and Q1 are maps from program states to an element
of Q`0 Y t8u that represents an amount of resources available. The
assertionsB andR are postconditions for the case in which the block
S exits by a break or return statement. Additionally, R depends on
the return value of the current function. The meaning of the triple
tQuS tQ1u is as follows: If S is executed with starting state σ, the
empty continuation, and at least Qpσq resource units available then
the evaluation does not run out of resources and there are at least
Q1pσ1q resources left if the evaluation terminates in σ1. The logic
rules are similar to the ones in previous work and generalized to
account for the cost introduced by our cost-aware semantics.

Finally, we define a strong compositional continuation-based
soundness for triples and prove the validity of all the rules in Coq.
The full version of this paper [16], provides explanations for the
rules and a thorough overview of our soundness proof.

The Soundness Theorem. We use the quantitative logic as the
target of a translation function for the automatic derivation system.
This reveals two orthogonal aspects of the proof: on one side, it
relies on amortized reasoning (the quantitative logic rules), and on
the other side, it uses combinatorial properties of our linear potential
functions (the automatic analysis rules).

Technically, we define a translation function T such that if a
judgement J in the automatic analysis is derivable, T pJq is deriv-

494



t09 t19 t30 t15 t13
i=1; j=0;
while (j<x) {

j++;
if (i>=4)

i=1, tick(40);
else i++;
tick(1); }

while (i>100) {
i--; tick(1);

} i += k+50;
while (i>=0) {

i--; tick(1);
}

while (x>0) {
x--;
t=x, x=y, y=t;
tick(1);

}

assert(y>=0);
while (x > y) {

x -= y+1;
for (z=y; z>0; z--)

tick(1);
tick(1);

}

while (x>0) {
x--;
if (*) y++;
else

while (y>0)
y--, tick(1);

tick(1); }

C4B 11|r0, xs| 50`|r´1, is|`|r0, ks| |r0, xs|`|r0, ys| |r0, xs| 2|r0, xs|`|r0, ys|

Rank 23¨x´ 14 54` k ` i — 2` 2x´ y 0.5¨y2`yx . . .

LOOPUS 41 maxpx, 0q
maxpi´100, 0q

`maxpk`i`51, 0q
— — 2 maxpx, 0q

`maxpy, 0q

Figure 8. Comparison of resource bounds derived by different tools on several examples with linear bounds.

able in the quantitative logic. By using T to translate derivations of
the automatic analysis to derivations in the quantitative logic we can
directly obtain a certified resource bound for the analyzed program.

The translation of an assertion pΓ;Qq in the automatic analysis
is defined by

T pΓ;Qq :“ λσ.Γpσq ` ΦQpσq,

where we write ΦQ for the unique linear potential function defined
by the quantitative annotation Q. The logical context Γ is implicitly
lifted to a quantitative assertion by mapping a state σ to 0 if Γpσq
holds and to 8 otherwise. These definitions let us translate the
judgement J :“ B,R $ tP uS tP 1u by

T pJq :“ T pBq; T pRq $L tT pP quS tT pP 1qu.
The soundness of the automatic analysis can now be stated formally
with the following theorem.

Theorem 1 (Soundness of the automatic analysis). If J is a judge-
ment derived by the automatic analysis, then T pJq is a quantitative
Hoare triple derivable in the quantitative logic.

The proof of this theorem is constructive and maps each rule of the
automatic analysis directly to its counterpart in the quantitative logic.
The trickiest parts are the translations of the rules for increments and
decrements and the rule Q:WEAK for weakening because they make
essential use of the algebraic properties of the potential functions.

8. Experimental Evaluation
We have experimentally evaluated the practicality of our automatic
amortized analysis with more than 30 challenging loop and recursion
patterns from open-source code and the literature [20–22]. A full
list of examples is given in the extended version [16].

Figure 8 shows five representative loop patterns from the evalu-
ation. Example t09 is a loop that performs an expensive operation
every 4 steps.C4B is the only tool able to amortize this cost over the
input parameter x. Example t19 demonstrates the compositionality
of the analysis. The program consists of two loops that decrement
a variable i. In the first loop, i is decremented down to 100 and
in the second loop i is decremented further down to ´1. However,
between the loops we assign i += k+50. So in total the program
performs 52` |r´1, is| ` |r0, ks| ticks. Our analysis finds this tight
bound because our amortized analysis naturally takes into account
the relation between the two loops. Example t30 decrements both
input variables x and y down to zero in an unconventional way. In
the loop body, first x is decremented by one, then the values of the
variables x and y are switched using the local variable t as a buffer.
Our analysis infers the tight bound |r0, xs| ` |r0, ys|. Sometimes
we need some assumptions on the inputs in order to derive a bound.
Example t15 is such a case. We assume here that the input variable y
is non-negative and write assert(y>=0). The assignment x -= y+1

in the loop is split in x-- and x -= y. If we enter the loop then we

Table 1. Comparison of C4B with other automatic tools.

KoAT Rank LOOPUS SPEED C4B
#bounds 9 24 20 14 32

#lin. bounds 9 21 20 14 32
#best bounds 0 0 11 14 29

#tested 14 33 33 14 33

know that x ą 0, so we can obtain constant potential from x--.
Then we know that x ě y ě 0, as a consequence we can share the
potential of |r0, xs| between |r0, xs| and |r0, ys| after x -= y.

Example t13 shows how amortization can be used to find linear
bounds for nested loops. The outer loop is iterated |r0, xs| times.
In the conditional, we either (the branching condition is arbitrary)
increment the variable y or we execute an inner loop in which y
is counted back to 0. C4B computes a tight bound. The extended
version also contains a discussion of the automatic bound derivation
for the Knuth-Morris-Pratt algorithm for string search. C4B finds
the tight linear bound 1` 2|r0, ns|.

To compare our tool with existing work, we focused on loop
bounds and use a simple metric that counts the number of back edges
(i.e., number of loop iterations) that are followed in the execution
of the program because most other tools only bound this specific
cost. In Figure 8, we show the bounds we derived (C4B) together
with the bounds derived by LOOPUS [38] and Rank [3]. We also
contacted the authors of SPEED but have not been able to obtain
this tool. KoAT [13] and PUBS [1] currently cannot operate on C
code and the examples would need to be manually translated into
a term-rewriting system to be analyzed by these tools. For Rank it
is not completely clear how the computed bound relates to the C
program since the computed bound is for transitions in an automaton
that is derived from the C code. For instance, the bound 2` y ´ x
that is derived for t08 only applies to the first loop in the program.

Table 1 summarizes the results of our experiments presented in
Appendix A. It shows for each tool the number of derived bounds
(#bounds), the number of asymptotically tight bounds (#lin. bounds),
the number of bounds with the best constant factors in comparison
with the other tools (#best bounds), and the number of examples
that we were able to test with the tool (#tested). Since we were
not able to run the experiments for KoAT and SPEED, we simply
used the bounds that have been reported by the authors of the
respective tools. The results show that our automatic amortized
analysis outperforms the existing tools on our example programs.
However, this experimental evaluation has to be taken with a grain
of salt. Existing tools complement C4B since they can derive
polynomial bounds and support more features of C. We were
particularly impressed by LOOPUS which is very robust, works
on large C files, and derives very precise bounds.

Table 2 contains a compilation of the results of our experiments
with the cBench benchmark suite. It shows a representative list of
automatically derived function bounds. In total we analyzed more

495



Table 2. Derived bounds for functions from cBench.
Function LoC Bound Time (s)

adpcm coder 145 1` |r0,Ns| 0.6
adpcm decod 130 1` |r0,Ns| 0.2
BF cfb64 enc 151 1` 2|r´1,Ns| 0.7

BF cbc enc 180 2` 0.25|r´8,Ns| 1.0
mad bit crc 145 61.19`0.19|r´1,Ns| 0.4

mad bit read 65 1` 0.12|r0,Ns| 0.05
MD5Update 200 133.95`1.05|r0,Ns| 1.0

MD5Final 195 141 0.22
sha update 98 2` 3.55|r0,Ns| 1.2

PackBitsDecode 61 1` 65|r´129, ccs| 0.6
KMPSearch 20 1` 2|r0, ns| 0.1

ycc rgb conv 66 nr ¨ nc 0.1
uv decode 31 log2pUV NVSq ` 1 0.1

than 2900 lines of code. In the LoC column we not only count the
lines of the analyzed function but also the ones of all the function it
calls. We analyzed the functions using a metric that assigns a cost 1
to all the back-edges in the control flow (loops, and function calls).
The bounds for the functions ycc rgb conv and uv decode have
been inferred with user interaction as described in Section 6. The
most challenging functions forC4B have unrolled loops where many
variables are assigned. This stresses our analysis because the number
of LP variables has a quadratic growth in program variables. Even
on these stressful examples, the analysis could finish in less than
2 seconds. For example, the sha update function is composed of
one loop calling two helper functions that in turn have 6 and 1 inner
loops. In the analysis of the SHA algorithm, the compositionality
of our analysis is essential to get a tight bound since loops on the
same index are sequenced 4 and 2 times without resetting it. All
other tools derive much larger constant factors.

With our formal cost semantics, we can run our examples for
different inputs and measure the cost to compare it to our derived
bound. Figure 9 shows such a comparison for Example t08, a variant
of t08a from Section 3. One can see that the derived constant factors
are the best possible if the input variable x is non-negative.

9. Limitations
Our implementation does not currently support all of Clight. Pro-
grams with function pointers, goto statements, continue statements,
and pointers to stack-allocated variables cannot be analyzed automat-
ically. While these limitations concern the current implementation,
our technique is in principle capable to handle them.

For the sake of simplicity, the automated system described here
is restricted to finding only linear bounds. However, the amortized
analysis technique was shown to work with polynomial bounds [25];
we leave this extension of our system as future work.

Even certain linear programs cannot be analyzed automatically
by C4B, it is usually the case for programs that rely on heap
invariants (like nul-terminated C strings), for programs in which
resource usage depends on the result of non-linear operations (like
% or ˚) in a non-trivial way, or for programs whose termination can
only be proved by complex path-sensitive reasoning.

10. Related Work
Our work has been inspired by type-based amortized resource
analysis for functional programs [23, 26, 28]. Here, we present
the first automatic amortized resource analysis for C. None of the
existing techniques can handle the example programs we describe
in this work. The automatic analysis of realistic C programs is
enabled by two major improvements over previous work. First, we
extended the analysis system to associate potential with not just
individual program variables but also multivariate intervals and,
more generally, auxiliary variables. In this way, we solved the long-

-100
-50

 0
 50

 100

-100
-50

 0
 50

 100

 0

 50

 100

 150

 200

 250

 300

measurements
inferred bound

Figure 9. The automatically derived bound 1.33|rx, ys| `
0.33|r0, xs| (blue lines) and the measured runtime cost (red crosses)
for Example t08. For x ě 0 the bound is tight.

standing open problem of extending automatic amortized resource
analysis to compute bounds for programs that loop on (possibly
negative) integers without decreasing one individual number in each
iteration. Second, for the first time, we have combined an automatic
amortized analysis with a system for interactively deriving bounds.
In particular, recent systems [24] that deal with integers and arrays
cannot derive bounds that depend on values in mutable locations,
possibly negative integers, or on differences between integers.

A recent project [15] has implemented and verified a quantitative
logic to reason about stack-space usage, and modified the verified
CompCert C compiler to translate C level bound to x86 stack bounds.
This quantitative logic is also based on the potential method but has
very rudimentary support for automation. It is not based on efficient
LP solving and cannot automatically derive symbolic bounds. In
contrast, our main contribution is an automatic amortized analysis
for C that can derive parametric bounds for loops and recursive
functions fully automatically. We use a more general quantitative
Hoare logic that is parametric over the resource of interest.

There exist many tools that can automatically derive loop and
recursion bounds for imperative programs such as SPEED [20, 22],
KoAT [13], PUBS [1], Rank [3], ABC [10] and LOOPUS [38, 40].
These tools are based on abstract interpretation–based invariant
generation and/or term rewriting techniques, and they derive impres-
sive results on realistic software. The importance of amortization to
derive tight bounds is well known in the resource analysis commu-
nity [4, 30, 38]. Currently, the only other available tools that can be
directly applied to C code are Rank and LOOPUS. As demonstrated,
C4B is more compositional than the aforementioned tools. Our
technique, is the only one that can generate resource specifications
for functions, deal with resources like memory that might become
available, generate proof certificates for the bounds, and support
user guidance that separates qualitative and quantitative reasoning.

There are techniques [12] that can compute the memory require-
ments of object oriented programs with region-based garbage collec-
tion. These systems can handle loops but not recursive or composed
functions. We are only aware of two verified quantitative analysis
systems. Albert et al. [2] rely on the KeY tool to automatically verify
previously inferred loop invariants, size relations, and ranking func-
tions for Java Card programs. However, they do not have a formal
cost semantics and do not prove the bounds correct with respect to a
cost model. Blazy et al. [11] have verified a loop bound analysis for
CompCert’s RTL intermediate language. However, this automatic
bound analysis does not compute symbolic bounds.

11. Conclusion
We have developed a novel analysis framework for compositional
and certified worst-case resource bound analysis for C programs.
The framework combines ideas from existing abstract interpretation–

496



based techniques with the potential method of amortized analysis. It
is implemented in the publicly available tool C4B. To the best of our
knowledge, C4B is the first tool for C programs that automatically
reduces the derivation of symbolic bounds to LP solving.

We have demonstrated that our approach improves the state-of-
the-art in resource bound analysis for C programs in three ways.
First, our technique is naturally compositional, tracks size changes
of variables, and can abstractly specify the resource cost of functions
(Section 3). Second, it is easily combinable with established qualita-
tive verification to guide semi-automatic bound derivation (Section
6). Third, we have shown that the local inference rules of the deriva-
tion system automatically produce easily checkable certificates for
the derived bounds (Section 7). Our system is the first amortized
resource analysis for C programs. It addresses the long-standing
open problem of extending automatic amortized resource analysis
to compute bounds for programs that loop on signed integers and to
deal with non-linear control flow.

This work is the starting point for several projects that we plan
to investigate in the future, such as the extension to concurrency,
better integration of low-level features like memory caches, and
the extension of the automatic analysis to multivariate resource
polynomials [25].

Acknowledgments
We thank members of the FLINT team at Yale and anonymous
referees for helpful comments and suggestions that improved this
paper and the implemented tools. This research is based on work
supported in part by NSF grants 1319671 and 1065451, DARPA
grants FA8750-10-2-0254 and FA8750-12-2-0293, and ONR Grant
N00014-12-1-0478. Any opinions, findings, and conclusions con-
tained in this document are those of the authors and do not reflect
the views of these agencies.

References
[1] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost

Analysis of Object-Oriented Bytecode Programs. Theor. Comput. Sci.,
413(1):142–159, 2012.

[2] E. Albert, R. Bubel, S. Genaim, R. Hähnle, and G. Román-Dı́ez.
Verified Resource Guarantees for Heap Manipulating Programs. In
Fundamental Approaches to Software Engineering - 15th Int. Conf.
(FASE’12), pages 130–145, 2012.

[3] C. Alias, A. Darte, P. Feautrier, and L. Gonnord. Multi-dimensional
Rankings, Program Termination, and Complexity Bounds of Flowchart
Programs. In 17th Int. Static Analysis Symposium (SAS’10), pages
117–133, 2010.

[4] D. E. Alonso-Blas and S. Genaim. On the limits of the classical
approach to cost analysis. In 19th Int. Static Analysis Symposium
(SAS’12), pages 405–421, 2012.

[7] R. Atkey. Amortised Resource Analysis with Separation Logic. In 19th
Euro. Symp. on Prog. (ESOP’10), pages 85–103, 2010.

[8] G. Barthe, B. Grégoire, and S. Z. Béguelin. Formal Certification of
Code-Based Cryptographic Proofs. In 36th ACM Symp. on Principles
of Prog. Langs. (POPL’09), pages 90–101, 2009.

[9] G. Barthe, G. Betarte, J. D. Campo, C. Luna, and D. Pichardie. System-
Level Non-Interference for Constant-Time Cryptography. IACR Cryp-
tology ePrint Archive, 2014:422, 2014.

[10] R. Blanc, T. A. Henzinger, T. Hottelier, and L. Kovács. ABC: Algebraic
Bound Computation for Loops. In Logic for Prog., AI., and Reasoning
- 16th Int. Conf. (LPAR’10), pages 103–118, 2010.

[11] S. Blazy, A. Maroneze, and D. Pichardie. Formal Verification of Loop
Bound Estimation for WCET Analysis. In Verified Software: Theories,
Tools, Experiments - 5th Int. Conf. (VSTTE’13), 2013. To appear.

[12] V. A. Braberman, F. Fernández, D. Garbervetsky, and S. Yovine.
Parametric prediction of heap memory requirements. In 7th Int. Symp.
on Memory Management (ISMM’08), pages 141–150, 2008.

[13] M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, and J. Giesl. Alternat-
ing Runtime and Size Complexity Analysis of Integer Programs. In
Tools and Alg. for the Constr. and Anal. of Systems - 20th Int. Conf.
(TACAS’14), pages 140–155, 2014.

[14] M. Carbin, S. Misailovic, and M. C. Rinard. Verifying Quantitative
Reliability for Programs that Execute on Unreliable Hardware. In 28th
Conf. on Object-Oriented Prog., Sys., Langs., and Appl., OOPSLA’13,
pages 33–52, 2013.

[15] Q. Carbonneaux, J. Hoffmann, T. Ramananandro, and Z. Shao. End-to-
End Verification of Stack-Space Bounds for C Programs. In Conf. on
Prog. Lang. Design and Impl. (PLDI’14), page 30, 2014.

[16] Q. Carbonneaux, J. Hoffmann, and Z. Shao. Compositional Cer-
tified Resource Bounds (Extended Version). Technical Report
YALEU/DCS/TR-1505, Dept. of Computer Science, Yale University,
New Haven, CT, April 2015.

[17] A. Carroll and G. Heiser. An Analysis of Power Consumption in a
Smartphone. In USENIX Annual Technical Conference (USENIX’10),
2010.

[18] M. Cohen, H. S. Zhu, E. E. Senem, and Y. D. Liu. Energy Types. In 27th
Conf. on Object-Oriented Prog., Sys., Langs., and Appl., OOPSLA’12,
pages 831–850, 2012.

[19] COIN-OR Project. CLP (Coin-or Linear Programming). https:
//projects.coin-or.org/Clp, 2014. Accessed: 2014-11-12.

[20] S. Gulwani and F. Zuleger. The Reachability-Bound Problem. In Conf.
on Prog. Lang. Design and Impl. (PLDI’10), pages 292–304, 2010.

[21] S. Gulwani, S. Jain, and E. Koskinen. Control-Flow Refinement and
Progress Invariants for Bound Analysis. In Conf. on Prog. Lang. Design
and Impl. (PLDI’09), pages 375–385, 2009.

[22] S. Gulwani, K. K. Mehra, and T. M. Chilimbi. SPEED: Precise and
Efficient Static Estimation of Program Computational Complexity. In
36th ACM Symp. on Principles of Prog. Langs. (POPL’09), pages
127–139, 2009.

[23] J. Hoffmann and M. Hofmann. Amortized Resource Analysis with
Polynomial Potential. In 19th Euro. Symp. on Prog. (ESOP’10), 2010.

[24] J. Hoffmann and Z. Shao. Type-Based Amortized Resource Analy-
sis with Integers and Arrays. In 12th International Symposium on
Functional and Logic Programming (FLOPS’14), 2014.

[25] J. Hoffmann, K. Aehlig, and M. Hofmann. Multivariate Amortized
Resource Analysis. In 38th ACM Symp. on Principles of Prog. Langs.
(POPL’11), 2011.

[26] J. Hoffmann, K. Aehlig, and M. Hofmann. Multivariate Amortized
Resource Analysis. ACM Trans. Program. Lang. Syst., 2012.

[28] M. Hofmann and S. Jost. Static Prediction of Heap Space Usage for
First-Order Functional Programs. In 30th ACM Symp. on Principles of
Prog. Langs. (POPL’03), pages 185–197, 2003.

[29] M. Hofmann and S. Jost. Type-Based Amortised Heap-Space Analysis.
In 15th Euro. Symp. on Prog. (ESOP’06), pages 22–37, 2006.

[30] M. Hofmann and G. Moser. Amortised resource analysis and typed
polynomial interpretations. In Joint 25th RTA and 12th TLCA, 2014.

[32] E. Käsper and P. Schwabe. Faster and Timing-Attack Resistant AES-
GCM. In Cryptographic Hardware and Emb. Sys., 11th Int. Workshop
(CHES’09), pages 1–17, 2009.

[34] X. Leroy. Formal Verification of a Realistic Compiler. Communications
of the ACM, 52(7):107–115, 2009.

[37] J. Regehr, A. Reid, and K. Webb. Eliminating Stack Overflow by
Abstract Interpretation. ACM Trans. Embed. Comput. Syst., 4(4):751–
778, 2005.

[38] M. Sinn, F. Zuleger, and H. Veith. A Simple and Scalable Approach
for Bound Analysis and Amortized Complexity Analysis. In Computer
Aided Verification - 26th Int. Conf. (CAV’14), page 743–759, 2014.

[39] R. E. Tarjan. Amortized Computational Complexity. SIAM Journal on
Algebraic Discrete Methods, 6(2):306–318, 1985.

[40] F. Zuleger, M. Sinn, S. Gulwani, and H. Veith. Bound Analysis of
Imperative Programs with the Size-change Abstraction. In 18th Int.
Static Analysis Symposium (SAS’11), 2011.

497



A. Complete Experimental Results for the Tool Comparison

Table 3. Comparison of the bounds generated by KoAT, Rank, LOOPUS, SPEED, and our tool C4B on several challenging linear examples.
Results for KoAT and SPEED were extracted from previous publications [20–22, 38] because KoAT cannot take C programs as input in its
current version and SPEED is not available. Entries marked with ? indicate that we cannot test the respective example with the tool. Entries
marked with — indicate that the tool failed to produce a result. We write mxpa, bq for the maximum of a and b. Functions with names of the
form tXX are challenging tests that we designed during the development of C4B. The source code for all functions is available in the extended
version [16].

Function KoAT Rank LOOPUS SPEED C4B

gcd ? ppp2`1q . . . Opnq — ? |r0, xs|`|r0, ys|
kmp ? ppp2`pn` . . . Opn2q mxpn, 0q . . . Opnq ? 1`2|r0, ns|

qsort ? — — ? 1`2|r0, lens|
speed pldi09

fig4 2
— ppp2`nq . . . Opnq — n

m
` n 1`2|r0, ns|

speed pldi09
fig4 4

— ppp2`p´1 . . . Opnq — n
m
`m |r0, ns|

speed pldi09
fig4 5

28d`
7g ` 27

Opnq ppp2`p´1 . . . Opnq — mxpn, n´mq —

speed pldi10
ex1

— — — n |r0, ns|

speed pldi10
ex3

— ppp2`p´1 . . . Opnq 2¨mxpn, 0q Opnq n |r0, ns|

speed pldi10
ex4

110a`
33

Opnq — — n` 1 1`2|r0, ns|

speed popl10
fig2 1

9a`
9b` . . .

Opnq pp2`pp´y . . . Opnq
mxp0, n´xq `
mxp0,m´yq

Opnq
mxp0, n´xq `
mxp0,m´yq

|rx, ns|`|ry,ms|

speed popl10
fig2 2

6a`9b`
3c` 5

Opnq pp2´x . . . Opnq
mxp0, px`
1´zq . . .

Opnq
mxp0, n´xq `
mxp0, n´zq

|rx, ns|`|rz, ns|

speed popl10
nested multiple

— pp2´x`n . . . Opn2q
mxp0,m´yq `

mxp0, n´xq
Opnq

mxp0, n´xq `
mxp0,m´yq

|rx, ns|`|ry,ms|

speed popl10
nested single

48b` 16 Opnq ppp1´x`n . . . Opnq mxp0,n´1q . . . Opnq n |r0, ns|

speed popl10
sequential single

21b` 6 Opnq pp2´ x`n . . . Opnq 2¨mxpn, 0q Opnq n |r0, ns|

speed popl10
simple multiple

9c`
10d` 7

Opnq pp2´y`m. . . Opnq
mxpn, 0q `
mxpm, 0q

Opnq n`m |r0,ms|`|r0, ns|

speed popl10
simple single2

20d`
12c` 17

Opnq — mxpn, 0q `
mxpm, 0q

Opnq n`m |r0, ns|`|r0,ms|

speed popl10
simple single

4b` 6 Opnq pp2´x`n . . . Opnq mxpn, 0q Opnq n |r0, ns|

t07 ? 2` x Opnq mxpx, 0q . . . Opnq ? 1`3|r0, xs|`|r0, ys|

t08 ? pp2`z´y . . . Opnq mxp0,y´2q . . . Opnq ?
1.33|ry, zs|`0.33|r0, ys|

t10 ? pp2´y`x . . . Opnq mxp0, x´yq Opnq ? |ry, xs|

t11 ? pp2´y`m. . . Opnq
mxp0, n´xqq`
mxp0,m´yq

Opnq ? |rx, ns|`|ry,ms|

t13 ? ppp1`y2{2 . . . Opn2q
2¨mxpx, 0q `

mxpy, 0q
Opnq ? 2|r0, xs|`|r0, ys|

t15 ? pp1`x . . . Opnq — ? |r0, xs|
t16 ? pp´99¨y . . . Opnq — ? 101|r0, xs|

t19 ? pp153`k . . . Opnq
mxp0,i´102q`

mxp0,k`i`51q
Opnq ? 50`|r´1, is|`|r0, ks|

t20 ? p2´y`x . . . Opnq
2¨mxp0,y´xq`

mxp0,x´yq
Opnq ? |rx, ys|`|ry, xs|

t27 ? — 103mxp0,
´nq. . .

Opnq ?
0.01|rn, ys|`11|rn, 0s|

t28 ? pp1´y`x . . . Opnq
103 mxp0, x´

yq . . .
Opnq ? |rx, 0s|`|r0, ys|

`1002|ry, xs|
t30 ? — — ? |r0, xs|`|r0, ys|
t37 ? — — ? 3`2|r0, xs|`|r0, ys|
t39 ? — — ? 1.33`0.67|rz, ys|
t46 ? — — ? |r0, ys|
t47 ? 4` n Opnq 1`mxpn, 0q Opnq ? 1`|r0, ns|

498


	apsys11
	tase11
	popl12
	popl12tr
	aplas12a
	aplas12b
	cpp12
	lics13
	concur13
	concur13tr
	post14
	pldi14
	lics14
	lics14tr
	cpp15
	popl15
	esop15
	pldi15
	FULL.pdf
	apsys11
	tase11
	popl12
	popl12tr
	aplas12a
	aplas12b
	cpp12
	lics13
	concur13
	concur13tr
	post14
	pldi14
	lics14
	lics14tr
	cpp15
	popl15
	esop15
	pldi15




